Properties

Label 1638.2.j.h.1171.1
Level $1638$
Weight $2$
Character 1638.1171
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1171
Dual form 1638.2.j.h.235.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} +(-0.500000 - 0.866025i) q^{11} -1.00000 q^{13} +(2.00000 + 1.73205i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.00000 - 5.19615i) q^{17} +(2.00000 - 3.46410i) q^{19} +1.00000 q^{20} -1.00000 q^{22} +(-3.00000 + 5.19615i) q^{23} +(2.00000 + 3.46410i) q^{25} +(-0.500000 + 0.866025i) q^{26} +(2.50000 - 0.866025i) q^{28} -3.00000 q^{29} +(5.50000 + 9.52628i) q^{31} +(0.500000 + 0.866025i) q^{32} -6.00000 q^{34} +(-2.00000 - 1.73205i) q^{35} +(-2.00000 + 3.46410i) q^{37} +(-2.00000 - 3.46410i) q^{38} +(0.500000 - 0.866025i) q^{40} -12.0000 q^{41} -8.00000 q^{43} +(-0.500000 + 0.866025i) q^{44} +(3.00000 + 5.19615i) q^{46} +(-4.00000 + 6.92820i) q^{47} +(-6.50000 - 2.59808i) q^{49} +4.00000 q^{50} +(0.500000 + 0.866025i) q^{52} +(-2.50000 - 4.33013i) q^{53} +1.00000 q^{55} +(0.500000 - 2.59808i) q^{56} +(-1.50000 + 2.59808i) q^{58} +(-2.50000 - 4.33013i) q^{59} +(-6.00000 + 10.3923i) q^{61} +11.0000 q^{62} +1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(-8.00000 - 13.8564i) q^{67} +(-3.00000 + 5.19615i) q^{68} +(-2.50000 + 0.866025i) q^{70} -6.00000 q^{71} +(5.00000 + 8.66025i) q^{73} +(2.00000 + 3.46410i) q^{74} -4.00000 q^{76} +(2.50000 - 0.866025i) q^{77} +(-3.50000 + 6.06218i) q^{79} +(-0.500000 - 0.866025i) q^{80} +(-6.00000 + 10.3923i) q^{82} +17.0000 q^{83} +6.00000 q^{85} +(-4.00000 + 6.92820i) q^{86} +(0.500000 + 0.866025i) q^{88} +(-6.00000 + 10.3923i) q^{89} +(0.500000 - 2.59808i) q^{91} +6.00000 q^{92} +(4.00000 + 6.92820i) q^{94} +(2.00000 + 3.46410i) q^{95} +13.0000 q^{97} +(-5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{5} - q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - q^{5} - q^{7} - 2 q^{8} + q^{10} - q^{11} - 2 q^{13} + 4 q^{14} - q^{16} - 6 q^{17} + 4 q^{19} + 2 q^{20} - 2 q^{22} - 6 q^{23} + 4 q^{25} - q^{26} + 5 q^{28} - 6 q^{29} + 11 q^{31} + q^{32} - 12 q^{34} - 4 q^{35} - 4 q^{37} - 4 q^{38} + q^{40} - 24 q^{41} - 16 q^{43} - q^{44} + 6 q^{46} - 8 q^{47} - 13 q^{49} + 8 q^{50} + q^{52} - 5 q^{53} + 2 q^{55} + q^{56} - 3 q^{58} - 5 q^{59} - 12 q^{61} + 22 q^{62} + 2 q^{64} + q^{65} - 16 q^{67} - 6 q^{68} - 5 q^{70} - 12 q^{71} + 10 q^{73} + 4 q^{74} - 8 q^{76} + 5 q^{77} - 7 q^{79} - q^{80} - 12 q^{82} + 34 q^{83} + 12 q^{85} - 8 q^{86} + q^{88} - 12 q^{89} + q^{91} + 12 q^{92} + 8 q^{94} + 4 q^{95} + 26 q^{97} - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −0.500000 0.866025i −0.150756 0.261116i 0.780750 0.624844i \(-0.214837\pi\)
−0.931505 + 0.363727i \(0.881504\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 2.00000 + 1.73205i 0.534522 + 0.462910i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 5.50000 + 9.52628i 0.987829 + 1.71097i 0.628619 + 0.777714i \(0.283621\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) −2.00000 1.73205i −0.338062 0.292770i
\(36\) 0 0
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) −2.00000 3.46410i −0.324443 0.561951i
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −0.500000 + 0.866025i −0.0753778 + 0.130558i
\(45\) 0 0
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −2.50000 4.33013i −0.343401 0.594789i 0.641661 0.766989i \(-0.278246\pi\)
−0.985062 + 0.172200i \(0.944912\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0.500000 2.59808i 0.0668153 0.347183i
\(57\) 0 0
\(58\) −1.50000 + 2.59808i −0.196960 + 0.341144i
\(59\) −2.50000 4.33013i −0.325472 0.563735i 0.656136 0.754643i \(-0.272190\pi\)
−0.981608 + 0.190909i \(0.938857\pi\)
\(60\) 0 0
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) 11.0000 1.39700
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.500000 0.866025i 0.0620174 0.107417i
\(66\) 0 0
