Properties

Label 1638.2.j.k.1171.2
Level $1638$
Weight $2$
Character 1638.1171
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.2
Root \(1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1171
Dual form 1638.2.j.k.235.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.822876 - 1.42526i) q^{5} +(-1.32288 + 2.29129i) q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.822876 - 1.42526i) q^{5} +(-1.32288 + 2.29129i) q^{7} +1.00000 q^{8} +(0.822876 + 1.42526i) q^{10} +(-2.32288 - 4.02334i) q^{11} +1.00000 q^{13} +(-1.32288 - 2.29129i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.677124 - 1.17281i) q^{17} +(-2.50000 + 4.33013i) q^{19} -1.64575 q^{20} +4.64575 q^{22} +(-3.82288 + 6.62141i) q^{23} +(1.14575 + 1.98450i) q^{25} +(-0.500000 + 0.866025i) q^{26} +2.64575 q^{28} +6.29150 q^{29} +(3.64575 + 6.31463i) q^{31} +(-0.500000 - 0.866025i) q^{32} +1.35425 q^{34} +(2.17712 + 3.77089i) q^{35} +(-0.177124 + 0.306788i) q^{37} +(-2.50000 - 4.33013i) q^{38} +(0.822876 - 1.42526i) q^{40} +7.64575 q^{41} +5.29150 q^{43} +(-2.32288 + 4.02334i) q^{44} +(-3.82288 - 6.62141i) q^{46} +(1.50000 - 2.59808i) q^{47} +(-3.50000 - 6.06218i) q^{49} -2.29150 q^{50} +(-0.500000 - 0.866025i) q^{52} +(-1.50000 - 2.59808i) q^{53} -7.64575 q^{55} +(-1.32288 + 2.29129i) q^{56} +(-3.14575 + 5.44860i) q^{58} +(3.96863 + 6.87386i) q^{59} +(-1.96863 + 3.40976i) q^{61} -7.29150 q^{62} +1.00000 q^{64} +(0.822876 - 1.42526i) q^{65} +(6.79150 + 11.7632i) q^{67} +(-0.677124 + 1.17281i) q^{68} -4.35425 q^{70} -5.70850 q^{71} +(4.17712 + 7.23499i) q^{73} +(-0.177124 - 0.306788i) q^{74} +5.00000 q^{76} +12.2915 q^{77} +(5.00000 - 8.66025i) q^{79} +(0.822876 + 1.42526i) q^{80} +(-3.82288 + 6.62141i) q^{82} +2.70850 q^{83} -2.22876 q^{85} +(-2.64575 + 4.58258i) q^{86} +(-2.32288 - 4.02334i) q^{88} +(0.531373 - 0.920365i) q^{89} +(-1.32288 + 2.29129i) q^{91} +7.64575 q^{92} +(1.50000 + 2.59808i) q^{94} +(4.11438 + 7.12631i) q^{95} -14.9373 q^{97} +7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{8} - 2 q^{10} - 4 q^{11} + 4 q^{13} - 2 q^{16} - 8 q^{17} - 10 q^{19} + 4 q^{20} + 8 q^{22} - 10 q^{23} - 6 q^{25} - 2 q^{26} + 4 q^{29} + 4 q^{31} - 2 q^{32} + 16 q^{34} + 14 q^{35} - 6 q^{37} - 10 q^{38} - 2 q^{40} + 20 q^{41} - 4 q^{44} - 10 q^{46} + 6 q^{47} - 14 q^{49} + 12 q^{50} - 2 q^{52} - 6 q^{53} - 20 q^{55} - 2 q^{58} + 8 q^{61} - 8 q^{62} + 4 q^{64} - 2 q^{65} + 6 q^{67} - 8 q^{68} - 28 q^{70} - 44 q^{71} + 22 q^{73} - 6 q^{74} + 20 q^{76} + 28 q^{77} + 20 q^{79} - 2 q^{80} - 10 q^{82} + 32 q^{83} + 44 q^{85} - 4 q^{88} + 18 q^{89} + 20 q^{92} + 6 q^{94} - 10 q^{95} - 28 q^{97} + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.822876 1.42526i 0.368001 0.637397i −0.621252 0.783611i \(-0.713376\pi\)
0.989253 + 0.146214i \(0.0467089\pi\)
\(6\) 0 0
\(7\) −1.32288 + 2.29129i −0.500000 + 0.866025i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.822876 + 1.42526i 0.260216 + 0.450708i
\(11\) −2.32288 4.02334i −0.700373 1.21308i −0.968335 0.249653i \(-0.919684\pi\)
0.267962 0.963429i \(-0.413650\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −1.32288 2.29129i −0.353553 0.612372i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.677124 1.17281i −0.164227 0.284449i 0.772154 0.635436i \(-0.219180\pi\)
−0.936380 + 0.350987i \(0.885846\pi\)
\(18\) 0 0
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) −1.64575 −0.368001
\(21\) 0 0
\(22\) 4.64575 0.990478
\(23\) −3.82288 + 6.62141i −0.797125 + 1.38066i 0.124357 + 0.992238i \(0.460313\pi\)
−0.921481 + 0.388423i \(0.873020\pi\)
\(24\) 0 0
\(25\) 1.14575 + 1.98450i 0.229150 + 0.396900i
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 2.64575 0.500000
\(29\) 6.29150 1.16830 0.584151 0.811645i \(-0.301427\pi\)
0.584151 + 0.811645i \(0.301427\pi\)
\(30\) 0 0
\(31\) 3.64575 + 6.31463i 0.654796 + 1.13414i 0.981945 + 0.189167i \(0.0605789\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.35425 0.232252
\(35\) 2.17712 + 3.77089i 0.368001 + 0.637397i
\(36\) 0 0
\(37\) −0.177124 + 0.306788i −0.0291191 + 0.0504357i −0.880218 0.474570i \(-0.842604\pi\)
0.851099 + 0.525006i \(0.175937\pi\)
\(38\) −2.50000 4.33013i −0.405554 0.702439i
\(39\) 0 0
\(40\) 0.822876 1.42526i 0.130108 0.225354i
\(41\) 7.64575 1.19407 0.597033 0.802217i \(-0.296346\pi\)
0.597033 + 0.802217i \(0.296346\pi\)
\(42\) 0 0
\(43\) 5.29150 0.806947 0.403473 0.914991i \(-0.367803\pi\)
0.403473 + 0.914991i \(0.367803\pi\)
