Properties

Label 1638.2.bj.i.127.1
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 18 x^{13} + 143 x^{12} - 148 x^{11} + 172 x^{10} + 1612 x^{9} + \cdots + 97344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.1
Root \(1.15585 - 1.15585i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.i.1135.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -3.62374i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -3.62374i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +(1.81187 + 3.13825i) q^{10} +(1.74589 - 1.00799i) q^{11} +(3.59505 - 0.275040i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.79054 - 6.56541i) q^{17} +(2.40547 + 1.38880i) q^{19} +(-3.13825 - 1.81187i) q^{20} +(-1.00799 + 1.74589i) q^{22} +(3.95583 + 6.85169i) q^{23} -8.13150 q^{25} +(-2.97588 + 2.03571i) q^{26} +(-0.866025 + 0.500000i) q^{28} +(-2.83454 - 4.90957i) q^{29} +5.83236i q^{31} +(0.866025 + 0.500000i) q^{32} +7.58108i q^{34} +(-1.81187 + 3.13825i) q^{35} +(-1.48866 + 0.859480i) q^{37} -2.77760 q^{38} +3.62374 q^{40} +(10.0684 - 5.81297i) q^{41} +(2.63741 - 4.56813i) q^{43} -2.01598i q^{44} +(-6.85169 - 3.95583i) q^{46} -5.63658i q^{47} +(0.500000 + 0.866025i) q^{49} +(7.04209 - 4.06575i) q^{50} +(1.55933 - 3.25092i) q^{52} -0.0731130 q^{53} +(-3.65269 - 6.32665i) q^{55} +(0.500000 - 0.866025i) q^{56} +(4.90957 + 2.83454i) q^{58} +(-1.15686 - 0.667915i) q^{59} +(0.187787 - 0.325257i) q^{61} +(-2.91618 - 5.05098i) q^{62} -1.00000 q^{64} +(-0.996674 - 13.0275i) q^{65} +(-12.3907 + 7.15378i) q^{67} +(-3.79054 - 6.56541i) q^{68} -3.62374i q^{70} +(-11.0728 - 6.39291i) q^{71} +4.80070i q^{73} +(0.859480 - 1.48866i) q^{74} +(2.40547 - 1.38880i) q^{76} -2.01598 q^{77} +10.1368 q^{79} +(-3.13825 + 1.81187i) q^{80} +(-5.81297 + 10.0684i) q^{82} +1.97093i q^{83} +(-23.7913 - 13.7359i) q^{85} +5.27482i q^{86} +(1.00799 + 1.74589i) q^{88} +(-11.8252 + 6.82727i) q^{89} +(-3.25092 - 1.55933i) q^{91} +7.91165 q^{92} +(2.81829 + 4.88142i) q^{94} +(5.03265 - 8.71681i) q^{95} +(-13.6356 - 7.87254i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} + 2 q^{10} + 12 q^{11} + 10 q^{13} + 16 q^{14} - 8 q^{16} + 6 q^{17} - 4 q^{22} + 12 q^{23} - 20 q^{25} + 2 q^{26} - 16 q^{29} - 2 q^{35} - 6 q^{37} + 4 q^{40} - 12 q^{41} - 6 q^{43} + 6 q^{46} + 8 q^{49} + 24 q^{50} - 4 q^{52} + 40 q^{53} + 20 q^{55} + 8 q^{56} + 6 q^{58} - 6 q^{59} - 2 q^{61} + 14 q^{62} - 16 q^{64} + 52 q^{65} - 30 q^{67} - 6 q^{68} - 12 q^{71} - 24 q^{74} - 8 q^{77} - 16 q^{79} + 2 q^{82} + 6 q^{85} + 4 q^{88} - 30 q^{89} + 4 q^{91} + 24 q^{92} - 8 q^{94} + 40 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.62374i 1.62059i −0.586025 0.810293i \(-0.699308\pi\)
0.586025 0.810293i \(-0.300692\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.81187 + 3.13825i 0.572964 + 0.992402i
\(11\) 1.74589 1.00799i 0.526406 0.303920i −0.213146 0.977020i \(-0.568371\pi\)
0.739551 + 0.673100i \(0.235038\pi\)
\(12\) 0 0