\(67\) −8.00000 13.8564i −0.977356 1.69283i −0.671932 0.740613i \(-0.734535\pi\)
−0.305424 0.952217i \(-0.598798\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) 0 0
\(70\) −2.50000 + 0.866025i −0.298807 + 0.103510i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 5.00000 + 8.66025i 0.585206 + 1.01361i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 2.50000 0.866025i 0.284901 0.0986928i
\(78\) 0 0
\(79\) −3.50000 + 6.06218i −0.393781 + 0.682048i −0.992945 0.118578i \(-0.962166\pi\)
0.599164 + 0.800626i \(0.295500\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 0 0
\(82\) −6.00000 + 10.3923i −0.662589 + 1.14764i
\(83\) 17.0000 1.86599 0.932996 0.359886i \(-0.117184\pi\)
0.932996 + 0.359886i \(0.117184\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) −4.00000 + 6.92820i −0.431331 + 0.747087i
\(87\) 0 0
\(88\) 0.500000 + 0.866025i 0.0533002 + 0.0923186i
\(89\) −6.00000 + 10.3923i −0.635999 + 1.10158i 0.350304 + 0.936636i \(0.386078\pi\)
−0.986303 + 0.164946i \(0.947255\pi\)
\(90\) 0 0
\(91\) 0.500000 2.59808i 0.0524142 0.272352i
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 4.00000 + 6.92820i 0.412568 + 0.714590i
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) 13.0000 1.31995 0.659975 0.751288i \(-0.270567\pi\)
0.659975 + 0.751288i \(0.270567\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 0 0
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −5.00000 −0.485643
\(107\) 3.50000 6.06218i 0.338358 0.586053i −0.645766 0.763535i \(-0.723462\pi\)
0.984124 + 0.177482i \(0.0567953\pi\)
\(108\) 0 0
\(109\) −6.00000 10.3923i −0.574696 0.995402i −0.996075 0.0885176i \(-0.971787\pi\)
0.421379 0.906885i \(-0.361546\pi\)
\(110\) 0.500000 0.866025i 0.0476731 0.0825723i
\(111\) 0 0
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 1.50000 + 2.59808i 0.139272 + 0.241225i
\(117\) 0 0
\(118\) −5.00000 −0.460287
\(119\) 15.0000 5.19615i 1.37505 0.476331i
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 6.00000 + 10.3923i 0.543214 + 0.940875i
\(123\) 0 0
\(124\) 5.50000 9.52628i 0.493915 0.855485i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −0.500000 0.866025i −0.0438529 0.0759555i
\(131\) 0.500000 0.866025i 0.0436852 0.0756650i −0.843356 0.537355i \(-0.819423\pi\)
0.887041 + 0.461690i \(0.152757\pi\)
\(132\) 0 0
\(133\) 8.00000 + 6.92820i 0.693688 + 0.600751i
\(134\) −16.0000 −1.38219
\(135\) 0 0
\(136\) 3.00000 + 5.19615i 0.257248 + 0.445566i
\(137\) −4.00000 6.92820i −0.341743 0.591916i 0.643013 0.765855i \(-0.277684\pi\)
−0.984757 + 0.173939i \(0.944351\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −0.500000 + 2.59808i −0.0422577 + 0.219578i
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 0.500000 + 0.866025i 0.0418121 + 0.0724207i
\(144\) 0 0
\(145\) 1.50000 2.59808i 0.124568 0.215758i
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) −6.50000 11.2583i −0.528962 0.916190i −0.999430 0.0337724i \(-0.989248\pi\)
0.470467 0.882418i \(-0.344085\pi\)
\(152\) −2.00000 + 3.46410i −0.162221 + 0.280976i
\(153\) 0 0
\(154\) 0.500000 2.59808i 0.0402911 0.209359i
\(155\) −11.0000 −0.883541
\(156\) 0 0
\(157\) 9.00000 + 15.5885i 0.718278 + 1.24409i 0.961681 + 0.274169i \(0.0884028\pi\)
−0.243403 + 0.969925i \(0.578264\pi\)
\(158\) 3.50000 + 6.06218i 0.278445 + 0.482281i
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) −12.0000 10.3923i −0.945732 0.819028i
\(162\) 0 0
\(163\) 4.00000 6.92820i 0.313304 0.542659i −0.665771 0.746156i \(-0.731897\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) 6.00000 + 10.3923i 0.468521 + 0.811503i
\(165\) 0 0
\(166\) 8.50000 14.7224i 0.659728 1.14268i
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 3.00000 5.19615i 0.230089 0.398527i
\(171\) 0 0
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −10.0000 + 3.46410i −0.755929 + 0.261861i