\(44\) −2.32288 + 4.02334i −0.350187 + 0.606541i
\(45\) 0 0
\(46\) −3.82288 6.62141i −0.563652 0.976274i
\(47\) 1.50000 2.59808i 0.218797 0.378968i −0.735643 0.677369i \(-0.763120\pi\)
0.954441 + 0.298401i \(0.0964533\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) −2.29150 −0.324067
\(51\) 0 0
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) −7.64575 −1.03095
\(56\) −1.32288 + 2.29129i −0.176777 + 0.306186i
\(57\) 0 0
\(58\) −3.14575 + 5.44860i −0.413057 + 0.715436i
\(59\) 3.96863 + 6.87386i 0.516671 + 0.894901i 0.999813 + 0.0193585i \(0.00616237\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(60\) 0 0
\(61\) −1.96863 + 3.40976i −0.252057 + 0.436575i −0.964092 0.265569i \(-0.914440\pi\)
0.712035 + 0.702144i \(0.247774\pi\)
\(62\) −7.29150 −0.926022
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.822876 1.42526i 0.102065 0.176782i
\(66\) 0 0
\(67\) 6.79150 + 11.7632i 0.829714 + 1.43711i 0.898263 + 0.439459i \(0.144830\pi\)
−0.0685485 + 0.997648i \(0.521837\pi\)
\(68\) −0.677124 + 1.17281i −0.0821134 + 0.142225i
\(69\) 0 0
\(70\) −4.35425 −0.520432
\(71\) −5.70850 −0.677474 −0.338737 0.940881i \(-0.610000\pi\)
−0.338737 + 0.940881i \(0.610000\pi\)
\(72\) 0 0
\(73\) 4.17712 + 7.23499i 0.488895 + 0.846792i 0.999918 0.0127753i \(-0.00406663\pi\)
−0.511023 + 0.859567i \(0.670733\pi\)
\(74\) −0.177124 0.306788i −0.0205903 0.0356634i
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 12.2915 1.40075
\(78\) 0 0
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) 0.822876 + 1.42526i 0.0920003 + 0.159349i
\(81\) 0 0
\(82\) −3.82288 + 6.62141i −0.422166 + 0.731213i
\(83\) 2.70850 0.297296 0.148648 0.988890i \(-0.452508\pi\)
0.148648 + 0.988890i \(0.452508\pi\)
\(84\) 0 0
\(85\) −2.22876 −0.241743
\(86\) −2.64575 + 4.58258i −0.285299 + 0.494152i
\(87\) 0 0
\(88\) −2.32288 4.02334i −0.247619 0.428889i
\(89\) 0.531373 0.920365i 0.0563254 0.0975585i −0.836488 0.547985i \(-0.815395\pi\)
0.892813 + 0.450427i \(0.148728\pi\)
\(90\) 0 0
\(91\) −1.32288 + 2.29129i −0.138675 + 0.240192i
\(92\) 7.64575 0.797125
\(93\) 0 0
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) 4.11438 + 7.12631i 0.422126 + 0.731144i
\(96\) 0 0
\(97\) −14.9373 −1.51665 −0.758324 0.651878i \(-0.773982\pi\)
−0.758324 + 0.651878i \(0.773982\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 1.14575 1.98450i 0.114575 0.198450i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −2.64575 + 4.58258i −0.260694 + 0.451535i −0.966426 0.256943i \(-0.917285\pi\)
0.705733 + 0.708478i \(0.250618\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) 2.00000 + 3.46410i 0.191565 + 0.331801i 0.945769 0.324840i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(110\) 3.82288 6.62141i 0.364497 0.631327i
\(111\) 0 0
\(112\) −1.32288 2.29129i −0.125000 0.216506i
\(113\) 11.2288 1.05631 0.528156 0.849147i \(-0.322884\pi\)
0.528156 + 0.849147i \(0.322884\pi\)
\(114\) 0 0
\(115\) 6.29150 + 10.8972i 0.586686 + 1.01617i
\(116\) −3.14575 5.44860i −0.292076 0.505890i
\(117\) 0 0
\(118\) −7.93725 −0.730683
\(119\) 3.58301 0.328454
\(120\) 0 0
\(121\) −5.29150 + 9.16515i −0.481046 + 0.833196i
\(122\) −1.96863 3.40976i −0.178231 0.308705i
\(123\) 0 0
\(124\) 3.64575 6.31463i 0.327398 0.567070i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.2288 1.44007 0.720035 0.693938i \(-0.244126\pi\)
0.720035 + 0.693938i \(0.244126\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0.822876 + 1.42526i 0.0721710 + 0.125004i
\(131\) −2.46863 + 4.27579i −0.215685 + 0.373577i −0.953484 0.301443i \(-0.902532\pi\)
0.737799 + 0.675020i \(0.235865\pi\)
\(132\) 0 0
\(133\) −6.61438 11.4564i −0.573539 0.993399i
\(134\) −13.5830 −1.17339
\(135\) 0 0
\(136\) −0.677124 1.17281i −0.0580629 0.100568i
\(137\) 8.76013 + 15.1730i 0.748428 + 1.29632i 0.948576 + 0.316550i \(0.102525\pi\)
−0.200147 + 0.979766i \(0.564142\pi\)
\(138\) 0 0
\(139\) 4.22876 0.358678 0.179339 0.983787i \(-0.442604\pi\)
0.179339 + 0.983787i \(0.442604\pi\)
\(140\) 2.17712 3.77089i 0.184001 0.318698i
\(141\) 0 0
\(142\) 2.85425 4.94370i 0.239523 0.414866i
\(143\) −2.32288 4.02334i −0.194249 0.336448i
\(144\) 0 0
\(145\) 5.17712 8.96704i 0.429937 0.744672i
\(146\) −8.35425 −0.691403
\(147\) 0 0
\(148\) 0.354249 0.0291191
\(149\) −11.4686 + 19.8642i −0.939547 + 1.62734i −0.173228 + 0.984882i \(0.555420\pi\)
−0.766319 + 0.642461i \(0.777914\pi\)
\(150\) 0 0
\(151\) −10.9686 18.9982i −0.892614 1.54605i −0.836730 0.547616i \(-0.815536\pi\)