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 6.00000 + 10.3923i 0.449719 + 0.778936i
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) −2.00000 1.73205i −0.148250 0.128388i
\(183\) 0 0
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) −2.00000 3.46410i −0.147043 0.254686i
\(186\) 0 0
\(187\) −3.00000 + 5.19615i −0.219382 + 0.379980i
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) −7.50000 12.9904i −0.539862 0.935068i −0.998911 0.0466572i \(-0.985143\pi\)
0.459049 0.888411i \(-0.348190\pi\)
\(194\) 6.50000 11.2583i 0.466673 0.808301i
\(195\) 0 0
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −4.00000 6.92820i −0.283552 0.491127i 0.688705 0.725042i \(-0.258180\pi\)
−0.972257 + 0.233915i \(0.924846\pi\)
\(200\) −2.00000 3.46410i −0.141421 0.244949i
\(201\) 0 0
\(202\) 10.0000 0.703598
\(203\) 1.50000 7.79423i 0.105279 0.547048i
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −2.50000 + 4.33013i −0.171701 + 0.297394i
\(213\) 0 0
\(214\) −3.50000 6.06218i −0.239255 0.414402i
\(215\) 4.00000 6.92820i 0.272798 0.472500i
\(216\) 0 0
\(217\) −27.5000 + 9.52628i −1.86682 + 0.646686i
\(218\) −12.0000 −0.812743
\(219\) 0 0
\(220\) −0.500000 0.866025i −0.0337100 0.0583874i
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) 7.00000 0.468755 0.234377 0.972146i \(-0.424695\pi\)
0.234377 + 0.972146i \(0.424695\pi\)
\(224\) −2.50000 + 0.866025i −0.167038 + 0.0578638i
\(225\) 0 0
\(226\) 2.00000 3.46410i 0.133038 0.230429i
\(227\) −7.50000 12.9904i −0.497792 0.862202i 0.502204 0.864749i \(-0.332523\pi\)
−0.999997 + 0.00254715i \(0.999189\pi\)
\(228\) 0 0
\(229\) −3.00000 + 5.19615i −0.198246 + 0.343371i −0.947960 0.318390i \(-0.896858\pi\)
0.749714 + 0.661762i \(0.230191\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) 3.00000 5.19615i 0.196537 0.340411i −0.750867 0.660454i \(-0.770364\pi\)
0.947403 + 0.320043i \(0.103697\pi\)
\(234\) 0 0
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) −2.50000 + 4.33013i −0.162736 + 0.281867i
\(237\) 0 0
\(238\) 3.00000 15.5885i 0.194461 1.01045i
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 7.50000 + 12.9904i 0.483117 + 0.836784i 0.999812 0.0193858i \(-0.00617107\pi\)
−0.516695 + 0.856170i \(0.672838\pi\)
\(242\) −5.00000 8.66025i −0.321412 0.556702i
\(243\) 0 0
\(244\) 12.0000 0.768221
\(245\) 5.50000 4.33013i 0.351382 0.276642i
\(246\) 0 0
\(247\) −2.00000 + 3.46410i −0.127257 + 0.220416i
\(248\) −5.50000 9.52628i −0.349250 0.604919i
\(249\) 0 0
\(250\) −4.50000 + 7.79423i −0.284605 + 0.492950i
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) −3.50000 + 6.06218i −0.219610 + 0.380375i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −3.00000 + 5.19615i −0.187135 + 0.324127i −0.944294 0.329104i \(-0.893253\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(258\) 0 0
\(259\) −8.00000 6.92820i −0.497096 0.430498i
\(260\) −1.00000 −0.0620174
\(261\) 0 0
\(262\) −0.500000 0.866025i −0.0308901 0.0535032i
\(263\) −9.00000 15.5885i −0.554964 0.961225i −0.997906 0.0646755i \(-0.979399\pi\)
0.442943 0.896550i \(-0.353935\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 10.0000 3.46410i 0.613139 0.212398i
\(267\) 0 0
\(268\) −8.00000 + 13.8564i −0.488678 + 0.846415i
\(269\) −4.50000 7.79423i −0.274370 0.475223i 0.695606 0.718423i \(-0.255136\pi\)
−0.969976 + 0.243201i \(0.921803\pi\)
\(270\) 0 0
\(271\) 3.50000 6.06218i 0.212610 0.368251i −0.739921 0.672694i \(-0.765137\pi\)
0.952531 + 0.304443i \(0.0984703\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) −8.00000 −0.483298
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 2.00000 + 1.73205i 0.119523 + 0.103510i
\(281\) −4.00000 −0.238620 −0.119310 0.992857i \(-0.538068\pi\)
−0.119310 + 0.992857i \(0.538068\pi\)
\(282\) 0 0
\(283\) −5.00000 8.66025i −0.297219 0.514799i 0.678280 0.734804i \(-0.262726\pi\)