−0.0558844 0.998437i \(-0.517798\pi\)
\(152\) −2.50000 + 4.33013i −0.202777 + 0.351220i
\(153\) 0 0
\(154\) −6.14575 + 10.6448i −0.495239 + 0.857779i
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) 1.32288 + 2.29129i 0.105577 + 0.182865i 0.913974 0.405773i \(-0.132998\pi\)
−0.808397 + 0.588638i \(0.799664\pi\)
\(158\) 5.00000 + 8.66025i 0.397779 + 0.688973i
\(159\) 0 0
\(160\) −1.64575 −0.130108
\(161\) −10.1144 17.5186i −0.797125 1.38066i
\(162\) 0 0
\(163\) −11.7915 + 20.4235i −0.923582 + 1.59969i −0.129755 + 0.991546i \(0.541419\pi\)
−0.793826 + 0.608145i \(0.791914\pi\)
\(164\) −3.82288 6.62141i −0.298516 0.517046i
\(165\) 0 0
\(166\) −1.35425 + 2.34563i −0.105110 + 0.182056i
\(167\) −24.8745 −1.92485 −0.962424 0.271553i \(-0.912463\pi\)
−0.962424 + 0.271553i \(0.912463\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 1.11438 1.93016i 0.0854689 0.148036i
\(171\) 0 0
\(172\) −2.64575 4.58258i −0.201737 0.349418i
\(173\) −5.85425 + 10.1399i −0.445090 + 0.770919i −0.998059 0.0622834i \(-0.980162\pi\)
0.552968 + 0.833202i \(0.313495\pi\)
\(174\) 0 0
\(175\) −6.06275 −0.458301
\(176\) 4.64575 0.350187
\(177\) 0 0
\(178\) 0.531373 + 0.920365i 0.0398281 + 0.0689843i
\(179\) −3.00000 5.19615i −0.224231 0.388379i 0.731858 0.681457i \(-0.238654\pi\)
−0.956088 + 0.293079i \(0.905320\pi\)
\(180\) 0 0
\(181\) 9.35425 0.695296 0.347648 0.937625i \(-0.386980\pi\)
0.347648 + 0.937625i \(0.386980\pi\)
\(182\) −1.32288 2.29129i −0.0980581 0.169842i
\(183\) 0 0
\(184\) −3.82288 + 6.62141i −0.281826 + 0.488137i
\(185\) 0.291503 + 0.504897i 0.0214317 + 0.0371208i
\(186\) 0 0
\(187\) −3.14575 + 5.44860i −0.230040 + 0.398441i
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) −8.22876 −0.596977
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −1.53137 2.65242i −0.110231 0.190925i 0.805633 0.592416i \(-0.201826\pi\)
−0.915863 + 0.401490i \(0.868492\pi\)
\(194\) 7.46863 12.9360i 0.536216 0.928754i
\(195\) 0 0
\(196\) −3.50000 + 6.06218i −0.250000 + 0.433013i
\(197\) −20.8118 −1.48278 −0.741388 0.671076i \(-0.765832\pi\)
−0.741388 + 0.671076i \(0.765832\pi\)
\(198\) 0 0
\(199\) −2.11438 3.66221i −0.149884 0.259607i 0.781300 0.624155i \(-0.214557\pi\)
−0.931185 + 0.364548i \(0.881223\pi\)
\(200\) 1.14575 + 1.98450i 0.0810169 + 0.140325i
\(201\) 0 0
\(202\) 0 0
\(203\) −8.32288 + 14.4156i −0.584151 + 1.01178i
\(204\) 0 0
\(205\) 6.29150 10.8972i 0.439418 0.761094i
\(206\) −2.64575 4.58258i −0.184338 0.319283i
\(207\) 0 0
\(208\) −0.500000 + 0.866025i −0.0346688 + 0.0600481i
\(209\) 23.2288 1.60677
\(210\) 0 0
\(211\) −11.6458 −0.801727 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 4.35425 7.54178i 0.296957 0.514345i
\(216\) 0 0
\(217\) −19.2915 −1.30959
\(218\) −4.00000 −0.270914
\(219\) 0 0
\(220\) 3.82288 + 6.62141i 0.257738 + 0.446416i
\(221\) −0.677124 1.17281i −0.0455483 0.0788920i
\(222\) 0 0
\(223\) 16.5203 1.10628 0.553139 0.833089i \(-0.313430\pi\)
0.553139 + 0.833089i \(0.313430\pi\)
\(224\) 2.64575 0.176777
\(225\) 0 0
\(226\) −5.61438 + 9.72439i −0.373463 + 0.646857i
\(227\) −7.64575 13.2428i −0.507466 0.878957i −0.999963 0.00864295i \(-0.997249\pi\)
0.492496 0.870315i \(-0.336085\pi\)
\(228\) 0 0
\(229\) 13.2288 22.9129i 0.874181 1.51413i 0.0165480 0.999863i \(-0.494732\pi\)
0.857633 0.514263i \(-0.171934\pi\)
\(230\) −12.5830 −0.829699
\(231\) 0 0
\(232\) 6.29150 0.413057
\(233\) −2.32288 + 4.02334i −0.152177 + 0.263578i −0.932027 0.362388i \(-0.881962\pi\)
0.779851 + 0.625965i \(0.215295\pi\)
\(234\) 0 0
\(235\) −2.46863 4.27579i −0.161035 0.278922i
\(236\) 3.96863 6.87386i 0.258336 0.447450i
\(237\) 0 0
\(238\) −1.79150 + 3.10297i −0.116126 + 0.201136i
\(239\) −3.00000 −0.194054 −0.0970269 0.995282i \(-0.530933\pi\)
−0.0970269 + 0.995282i \(0.530933\pi\)
\(240\) 0 0
\(241\) −8.93725 15.4798i −0.575699 0.997140i −0.995965 0.0897393i \(-0.971397\pi\)
0.420266 0.907401i \(-0.361937\pi\)
\(242\) −5.29150 9.16515i −0.340151 0.589158i
\(243\) 0 0
\(244\) 3.93725 0.252057
\(245\) −11.5203 −0.736002
\(246\) 0 0
\(247\) −2.50000 + 4.33013i −0.159071 + 0.275519i
\(248\) 3.64575 + 6.31463i 0.231505 + 0.400979i
\(249\) 0 0
\(250\) −6.00000 + 10.3923i −0.379473 + 0.657267i
\(251\) 2.70850 0.170959 0.0854794 0.996340i \(-0.472758\pi\)
0.0854794 + 0.996340i \(0.472758\pi\)
\(252\) 0 0
\(253\) 35.5203 2.23314
\(254\) −8.11438 + 14.0545i −0.509141 + 0.881859i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.93725 13.7477i 0.495112 0.857560i −0.504872 0.863194i \(-0.668460\pi\)
0.999984 + 0.00563467i \(0.00179358\pi\)
\(258\) 0 0
\(259\) −0.468627 0.811686i −0.0291191 0.0504357i
\(260\) −1.64575 −0.102065
\(261\) 0 0
\(262\) −2.46863 4.27579i −0.152512 0.264159i
\(263\) 0.822876 + 1.42526i 0.0507407 + 0.0878854i 0.890280 0.455413i \(-0.150508\pi\)
−0.839539 + 0.543299i \(0.817175\pi\)
\(264\) 0 0
\(265\) −4.93725 −0.303293
\(266\) 13.2288 0.811107
\(267\) 0 0
\(268\) 6.79150 11.7632i 0.414857 0.718553i
\(269\) −12.4373 21.5420i −0.758313 1.31344i −0.943710 0.330773i \(-0.892691\pi\)
0.185398 0.982664i \(-0.440643\pi\)
\(270\) 0 0
\(271\) 8.67712 15.0292i 0.527098 0.912960i −0.472404 0.881382i \(-0.656613\pi\)
0.999501 0.0315777i \(-0.0100532\pi\)
\(272\) 1.35425 0.0821134
\(273\) 0 0
\(274\) −17.5203 −1.05844
\(275\) 5.32288 9.21949i 0.320981 0.555956i
\(276\) 0 0
\(277\) 9.26013 + 16.0390i 0.556387 + 0.963691i 0.997794 + 0.0663840i \(0.0211462\pi\)
−0.441407 + 0.897307i \(0.645520\pi\)
\(278\) −2.11438 + 3.66221i −0.126812 + 0.219645i
\(279\) 0 0
\(280\) 2.17712 + 3.77089i 0.130108 + 0.225354i
\(281\) −18.5830 −1.10857 −0.554285 0.832327i \(-0.687008\pi\)
−0.554285 + 0.832327i \(0.687008\pi\)
\(282\) 0 0
\(283\) 13.4686 + 23.3283i 0.800627 + 1.38673i 0.919204 + 0.393781i \(0.128833\pi\)
−0.118577 + 0.992945i \(0.537833\pi\)
\(284\) 2.85425 + 4.94370i 0.169368 + 0.293355i
\(285\) 0 0
\(286\) 4.64575 0.274709
\(287\) −10.1144 + 17.5186i −0.597033 + 1.03409i
\(288\) 0 0
\(289\) 7.58301 13.1342i 0.446059 0.772597i
\(290\) 5.17712 + 8.96704i 0.304011 + 0.526563i
\(291\) 0 0
\(292\) 4.17712 7.23499i 0.244448 0.423396i
\(293\) 29.5203 1.72459 0.862296 0.506405i \(-0.169026\pi\)
0.862296 + 0.506405i \(0.169026\pi\)
\(294\) 0 0
\(295\) 13.0627 0.760542
\(296\) −0.177124 + 0.306788i −0.0102951 + 0.0178317i
\(297\) 0 0
\(298\) −11.4686 19.8642i −0.664360 1.15070i
\(299\) −3.82288 + 6.62141i −0.221083 + 0.382926i
\(300\) 0 0
\(301\) −7.00000 + 12.1244i −0.403473 + 0.698836i
\(302\) 21.9373 1.26235
\(303\) 0 0
\(304\) −2.50000 4.33013i −0.143385 0.248350i
\(305\) 3.23987 + 5.61162i 0.185514 + 0.321320i
\(306\) 0 0
\(307\) 11.5830 0.661077 0.330539 0.943793i \(-0.392770\pi\)
0.330539 + 0.943793i \(0.392770\pi\)
\(308\) −6.14575 10.6448i −0.350187 0.606541i
\(309\) 0 0
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) −8.46863 14.6681i −0.480212 0.831751i 0.519531 0.854452i \(-0.326107\pi\)
−0.999742 + 0.0227007i \(0.992774\pi\)
\(312\) 0 0
\(313\) 14.5830 25.2585i 0.824280 1.42770i −0.0781880 0.996939i \(-0.524913\pi\)
0.902468 0.430757i \(-0.141753\pi\)
\(314\) −2.64575 −0.149308
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −1.35425 + 2.34563i −0.0760622 + 0.131744i −0.901548 0.432680i \(-0.857568\pi\)
0.825486 + 0.564423i \(0.190901\pi\)
\(318\) 0 0
\(319\) −14.6144 25.3128i −0.818248 1.41725i
\(320\) 0.822876 1.42526i 0.0460001 0.0796746i
\(321\) 0 0
\(322\) 20.2288 1.12730
\(323\) 6.77124 0.376762
\(324\) 0 0
\(325\) 1.14575 + 1.98450i 0.0635548 + 0.110080i
\(326\) −11.7915 20.4235i −0.653071 1.13115i
\(327\) 0 0
\(328\) 7.64575 0.422166
\(329\) 3.96863 + 6.87386i 0.218797 + 0.378968i
\(330\) 0 0
\(331\) −16.2915 + 28.2177i −0.895462 + 1.55099i −0.0622301 + 0.998062i \(0.519821\pi\)
−0.833232 + 0.552924i \(0.813512\pi\)
\(332\) −1.35425 2.34563i −0.0743241 0.128733i
\(333\) 0 0
\(334\) 12.4373 21.5420i 0.680536 1.17872i
\(335\) 22.3542 1.22134
\(336\) 0 0
\(337\) 5.58301 0.304126 0.152063 0.988371i \(-0.451408\pi\)
0.152063 + 0.988371i \(0.451408\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 1.11438 + 1.93016i 0.0604356 + 0.104678i
\(341\) 16.9373 29.3362i 0.917204 1.58864i
\(342\) 0 0
\(343\) 18.5203 1.00000
\(344\) 5.29150 0.285299
\(345\) 0 0
\(346\) −5.85425 10.1399i −0.314726 0.545122i
\(347\) −13.1144 22.7148i −0.704017 1.21939i −0.967045 0.254605i \(-0.918055\pi\)
0.263029 0.964788i \(-0.415279\pi\)
\(348\) 0 0
\(349\) 3.06275 0.163945 0.0819725 0.996635i \(-0.473878\pi\)
0.0819725 + 0.996635i \(0.473878\pi\)
\(350\) 3.03137 5.25049i 0.162034 0.280651i
\(351\) 0 0
\(352\) −2.32288 + 4.02334i −0.123810 + 0.214445i
\(353\) 0.291503 + 0.504897i 0.0155151 + 0.0268730i 0.873679 0.486503i \(-0.161728\pi\)
−0.858164 + 0.513376i \(0.828395\pi\)
\(354\) 0 0
\(355\) −4.69738 + 8.13611i −0.249311 + 0.431820i
\(356\) −1.06275 −0.0563254
\(357\) 0 0
\(358\) 6.00000 0.317110
\(359\) −3.00000 + 5.19615i −0.158334 + 0.274242i −0.934268 0.356572i \(-0.883946\pi\)