−0.975499 + 0.220005i \(0.929393\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) 1.00000 0.0591312
\(287\) 6.00000 31.1769i 0.354169 1.84032i
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) −1.50000 2.59808i −0.0880830 0.152564i
\(291\) 0 0
\(292\) 5.00000 8.66025i 0.292603 0.506803i
\(293\) 7.00000 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(294\) 0 0
\(295\) 5.00000 0.291111
\(296\) 2.00000 3.46410i 0.116248 0.201347i
\(297\) 0 0
\(298\) 5.00000 + 8.66025i 0.289642 + 0.501675i
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) 4.00000 20.7846i 0.230556 1.19800i
\(302\) −13.0000 −0.748066
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) −6.00000 10.3923i −0.343559 0.595062i
\(306\) 0 0
\(307\) 6.00000 0.342438 0.171219 0.985233i \(-0.445229\pi\)
0.171219 + 0.985233i \(0.445229\pi\)
\(308\) −2.00000 1.73205i −0.113961 0.0986928i
\(309\) 0 0
\(310\) −5.50000 + 9.52628i −0.312379 + 0.541056i
\(311\) 1.00000 + 1.73205i 0.0567048 + 0.0982156i 0.892984 0.450088i \(-0.148607\pi\)
−0.836280 + 0.548303i \(0.815274\pi\)
\(312\) 0 0
\(313\) −6.50000 + 11.2583i −0.367402 + 0.636358i −0.989158 0.146852i \(-0.953086\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 7.00000 0.393781
\(317\) −1.50000 + 2.59808i −0.0842484 + 0.145922i −0.905071 0.425261i \(-0.860182\pi\)
0.820822 + 0.571184i \(0.193516\pi\)
\(318\) 0 0
\(319\) 1.50000 + 2.59808i 0.0839839 + 0.145464i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −15.0000 + 5.19615i −0.835917 + 0.289570i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −2.00000 3.46410i −0.110940 0.192154i
\(326\) −4.00000 6.92820i −0.221540 0.383718i
\(327\) 0 0
\(328\) 12.0000 0.662589
\(329\) −16.0000 13.8564i −0.882109 0.763928i
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) −8.50000 14.7224i −0.466498 0.807998i
\(333\) 0 0
\(334\) 12.0000 20.7846i 0.656611 1.13728i
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 25.0000 1.36184 0.680918 0.732359i \(-0.261581\pi\)
0.680918 + 0.732359i \(0.261581\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 0 0
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 5.50000 9.52628i 0.297842 0.515877i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) 10.0000 + 17.3205i 0.536828 + 0.929814i 0.999072 + 0.0430610i \(0.0137110\pi\)
−0.462244 + 0.886753i \(0.652956\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) −2.00000 + 10.3923i −0.106904 + 0.555492i
\(351\) 0 0
\(352\) 0.500000 0.866025i 0.0266501 0.0461593i
\(353\) 15.0000 + 25.9808i 0.798369 + 1.38282i 0.920677 + 0.390324i \(0.127637\pi\)
−0.122308 + 0.992492i \(0.539030\pi\)
\(354\) 0 0
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 12.0000 0.635999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −11.0000 + 19.0526i −0.580558 + 1.00556i 0.414855 + 0.909887i \(0.363832\pi\)
−0.995413 + 0.0956683i \(0.969501\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) −8.00000 + 13.8564i −0.420471 + 0.728277i
\(363\) 0 0
\(364\) −2.50000 + 0.866025i −0.131036 + 0.0453921i
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) 3.50000 + 6.06218i 0.182699 + 0.316443i 0.942799 0.333363i \(-0.108183\pi\)
−0.760100 + 0.649806i \(0.774850\pi\)
\(368\) −3.00000 5.19615i −0.156386 0.270868i
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 12.5000 4.33013i 0.648968 0.224809i
\(372\) 0 0
\(373\) −13.0000 + 22.5167i −0.673114 + 1.16587i 0.303902 + 0.952703i \(0.401711\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(374\) 3.00000 + 5.19615i 0.155126 + 0.268687i
\(375\) 0 0
\(376\) 4.00000 6.92820i 0.206284 0.357295i
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 2.00000 3.46410i 0.102598 0.177705i
\(381\) 0 0
\(382\) 3.00000 + 5.19615i 0.153493 + 0.265858i
\(383\) −7.00000 + 12.1244i −0.357683 + 0.619526i −0.987573 0.157159i \(-0.949767\pi\)
0.629890 + 0.776684i \(0.283100\pi\)
\(384\) 0 0