0.775934 + 0.630814i \(0.217279\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −4.67712 + 8.10102i −0.245824 + 0.425780i
\(363\) 0 0
\(364\) 2.64575 0.138675
\(365\) 13.7490 0.719656
\(366\) 0 0
\(367\) −10.2915 17.8254i −0.537212 0.930479i −0.999053 0.0435157i \(-0.986144\pi\)
0.461841 0.886963i \(-0.347189\pi\)
\(368\) −3.82288 6.62141i −0.199281 0.345165i
\(369\) 0 0
\(370\) −0.583005 −0.0303090
\(371\) 7.93725 0.412082
\(372\) 0 0
\(373\) −4.67712 + 8.10102i −0.242172 + 0.419455i −0.961333 0.275389i \(-0.911193\pi\)
0.719160 + 0.694844i \(0.244527\pi\)
\(374\) −3.14575 5.44860i −0.162663 0.281740i
\(375\) 0 0
\(376\) 1.50000 2.59808i 0.0773566 0.133986i
\(377\) 6.29150 0.324029
\(378\) 0 0
\(379\) 33.1660 1.70362 0.851812 0.523848i \(-0.175504\pi\)
0.851812 + 0.523848i \(0.175504\pi\)
\(380\) 4.11438 7.12631i 0.211063 0.365572i
\(381\) 0 0
\(382\) 0 0
\(383\) −18.8745 + 32.6916i −0.964442 + 1.67046i −0.253336 + 0.967378i \(0.581528\pi\)
−0.711106 + 0.703085i \(0.751805\pi\)
\(384\) 0 0
\(385\) 10.1144 17.5186i 0.515476 0.892831i
\(386\) 3.06275 0.155890
\(387\) 0 0
\(388\) 7.46863 + 12.9360i 0.379162 + 0.656728i
\(389\) 9.14575 + 15.8409i 0.463708 + 0.803166i 0.999142 0.0414111i \(-0.0131853\pi\)
−0.535434 + 0.844577i \(0.679852\pi\)
\(390\) 0 0
\(391\) 10.3542 0.523637
\(392\) −3.50000 6.06218i −0.176777 0.306186i
\(393\) 0 0
\(394\) 10.4059 18.0235i 0.524241 0.908012i
\(395\) −8.22876 14.2526i −0.414034 0.717127i
\(396\) 0 0
\(397\) −0.468627 + 0.811686i −0.0235197 + 0.0407373i −0.877546 0.479493i \(-0.840821\pi\)
0.854026 + 0.520230i \(0.174154\pi\)
\(398\) 4.22876 0.211968
\(399\) 0 0
\(400\) −2.29150 −0.114575
\(401\) 4.11438 7.12631i 0.205462 0.355871i −0.744818 0.667268i \(-0.767464\pi\)
0.950280 + 0.311397i \(0.100797\pi\)
\(402\) 0 0
\(403\) 3.64575 + 6.31463i 0.181608 + 0.314554i
\(404\) 0 0
\(405\) 0 0
\(406\) −8.32288 14.4156i −0.413057 0.715436i
\(407\) 1.64575 0.0815769
\(408\) 0 0
\(409\) 5.53137 + 9.58062i 0.273509 + 0.473731i 0.969758 0.244069i \(-0.0784824\pi\)
−0.696249 + 0.717800i \(0.745149\pi\)
\(410\) 6.29150 + 10.8972i 0.310715 + 0.538174i
\(411\) 0 0
\(412\) 5.29150 0.260694
\(413\) −21.0000 −1.03334
\(414\) 0 0
\(415\) 2.22876 3.86032i 0.109405 0.189496i
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) −11.6144 + 20.1167i −0.568078 + 0.983940i
\(419\) 22.4575 1.09712 0.548561 0.836111i \(-0.315176\pi\)
0.548561 + 0.836111i \(0.315176\pi\)
\(420\) 0 0
\(421\) −29.6458 −1.44485 −0.722423 0.691452i \(-0.756972\pi\)
−0.722423 + 0.691452i \(0.756972\pi\)
\(422\) 5.82288 10.0855i 0.283453 0.490955i
\(423\) 0 0
\(424\) −1.50000 2.59808i −0.0728464 0.126174i
\(425\) 1.55163 2.68751i 0.0752652 0.130363i
\(426\) 0 0
\(427\) −5.20850 9.02138i −0.252057 0.436575i
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 4.35425 + 7.54178i 0.209981 + 0.363697i
\(431\) −0.291503 0.504897i −0.0140412 0.0243200i 0.858919 0.512111i \(-0.171136\pi\)
−0.872961 + 0.487791i \(0.837803\pi\)
\(432\) 0 0
\(433\) −12.4170 −0.596723 −0.298361 0.954453i \(-0.596440\pi\)
−0.298361 + 0.954453i \(0.596440\pi\)
\(434\) 9.64575 16.7069i 0.463011 0.801958i
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) −19.1144 33.1071i −0.914365 1.58373i
\(438\) 0 0
\(439\) −9.17712 + 15.8952i −0.438000 + 0.758639i −0.997535 0.0701681i \(-0.977646\pi\)
0.559535 + 0.828807i \(0.310980\pi\)
\(440\) −7.64575 −0.364497
\(441\) 0 0
\(442\) 1.35425 0.0644150
\(443\) 17.4686 30.2565i 0.829960 1.43753i −0.0681097 0.997678i \(-0.521697\pi\)
0.898069 0.439854i \(-0.144970\pi\)
\(444\) 0 0
\(445\) −0.874508 1.51469i −0.0414556 0.0718033i
\(446\) −8.26013 + 14.3070i −0.391128 + 0.677454i
\(447\) 0 0
\(448\) −1.32288 + 2.29129i −0.0625000 + 0.108253i
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) −17.7601 30.7614i −0.836292 1.44850i
\(452\) −5.61438 9.72439i −0.264078 0.457397i
\(453\) 0 0
\(454\) 15.2915 0.717666
\(455\) 2.17712 + 3.77089i 0.102065 + 0.176782i
\(456\) 0 0
\(457\) −2.88562 + 4.99804i −0.134984 + 0.233799i −0.925591 0.378525i \(-0.876432\pi\)
0.790608 + 0.612323i \(0.209765\pi\)
\(458\) 13.2288 + 22.9129i 0.618139 + 1.07065i
\(459\) 0 0
\(460\) 6.29150 10.8972i 0.293343 0.508085i
\(461\) −16.4575 −0.766503 −0.383251 0.923644i \(-0.625196\pi\)
−0.383251 + 0.923644i \(0.625196\pi\)
\(462\) 0 0
\(463\) −17.1660 −0.797772 −0.398886 0.917000i \(-0.630603\pi\)
−0.398886 + 0.917000i \(0.630603\pi\)
\(464\) −3.14575 + 5.44860i −0.146038 + 0.252945i
\(465\) 0 0
\(466\) −2.32288 4.02334i −0.107605 0.186378i
\(467\) −0.239870 + 0.415468i −0.0110999 + 0.0192256i −0.871522 0.490356i \(-0.836867\pi\)
0.860422 + 0.509582i \(0.170200\pi\)
\(468\) 0 0
\(469\) −35.9373 −1.65943
\(470\) 4.93725 0.227739
\(471\) 0 0
\(472\) 3.96863 + 6.87386i 0.182671 + 0.316395i
\(473\) −12.2915 21.2895i −0.565164 0.978893i
\(474\) 0 0
\(475\) −11.4575 −0.525707
\(476\) −1.79150 3.10297i −0.0821134 0.142225i
\(477\) 0 0
\(478\) 1.50000 2.59808i 0.0686084 0.118833i
\(479\) 14.3745 + 24.8974i 0.656788 + 1.13759i 0.981442 + 0.191757i \(0.0614187\pi\)
−0.324654 + 0.945833i \(0.605248\pi\)
\(480\) 0 0
\(481\) −0.177124 + 0.306788i −0.00807617 + 0.0139883i
\(482\) 17.8745 0.814162
\(483\) 0 0
\(484\) 10.5830 0.481046
\(485\) −12.2915 + 21.2895i −0.558128 + 0.966707i
\(486\) 0 0
\(487\) 4.03137 + 6.98254i 0.182679 + 0.316409i 0.942792 0.333382i \(-0.108190\pi\)
−0.760113 + 0.649791i \(0.774856\pi\)
\(488\) −1.96863 + 3.40976i −0.0891156 + 0.154353i
\(489\) 0 0
\(490\) 5.76013 9.97684i 0.260216 0.450708i
\(491\) 31.1660 1.40650 0.703251 0.710941i \(-0.251731\pi\)
0.703251 + 0.710941i \(0.251731\pi\)
\(492\) 0 0
\(493\) −4.26013 7.37876i −0.191867 0.332323i
\(494\) −2.50000 4.33013i −0.112480 0.194822i
\(495\) 0 0
\(496\) −7.29150 −0.327398
\(497\) 7.55163 13.0798i 0.338737 0.586710i
\(498\) 0 0
\(499\) 9.35425 16.2020i 0.418754 0.725303i −0.577061 0.816701i \(-0.695800\pi\)
0.995814 + 0.0913986i \(0.0291337\pi\)
\(500\) −6.00000 10.3923i −0.268328 0.464758i
\(501\) 0 0
\(502\) −1.35425 + 2.34563i −0.0604431 + 0.104690i
\(503\) 16.4575 0.733804 0.366902 0.930260i \(-0.380418\pi\)
0.366902 + 0.930260i \(0.380418\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −17.7601 + 30.7614i −0.789534 + 1.36751i
\(507\) 0 0
\(508\) −8.11438 14.0545i −0.360017 0.623568i
\(509\) 12.0000 20.7846i 0.531891 0.921262i −0.467416 0.884037i \(-0.654815\pi\)
0.999307 0.0372243i \(-0.0118516\pi\)
\(510\) 0 0
\(511\) −22.1033 −0.977791
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 7.93725 + 13.7477i 0.350097 + 0.606386i
\(515\) 4.35425 + 7.54178i 0.191871 + 0.332331i
\(516\) 0 0
\(517\) −13.9373 −0.612960
\(518\) 0.937254 0.0411806
\(519\) 0 0
\(520\) 0.822876 1.42526i 0.0360855 0.0625019i
\(521\) 9.00000 + 15.5885i 0.394297 + 0.682943i 0.993011 0.118020i \(-0.0376547\pi\)
−0.598714 + 0.800963i \(0.704321\pi\)
\(522\) 0 0
\(523\) 18.6458 32.2954i 0.815322 1.41218i −0.0937748 0.995593i \(-0.529893\pi\)
0.909097 0.416585i \(-0.136773\pi\)
\(524\) 4.93725 0.215685
\(525\) 0 0
\(526\) −1.64575 −0.0717582
\(527\) 4.93725 8.55157i 0.215070 0.372512i
\(528\) 0 0
\(529\) −17.7288 30.7071i −0.770816 1.33509i
\(530\) 2.46863 4.27579i 0.107230 0.185728i
\(531\) 0 0
\(532\) −6.61438 + 11.4564i −0.286770 + 0.496700i
\(533\) 7.64575 0.331174
\(534\) 0 0
\(535\) 9.87451 + 17.1031i 0.426912 + 0.739434i
\(536\) 6.79150 + 11.7632i 0.293348 + 0.508094i
\(537\) 0 0
\(538\) 24.8745 1.07242
\(539\) −16.2601 + 28.1634i −0.700373 + 1.21308i
\(540\) 0 0
\(541\) −18.1771 + 31.4837i −0.781496 + 1.35359i 0.149575 + 0.988750i \(0.452210\pi\)
−0.931070 + 0.364840i \(0.881124\pi\)
\(542\) 8.67712 + 15.0292i 0.372714 + 0.645560i
\(543\) 0 0
\(544\) −0.677124 + 1.17281i −0.0290315 + 0.0502840i
\(545\) 6.58301 0.281985
\(546\) 0 0
\(547\) −5.06275 −0.216467 −0.108234 0.994125i \(-0.534519\pi\)
−0.108234 + 0.994125i \(0.534519\pi\)
\(548\) 8.76013 15.1730i 0.374214 0.648158i
\(549\) 0 0
\(550\) 5.32288 + 9.21949i 0.226968 + 0.393120i
\(551\) −15.7288 + 27.2430i −0.670068 + 1.16059i
\(552\) 0 0
\(553\) 13.2288 + 22.9129i 0.562544 + 0.974355i
\(554\) −18.5203 −0.786850
\(555\) 0 0
\(556\) −2.11438 3.66221i −0.0896696 0.155312i
\(557\) −15.5830 26.9906i −0.660273 1.14363i −0.980544 0.196301i \(-0.937107\pi\)
0.320271 0.947326i \(-0.396226\pi\)
\(558\) 0 0
\(559\) 5.29150 0.223807
\(560\) −4.35425 −0.184001
\(561\) 0 0
\(562\) 9.29150 16.0934i 0.391938 0.678857i
\(563\) 23.5203 + 40.7383i 0.991261 + 1.71691i 0.609874 + 0.792498i \(0.291220\pi\)
0.381387 + 0.924416i \(0.375447\pi\)
\(564\) 0 0
\(565\) 9.23987 16.0039i 0.388724 0.673290i
\(566\) −26.9373 −1.13226
\(567\) 0 0
\(568\) −5.70850 −0.239523
\(569\) −3.38562 + 5.86407i −0.141933 + 0.245835i −0.928224 0.372021i \(-0.878665\pi\)
0.786292 + 0.617855i \(0.211998\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −2.32288 + 4.02334i −0.0971243 + 0.168224i
\(573\) 0 0
\(574\) −10.1144 17.5186i −0.422166 0.731213i