\(385\) −0.500000 + 2.59808i −0.0254824 + 0.132410i
\(386\) −15.0000 −0.763480
\(387\) 0 0
\(388\) −6.50000 11.2583i −0.329988 0.571555i
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 6.50000 + 2.59808i 0.328300 + 0.131223i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) −3.50000 6.06218i −0.176104 0.305021i
\(396\) 0 0
\(397\) 9.00000 15.5885i 0.451697 0.782362i −0.546795 0.837267i \(-0.684152\pi\)
0.998492 + 0.0549046i \(0.0174855\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) −5.50000 9.52628i −0.273975 0.474538i
\(404\) 5.00000 8.66025i 0.248759 0.430864i
\(405\) 0 0
\(406\) −6.00000 5.19615i −0.297775 0.257881i
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i \(-0.954575\pi\)
0.371750 0.928333i \(-0.378758\pi\)
\(410\) −6.00000 10.3923i −0.296319 0.513239i
\(411\) 0 0
\(412\) 0 0
\(413\) 12.5000 4.33013i 0.615085 0.213072i
\(414\) 0 0
\(415\) −8.50000 + 14.7224i −0.417249 + 0.722696i
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) −2.00000 + 3.46410i −0.0978232 + 0.169435i
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −36.0000 −1.75453 −0.877266 0.480004i \(-0.840635\pi\)
−0.877266 + 0.480004i \(0.840635\pi\)
\(422\) 6.00000 10.3923i 0.292075 0.505889i
\(423\) 0 0
\(424\) 2.50000 + 4.33013i 0.121411 + 0.210290i
\(425\) 12.0000 20.7846i 0.582086 1.00820i
\(426\) 0 0
\(427\) −24.0000 20.7846i −1.16144 1.00584i
\(428\) −7.00000 −0.338358
\(429\) 0 0
\(430\) −4.00000 6.92820i −0.192897 0.334108i
\(431\) −19.0000 32.9090i −0.915198 1.58517i −0.806611 0.591082i \(-0.798701\pi\)
−0.108586 0.994087i \(-0.534632\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) −5.50000 + 28.5788i −0.264008 + 1.37183i
\(435\) 0 0
\(436\) −6.00000 + 10.3923i −0.287348 + 0.497701i
\(437\) 12.0000 + 20.7846i 0.574038 + 0.994263i
\(438\) 0 0
\(439\) 8.50000 14.7224i 0.405683 0.702663i −0.588718 0.808339i \(-0.700367\pi\)
0.994401 + 0.105675i \(0.0337004\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 0 0
\(442\) 6.00000 0.285391
\(443\) −19.5000 + 33.7750i −0.926473 + 1.60470i −0.137298 + 0.990530i \(0.543842\pi\)
−0.789175 + 0.614168i \(0.789492\pi\)
\(444\) 0 0
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) 3.50000 6.06218i 0.165730 0.287052i
\(447\) 0 0
\(448\) −0.500000 + 2.59808i −0.0236228 + 0.122748i
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) −2.00000 3.46410i −0.0940721 0.162938i
\(453\) 0 0
\(454\) −15.0000 −0.703985
\(455\) 2.00000 + 1.73205i 0.0937614 + 0.0811998i
\(456\) 0 0
\(457\) 5.50000 9.52628i 0.257279 0.445621i −0.708233 0.705979i \(-0.750507\pi\)
0.965512 + 0.260358i \(0.0838407\pi\)
\(458\) 3.00000 + 5.19615i 0.140181 + 0.242800i
\(459\) 0 0
\(460\) −3.00000 + 5.19615i −0.139876 + 0.242272i
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 1.50000 2.59808i 0.0696358 0.120613i
\(465\) 0 0
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) 6.00000 10.3923i 0.277647 0.480899i −0.693153 0.720791i \(-0.743779\pi\)
0.970799 + 0.239892i \(0.0771121\pi\)
\(468\) 0 0
\(469\) 40.0000 13.8564i 1.84703 0.639829i
\(470\) −8.00000 −0.369012
\(471\) 0 0
\(472\) 2.50000 + 4.33013i 0.115072 + 0.199310i
\(473\) 4.00000 + 6.92820i 0.183920 + 0.318559i
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) −12.0000 10.3923i −0.550019 0.476331i
\(477\) 0 0
\(478\) 3.00000 5.19615i 0.137217 0.237666i
\(479\) 7.00000 + 12.1244i 0.319838 + 0.553976i 0.980454 0.196748i \(-0.0630381\pi\)
−0.660616 + 0.750724i \(0.729705\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 15.0000 0.683231
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) −6.50000 + 11.2583i −0.295150 + 0.511214i
\(486\) 0 0
\(487\) −11.5000 19.9186i −0.521115 0.902597i −0.999698 0.0245553i \(-0.992183\pi\)
0.478584 0.878042i \(-0.341150\pi\)
\(488\) 6.00000 10.3923i 0.271607 0.470438i
\(489\) 0 0
\(490\) −1.00000 6.92820i −0.0451754 0.312984i