\(575\) −17.5203 −0.730645
\(576\) 0 0
\(577\) −4.29150 7.43310i −0.178658 0.309444i 0.762763 0.646678i \(-0.223842\pi\)
−0.941421 + 0.337234i \(0.890509\pi\)
\(578\) 7.58301 + 13.1342i 0.315411 + 0.546309i
\(579\) 0 0
\(580\) −10.3542 −0.429937
\(581\) −3.58301 + 6.20595i −0.148648 + 0.257466i
\(582\) 0 0
\(583\) −6.96863 + 12.0700i −0.288611 + 0.499889i
\(584\) 4.17712 + 7.23499i 0.172851 + 0.299386i
\(585\) 0 0
\(586\) −14.7601 + 25.5653i −0.609735 + 1.05609i
\(587\) −16.0627 −0.662980 −0.331490 0.943459i \(-0.607551\pi\)
−0.331490 + 0.943459i \(0.607551\pi\)
\(588\) 0 0
\(589\) −36.4575 −1.50221
\(590\) −6.53137 + 11.3127i −0.268892 + 0.465735i
\(591\) 0 0
\(592\) −0.177124 0.306788i −0.00727977 0.0126089i
\(593\) 3.23987 5.61162i 0.133046 0.230442i −0.791804 0.610776i \(-0.790858\pi\)
0.924849 + 0.380334i \(0.124191\pi\)
\(594\) 0 0
\(595\) 2.94837 5.10672i 0.120871 0.209355i
\(596\) 22.9373 0.939547
\(597\) 0 0
\(598\) −3.82288 6.62141i −0.156329 0.270770i
\(599\) 7.40588 + 12.8274i 0.302596 + 0.524112i 0.976723 0.214504i \(-0.0688133\pi\)
−0.674127 + 0.738615i \(0.735480\pi\)
\(600\) 0 0
\(601\) −16.8745 −0.688326 −0.344163 0.938910i \(-0.611837\pi\)
−0.344163 + 0.938910i \(0.611837\pi\)
\(602\) −7.00000 12.1244i −0.285299 0.494152i
\(603\) 0 0
\(604\) −10.9686 + 18.9982i −0.446307 + 0.773027i
\(605\) 8.70850 + 15.0836i 0.354051 + 0.613234i
\(606\) 0 0
\(607\) 15.4059 26.6838i 0.625305 1.08306i −0.363176 0.931720i \(-0.618308\pi\)
0.988482 0.151340i \(-0.0483589\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) −6.47974 −0.262357
\(611\) 1.50000 2.59808i 0.0606835 0.105107i
\(612\) 0 0
\(613\) −5.06275 8.76893i −0.204482 0.354174i 0.745485 0.666522i \(-0.232218\pi\)
−0.949968 + 0.312348i \(0.898884\pi\)
\(614\) −5.79150 + 10.0312i −0.233726 + 0.404825i
\(615\) 0 0
\(616\) 12.2915 0.495239
\(617\) 21.2915 0.857164 0.428582 0.903503i \(-0.359013\pi\)
0.428582 + 0.903503i \(0.359013\pi\)
\(618\) 0 0
\(619\) −10.8745 18.8352i −0.437083 0.757051i 0.560380 0.828236i \(-0.310655\pi\)
−0.997463 + 0.0711852i \(0.977322\pi\)
\(620\) −6.00000 10.3923i −0.240966 0.417365i
\(621\) 0 0
\(622\) 16.9373 0.679122
\(623\) 1.40588 + 2.43506i 0.0563254 + 0.0975585i
\(624\) 0 0
\(625\) 4.14575 7.18065i 0.165830 0.287226i
\(626\) 14.5830 + 25.2585i 0.582854 + 1.00953i
\(627\) 0 0
\(628\) 1.32288 2.29129i 0.0527885 0.0914323i
\(629\) 0.479741 0.0191285
\(630\) 0 0
\(631\) −38.4575 −1.53097 −0.765485 0.643454i \(-0.777501\pi\)
−0.765485 + 0.643454i \(0.777501\pi\)
\(632\) 5.00000 8.66025i 0.198889 0.344486i
\(633\) 0 0
\(634\) −1.35425 2.34563i −0.0537841 0.0931568i
\(635\) 13.3542 23.1302i 0.529947 0.917895i
\(636\) 0 0
\(637\) −3.50000 6.06218i −0.138675 0.240192i
\(638\) 29.2288 1.15718
\(639\) 0 0
\(640\) 0.822876 + 1.42526i 0.0325270 + 0.0563384i
\(641\) −21.2915 36.8780i −0.840964 1.45659i −0.889081 0.457750i \(-0.848655\pi\)
0.0481170 0.998842i \(-0.484678\pi\)
\(642\) 0 0
\(643\) 20.8745 0.823210 0.411605 0.911362i \(-0.364968\pi\)
0.411605 + 0.911362i \(0.364968\pi\)
\(644\) −10.1144 + 17.5186i −0.398562 + 0.690330i
\(645\) 0 0
\(646\) −3.38562 + 5.86407i −0.133206 + 0.230719i
\(647\) −18.8745 32.6916i −0.742033 1.28524i −0.951568 0.307438i \(-0.900528\pi\)
0.209535 0.977801i \(-0.432805\pi\)
\(648\) 0 0
\(649\) 18.4373 31.9343i 0.723726 1.25353i
\(650\) −2.29150 −0.0898801
\(651\) 0 0
\(652\) 23.5830 0.923582
\(653\) 6.00000 10.3923i 0.234798 0.406682i −0.724416 0.689363i \(-0.757890\pi\)
0.959214 + 0.282681i \(0.0912238\pi\)
\(654\) 0 0
\(655\) 4.06275 + 7.03688i 0.158745 + 0.274954i
\(656\) −3.82288 + 6.62141i −0.149258 + 0.258523i
\(657\) 0 0
\(658\) −7.93725 −0.309426
\(659\) 1.06275 0.0413987 0.0206994 0.999786i \(-0.493411\pi\)
0.0206994 + 0.999786i \(0.493411\pi\)
\(660\) 0 0
\(661\) 10.7601 + 18.6371i 0.418521 + 0.724899i 0.995791 0.0916543i \(-0.0292155\pi\)
−0.577270 + 0.816553i \(0.695882\pi\)
\(662\) −16.2915 28.2177i −0.633187 1.09671i
\(663\) 0 0
\(664\) 2.70850 0.105110
\(665\) −21.7712 −0.844253
\(666\) 0 0
\(667\) −24.0516 + 41.6586i −0.931283 + 1.61303i
\(668\) 12.4373 + 21.5420i 0.481212 + 0.833483i
\(669\) 0 0
\(670\) −11.1771 + 19.3593i −0.431810 + 0.747917i
\(671\) 18.2915 0.706136
\(672\) 0 0
\(673\) 14.5830 0.562134 0.281067 0.959688i \(-0.409312\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(674\) −2.79150 + 4.83502i −0.107525 + 0.186238i
\(675\) 0 0
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) −11.0830 + 19.1963i −0.425954 + 0.737775i −0.996509 0.0834849i \(-0.973395\pi\)
0.570555 + 0.821260i \(0.306728\pi\)
\(678\) 0 0
\(679\) 19.7601 34.2255i 0.758324 1.31346i
\(680\) −2.22876 −0.0854689
\(681\) 0 0
\(682\) 16.9373 + 29.3362i 0.648561 + 1.12334i
\(683\) 4.35425 + 7.54178i 0.166611 + 0.288578i 0.937226 0.348722i \(-0.113384\pi\)
−0.770615 + 0.637300i \(0.780051\pi\)
\(684\) 0 0
\(685\) 28.8340 1.10169
\(686\) −9.26013 + 16.0390i −0.353553 + 0.612372i
\(687\) 0 0
\(688\) −2.64575 + 4.58258i −0.100868 + 0.174709i
\(689\) −1.50000 2.59808i −0.0571454 0.0989788i
\(690\) 0 0
\(691\) −17.0203 + 29.4800i −0.647481 + 1.12147i 0.336241 + 0.941776i \(0.390844\pi\)
−0.983722 + 0.179694i \(0.942489\pi\)
\(692\) 11.7085 0.445090
\(693\) 0 0
\(694\) 26.2288 0.995630
\(695\) 3.47974 6.02709i 0.131994 0.228620i
\(696\) 0 0
\(697\) −5.17712 8.96704i −0.196098 0.339651i
\(698\) −1.53137 + 2.65242i −0.0579633 + 0.100395i
\(699\) 0 0
\(700\) 3.03137 + 5.25049i 0.114575 + 0.198450i
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) −0.885622 1.53394i −0.0334019 0.0578537i
\(704\) −2.32288 4.02334i −0.0875467 0.151635i
\(705\) 0 0
\(706\) −0.583005 −0.0219417
\(707\) 0 0
\(708\) 0 0
\(709\) −21.7601 + 37.6897i −0.817219 + 1.41546i 0.0905049 + 0.995896i \(0.471152\pi\)
−0.907724 + 0.419569i \(0.862181\pi\)
\(710\) −4.69738 8.13611i −0.176290 0.305343i
\(711\) 0 0
\(712\) 0.531373 0.920365i 0.0199140 0.0344921i
\(713\) −55.7490 −2.08782
\(714\) 0 0
\(715\) −7.64575 −0.285935
\(716\) −3.00000 + 5.19615i −0.112115 + 0.194189i
\(717\) 0 0
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) 11.7085 20.2797i 0.436653 0.756306i −0.560776 0.827968i \(-0.689497\pi\)
0.997429 + 0.0716621i \(0.0228303\pi\)
\(720\) 0 0
\(721\) −7.00000 12.1244i −0.260694 0.451535i
\(722\) 6.00000 0.223297
\(723\) 0 0
\(724\) −4.67712 8.10102i −0.173824 0.301072i
\(725\) 7.20850 + 12.4855i 0.267717 + 0.463699i
\(726\) 0 0
\(727\) 36.4575 1.35213 0.676067 0.736840i \(-0.263683\pi\)
0.676067 + 0.736840i \(0.263683\pi\)
\(728\) −1.32288 + 2.29129i −0.0490290 + 0.0849208i
\(729\) 0 0
\(730\) −6.87451 + 11.9070i −0.254437 + 0.440698i
\(731\) −3.58301 6.20595i −0.132522 0.229535i
\(732\) 0 0
\(733\) 6.11438 10.5904i 0.225840 0.391166i −0.730731 0.682665i \(-0.760821\pi\)
0.956571 + 0.291499i \(0.0941541\pi\)
\(734\) 20.5830 0.759733
\(735\) 0 0
\(736\) 7.64575 0.281826
\(737\) 31.5516 54.6490i 1.16222 2.01302i
\(738\) 0 0
\(739\) 3.35425 + 5.80973i 0.123388 + 0.213714i 0.921102 0.389322i \(-0.127291\pi\)
−0.797714 + 0.603036i \(0.793957\pi\)
\(740\) 0.291503 0.504897i 0.0107158 0.0185604i
\(741\) 0 0
\(742\) −3.96863 + 6.87386i −0.145693 + 0.252347i
\(743\) −1.45751 −0.0534710 −0.0267355 0.999643i \(-0.508511\pi\)
−0.0267355 + 0.999643i \(0.508511\pi\)
\(744\) 0 0
\(745\) 18.8745 + 32.6916i 0.691508 + 1.19773i
\(746\) −4.67712 8.10102i −0.171242 0.296599i
\(747\) 0 0
\(748\) 6.29150 0.230040
\(749\) −15.8745 27.4955i −0.580042 1.00466i
\(750\) 0 0
\(751\) −4.58301 + 7.93800i −0.167236 + 0.289662i −0.937447 0.348128i \(-0.886818\pi\)
0.770211 + 0.637789i \(0.220151\pi\)
\(752\) 1.50000 + 2.59808i 0.0546994 + 0.0947421i
\(753\) 0 0
\(754\) −3.14575 + 5.44860i −0.114562 + 0.198426i
\(755\) −36.1033 −1.31393
\(756\) 0 0
\(757\) 21.3542 0.776133 0.388067 0.921631i \(-0.373143\pi\)
0.388067 + 0.921631i \(0.373143\pi\)
\(758\) −16.5830 + 28.7226i −0.602322 + 1.04325i
\(759\) 0 0
\(760\) 4.11438 + 7.12631i 0.149244 + 0.258499i
\(761\) −1.64575 + 2.85052i −0.0596584 + 0.103331i −0.894312 0.447444i \(-0.852334\pi\)
0.834654 + 0.550775i \(0.185668\pi\)
\(762\) 0 0
\(763\) −10.5830 −0.383131
\(764\) 0 0
\(765\) 0 0
\(766\) −18.8745 32.6916i −0.681964 1.18120i
\(767\) 3.96863 + 6.87386i 0.143299 + 0.248201i
\(768\) 0 0
\(769\) 0.354249 0.0127745 0.00638727 0.999980i \(-0.497967\pi\)
0.00638727 + 0.999980i \(0.497967\pi\)
\(770\) 10.1144 + 17.5186i 0.364497 + 0.631327i
\(771\) 0 0
\(772\) −1.53137 + 2.65242i −0.0551153 + 0.0954625i
\(773\) −22.1660 38.3927i −0.797256 1.38089i −0.921397 0.388623i \(-0.872951\pi\)
0.124141 0.992265i \(-0.460383\pi\)
\(774\) 0 0
\(775\) −8.35425 + 14.4700i −0.300093 + 0.519777i
\(776\) −14.9373 −0.536216
\(777\) 0 0
\(778\) −18.2915 −0.655782
\(779\) −19.1144 + 33.1071i −0.684844 + 1.18618i
\(780\) 0 0
\(781\) 13.2601 + 22.9672i 0.474485 + 0.821832i
\(782\) −5.17712 + 8.96704i −0.185134 + 0.320661i
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) 4.35425 0.155410
\(786\) 0 0