\(491\) 35.0000 1.57953 0.789764 0.613411i \(-0.210203\pi\)
0.789764 + 0.613411i \(0.210203\pi\)
\(492\) 0 0
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) 2.00000 + 3.46410i 0.0899843 + 0.155857i
\(495\) 0 0
\(496\) −11.0000 −0.493915
\(497\) 3.00000 15.5885i 0.134568 0.699238i
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 4.50000 + 7.79423i 0.201246 + 0.348569i
\(501\) 0 0
\(502\) −8.50000 + 14.7224i −0.379374 + 0.657094i
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 3.00000 5.19615i 0.133366 0.230997i
\(507\) 0 0
\(508\) 3.50000 + 6.06218i 0.155287 + 0.268966i
\(509\) 6.50000 11.2583i 0.288107 0.499017i −0.685251 0.728307i \(-0.740307\pi\)
0.973358 + 0.229291i \(0.0736406\pi\)
\(510\) 0 0
\(511\) −25.0000 + 8.66025i −1.10593 + 0.383107i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 3.00000 + 5.19615i 0.132324 + 0.229192i
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) −10.0000 + 3.46410i −0.439375 + 0.152204i
\(519\) 0 0
\(520\) −0.500000 + 0.866025i −0.0219265 + 0.0379777i
\(521\) 14.0000 + 24.2487i 0.613351 + 1.06236i 0.990671 + 0.136272i \(0.0435123\pi\)
−0.377320 + 0.926083i \(0.623154\pi\)
\(522\) 0 0
\(523\) −8.00000 + 13.8564i −0.349816 + 0.605898i −0.986216 0.165460i \(-0.947089\pi\)
0.636401 + 0.771358i \(0.280422\pi\)
\(524\) −1.00000 −0.0436852
\(525\) 0 0
\(526\) −18.0000 −0.784837
\(527\) 33.0000 57.1577i 1.43750 2.48983i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 2.50000 4.33013i 0.108593 0.188089i
\(531\) 0 0
\(532\) 2.00000 10.3923i 0.0867110 0.450564i
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 3.50000 + 6.06218i 0.151318 + 0.262091i
\(536\) 8.00000 + 13.8564i 0.345547 + 0.598506i
\(537\) 0 0
\(538\) −9.00000 −0.388018
\(539\) 1.00000 + 6.92820i 0.0430730 + 0.298419i
\(540\) 0 0
\(541\) −16.0000 + 27.7128i −0.687894 + 1.19147i 0.284624 + 0.958639i \(0.408131\pi\)
−0.972518 + 0.232828i \(0.925202\pi\)
\(542\) −3.50000 6.06218i −0.150338 0.260393i
\(543\) 0 0
\(544\) 3.00000 5.19615i 0.128624 0.222783i
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) −4.00000 + 6.92820i −0.170872 + 0.295958i
\(549\) 0 0
\(550\) −2.00000 3.46410i −0.0852803 0.147710i
\(551\) −6.00000 + 10.3923i −0.255609 + 0.442727i
\(552\) 0 0
\(553\) −14.0000 12.1244i −0.595341 0.515580i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 0 0
\(557\) −8.50000 14.7224i −0.360157 0.623809i 0.627830 0.778351i \(-0.283943\pi\)
−0.987986 + 0.154541i \(0.950610\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 2.50000 0.866025i 0.105644 0.0365963i
\(561\) 0 0
\(562\) −2.00000 + 3.46410i −0.0843649 + 0.146124i
\(563\) 10.5000 + 18.1865i 0.442522 + 0.766471i 0.997876 0.0651433i \(-0.0207504\pi\)
−0.555354 + 0.831614i \(0.687417\pi\)
\(564\) 0 0
\(565\) −2.00000 + 3.46410i −0.0841406 + 0.145736i
\(566\) −10.0000 −0.420331
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −2.00000 + 3.46410i −0.0838444 + 0.145223i −0.904898 0.425628i \(-0.860053\pi\)
0.821054 + 0.570851i \(0.193387\pi\)
\(570\) 0 0
\(571\) −14.0000 24.2487i −0.585882 1.01478i −0.994765 0.102190i \(-0.967415\pi\)
0.408883 0.912587i \(-0.365918\pi\)
\(572\) 0.500000 0.866025i 0.0209061 0.0362103i
\(573\) 0 0
\(574\) −24.0000 20.7846i −1.00174 0.867533i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) −0.500000 0.866025i −0.0208153 0.0360531i 0.855430 0.517918i \(-0.173293\pi\)
−0.876245 + 0.481865i \(0.839960\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) 0 0
\(580\) −3.00000 −0.124568
\(581\) −8.50000 + 44.1673i −0.352639 + 1.83237i
\(582\) 0 0
\(583\) −2.50000 + 4.33013i −0.103539 + 0.179336i
\(584\) −5.00000 8.66025i −0.206901 0.358364i
\(585\) 0 0
\(586\) 3.50000 6.06218i 0.144584 0.250426i
\(587\) −5.00000 −0.206372 −0.103186 0.994662i \(-0.532904\pi\)
−0.103186 + 0.994662i \(0.532904\pi\)
\(588\) 0 0
\(589\) 44.0000 1.81299
\(590\) 2.50000 4.33013i 0.102923 0.178269i
\(591\) 0 0
\(592\) −2.00000 3.46410i −0.0821995 0.142374i
\(593\) −18.0000 + 31.1769i −0.739171 + 1.28028i 0.213697 + 0.976900i \(0.431449\pi\)
−0.952869 + 0.303383i \(0.901884\pi\)
\(594\) 0 0
\(595\) −3.00000 + 15.5885i −0.122988 + 0.639064i
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) −3.00000 5.19615i −0.122679 0.212486i
\(599\) −5.00000 8.66025i −0.204294 0.353848i 0.745613 0.666379i \(-0.232157\pi\)
−0.949908 + 0.312531i \(0.898823\pi\)
\(600\) 0 0
\(601\) 11.0000 0.448699 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(602\) −16.0000 13.8564i −0.652111 0.564745i
\(603\) 0 0
\(604\) −6.50000 + 11.2583i −0.264481 + 0.458095i
\(605\) 5.00000 + 8.66025i 0.203279 + 0.352089i
\(606\) 0 0
\(607\) −14.5000 + 25.1147i −0.588537 + 1.01938i 0.405887 + 0.913923i \(0.366962\pi\)
−0.994424 + 0.105453i \(0.966371\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −12.0000 −0.485866
\(611\) 4.00000 6.92820i 0.161823 0.280285i
\(612\) 0 0
\(613\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 3.00000 5.19615i 0.121070 0.209700i
\(615\) 0 0
\(616\) −2.50000 + 0.866025i −0.100728 + 0.0348932i
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) 4.00000 + 6.92820i 0.160774 + 0.278468i 0.935146 0.354262i \(-0.115268\pi\)
−0.774373 + 0.632730i \(0.781934\pi\)
\(620\) 5.50000 + 9.52628i 0.220885 + 0.382585i
\(621\) 0 0
\(622\) 2.00000 0.0801927
\(623\) −24.0000 20.7846i −0.961540 0.832718i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 6.50000 + 11.2583i 0.259792 + 0.449973i
\(627\) 0 0
\(628\) 9.00000 15.5885i 0.359139 0.622047i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) 3.50000 6.06218i 0.139223 0.241140i
\(633\) 0 0
\(634\) 1.50000 + 2.59808i 0.0595726 + 0.103183i
\(635\) 3.50000 6.06218i 0.138893 0.240570i
\(636\) 0 0
\(637\) 6.50000 + 2.59808i 0.257539 + 0.102940i
\(638\) 3.00000 0.118771
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) −6.00000 10.3923i −0.236986 0.410471i 0.722862 0.690992i \(-0.242826\pi\)
−0.959848 + 0.280521i \(0.909493\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) −3.00000 + 15.5885i −0.118217 + 0.614271i
\(645\) 0 0
\(646\) −12.0000 + 20.7846i −0.472134 + 0.817760i
\(647\) −2.00000 3.46410i −0.0786281 0.136188i 0.824030 0.566546i \(-0.191721\pi\)
−0.902658 + 0.430358i \(0.858387\pi\)
\(648\) 0 0
\(649\) −2.50000 + 4.33013i −0.0981336 + 0.169972i
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) −8.00000 −0.313304
\(653\) −5.50000 + 9.52628i −0.215232 + 0.372792i −0.953344 0.301885i \(-0.902384\pi\)
0.738113 + 0.674678i \(0.235717\pi\)
\(654\) 0 0
\(655\) 0.500000 + 0.866025i 0.0195366 + 0.0338384i
\(656\) 6.00000 10.3923i 0.234261 0.405751i
\(657\) 0 0
\(658\) −20.0000 + 6.92820i −0.779681 + 0.270089i
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −11.0000 19.0526i −0.427850 0.741059i 0.568831 0.822454i \(-0.307396\pi\)
−0.996682 + 0.0813955i \(0.974062\pi\)
\(662\) −4.00000 6.92820i −0.155464 0.269272i
\(663\) 0 0
\(664\) −17.0000 −0.659728
\(665\) −10.0000 + 3.46410i −0.387783 + 0.134332i
\(666\) 0 0
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) −12.0000 20.7846i −0.464294 0.804181i
\(669\) 0 0
\(670\) 8.00000 13.8564i 0.309067 0.535320i
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −39.0000 −1.50334 −0.751670 0.659540i \(-0.770751\pi\)
−0.751670 + 0.659540i \(0.770751\pi\)
\(674\) 12.5000 21.6506i 0.481482 0.833951i
\(675\) 0 0
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) −17.5000 + 30.3109i −0.672580 + 1.16494i 0.304590 + 0.952483i \(0.401480\pi\)
−0.977170 + 0.212459i \(0.931853\pi\)
\(678\) 0 0
\(679\) −6.50000 + 33.7750i −0.249447 + 1.29617i
\(680\) −6.00000 −0.230089
\(681\) 0 0
\(682\) −5.50000 9.52628i −0.210606 0.364780i
\(683\) −13.5000 23.3827i −0.516563 0.894714i −0.999815 0.0192323i \(-0.993878\pi\)
0.483252 0.875481i \(-0.339456\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) −8.50000 16.4545i −0.324532 0.628235i
\(687\) 0 0
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 2.50000 + 4.33013i 0.0952424 + 0.164965i
\(690\) 0 0
\(691\) 20.0000 34.6410i 0.760836 1.31781i −0.181584 0.983375i \(-0.558123\pi\)
0.942420 0.334431i \(-0.108544\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000 + 62.3538i 1.36360 + 2.36182i
\(698\) 7.00000 12.1244i 0.264954 0.458914i
\(699\) 0 0
\(700\) 8.00000 + 6.92820i 0.302372 + 0.261861i
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) 8.00000 + 13.8564i 0.301726 + 0.522604i
\(704\) −0.500000 0.866025i −0.0188445 0.0326396i
\(705\) 0 0
\(706\) 30.0000 1.12906
\(707\) −25.0000 + 8.66025i −0.940222 + 0.325702i
\(708\) 0 0
\(709\) −3.00000 + 5.19615i −0.112667 + 0.195146i −0.916845 0.399244i \(-0.869273\pi\)
0.804178 + 0.594389i \(0.202606\pi\)
\(710\) −3.00000 5.19615i −0.112588 0.195008i
\(711\) 0 0
\(712\) 6.00000 10.3923i 0.224860 0.389468i
\(713\) −66.0000 −2.47172
\(714\) 0 0
\(715\) −1.00000 −0.0373979
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 0 0
\(718\) 11.0000 + 19.0526i 0.410516 + 0.711035i
\(719\) 23.0000 39.8372i 0.857755 1.48568i −0.0163099 0.999867i \(-0.505192\pi\)
0.874065 0.485809i \(-0.161475\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) 8.00000 + 13.8564i 0.297318 + 0.514969i
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) 19.0000 0.704671 0.352335 0.935874i \(-0.385388\pi\)
0.352335 + 0.935874i \(0.385388\pi\)
\(728\) −0.500000 + 2.59808i −0.0185312 + 0.0962911i
\(729\) 0 0
\(730\) −5.00000 + 8.66025i −0.185058 + 0.320530i
\(731\) 24.0000 + 41.5692i 0.887672 + 1.53749i
\(732\) 0 0
\(733\) −1.00000 + 1.73205i −0.0369358 + 0.0639748i −0.883902 0.467671i \(-0.845093\pi\)
0.846967 + 0.531646i \(0.178426\pi\)
\(734\) 7.00000 0.258375
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) −8.00000 + 13.8564i −0.294684 + 0.510407i
\(738\) 0 0
\(739\) 13.0000 + 22.5167i 0.478213 + 0.828289i 0.999688 0.0249776i \(-0.00795146\pi\)
−0.521475 + 0.853266i \(0.674618\pi\)
\(740\) −2.00000 + 3.46410i −0.0735215 + 0.127343i
\(741\) 0 0
\(742\) 2.50000 12.9904i 0.0917779 0.476892i
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) −5.00000 8.66025i −0.183186 0.317287i
\(746\) 13.0000 + 22.5167i 0.475964 + 0.824394i
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) 14.0000 + 12.1244i 0.511549 + 0.443014i
\(750\) 0 0
\(751\) −12.5000 + 21.6506i −0.456131 + 0.790043i −0.998752 0.0499348i \(-0.984099\pi\)
0.542621 + 0.839978i \(0.317432\pi\)
\(752\) −4.00000 6.92820i −0.145865 0.252646i
\(753\) 0 0
\(754\) 1.50000 2.59808i 0.0546268 0.0946164i
\(755\) 13.0000 0.473118
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 8.00000 13.8564i 0.290573 0.503287i
\(759\) 0 0
\(760\) −2.00000 3.46410i −0.0725476 0.125656i
\(761\) −14.0000 + 24.2487i −0.507500 + 0.879015i 0.492463 + 0.870334i \(0.336097\pi\)
−0.999962 + 0.00868155i \(0.997237\pi\)
\(762\) 0 0
\(763\) 30.0000 10.3923i 1.08607 0.376227i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 7.00000 + 12.1244i 0.252920 + 0.438071i
\(767\) 2.50000 + 4.33013i 0.0902698 + 0.156352i
\(768\) 0 0
\(769\) 31.0000 1.11789 0.558944 0.829205i \(-0.311207\pi\)
0.558944 + 0.829205i \(0.311207\pi\)
\(770\) 2.00000 + 1.73205i 0.0720750 + 0.0624188i
\(771\) 0 0
\(772\) −7.50000 + 12.9904i −0.269931 + 0.467534i
\(773\) −21.0000 36.3731i −0.755318 1.30825i −0.945216 0.326445i \(-0.894149\pi\)
0.189899 0.981804i \(-0.439184\pi\)
\(774\) 0 0
\(775\) −22.0000 + 38.1051i −0.790263 + 1.36878i
\(776\) −13.0000 −0.466673
\(777\) 0 0
\(778\) 22.0000 0.788738
\(779\) −24.0000 + 41.5692i −0.859889 + 1.48937i
\(780\) 0 0
\(781\) 3.00000 + 5.19615i 0.107348 + 0.185933i
\(782\) 18.0000 31.1769i 0.643679 1.11488i
\(783\) 0 0
\(784\)