\(13\) 3.59505 0.275040i 0.997086 0.0762824i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.79054 6.56541i 0.919341 1.59235i 0.118923 0.992904i \(-0.462056\pi\)
0.800418 0.599442i \(-0.204611\pi\)
\(18\) 0 0
\(19\) 2.40547 + 1.38880i 0.551853 + 0.318613i 0.749869 0.661586i \(-0.230116\pi\)
−0.198016 + 0.980199i \(0.563450\pi\)
\(20\) −3.13825 1.81187i −0.701734 0.405147i
\(21\) 0 0
\(22\) −1.00799 + 1.74589i −0.214904 + 0.372225i
\(23\) 3.95583 + 6.85169i 0.824847 + 1.42868i 0.902036 + 0.431660i \(0.142072\pi\)
−0.0771895 + 0.997016i \(0.524595\pi\)
\(24\) 0 0
\(25\) −8.13150 −1.62630
\(26\) −2.97588 + 2.03571i −0.583618 + 0.399236i
\(27\) 0 0
\(28\) −0.866025 + 0.500000i −0.163663 + 0.0944911i
\(29\) −2.83454 4.90957i −0.526361 0.911684i −0.999528 0.0307115i \(-0.990223\pi\)
0.473167 0.880973i \(-0.343111\pi\)
\(30\) 0 0
\(31\) 5.83236i 1.04752i 0.851865 + 0.523762i \(0.175472\pi\)
−0.851865 + 0.523762i \(0.824528\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 7.58108i 1.30014i
\(35\) −1.81187 + 3.13825i −0.306262 + 0.530461i
\(36\) 0 0
\(37\) −1.48866 + 0.859480i −0.244735 + 0.141298i −0.617351 0.786688i \(-0.711794\pi\)
0.372616 + 0.927986i \(0.378461\pi\)
\(38\) −2.77760 −0.450586
\(39\) 0 0
\(40\) 3.62374 0.572964
\(41\) 10.0684 5.81297i 1.57241 0.907834i 0.576542 0.817068i \(-0.304402\pi\)
0.995872 0.0907662i \(-0.0289316\pi\)
\(42\) 0 0
\(43\) 2.63741 4.56813i 0.402201 0.696633i −0.591790 0.806092i \(-0.701579\pi\)
0.993991 + 0.109459i \(0.0349119\pi\)
\(44\) 2.01598i 0.303920i
\(45\) 0 0
\(46\) −6.85169 3.95583i −1.01023 0.583255i
\(47\) 5.63658i 0.822180i −0.911595 0.411090i \(-0.865148\pi\)
0.911595 0.411090i \(-0.134852\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 7.04209 4.06575i 0.995901 0.574984i
\(51\) 0 0
\(52\) 1.55933 3.25092i 0.216240 0.450822i
\(53\) −0.0731130 −0.0100428 −0.00502142 0.999987i \(-0.501598\pi\)
−0.00502142 + 0.999987i \(0.501598\pi\)
\(54\) 0 0
\(55\) −3.65269 6.32665i −0.492529 0.853086i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 0 0
\(58\) 4.90957 + 2.83454i 0.644658 + 0.372194i
\(59\) −1.15686 0.667915i −0.150611 0.0869551i 0.422801 0.906223i \(-0.361047\pi\)
−0.573411 + 0.819268i \(0.694380\pi\)
\(60\) 0 0
\(61\) 0.187787 0.325257i 0.0240437 0.0416449i −0.853753 0.520678i \(-0.825679\pi\)
0.877797 + 0.479033i \(0.159013\pi\)
\(62\) −2.91618 5.05098i −0.370356 0.641475i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −0.996674 13.0275i −0.123622 1.61586i
\(66\) 0 0
\(67\) −12.3907 + 7.15378i −1.51377 + 0.873973i −0.513895 + 0.857853i \(0.671798\pi\)
−0.999870 + 0.0161201i \(0.994869\pi\)
\(68\) −3.79054 6.56541i −0.459670 0.796173i
\(69\) 0 0
\(70\) 3.62374i 0.433120i
\(71\) −11.0728 6.39291i −1.31410 0.758698i −0.331331 0.943515i \(-0.607498\pi\)
−0.982773 + 0.184816i \(0.940831\pi\)
\(72\) 0 0
\(73\) 4.80070i 0.561880i 0.959725 + 0.280940i \(0.0906462\pi\)
−0.959725 + 0.280940i \(0.909354\pi\)
\(74\) 0.859480 1.48866i 0.0999125 0.173053i
\(75\) 0 0
\(76\) 2.40547 1.38880i 0.275927 0.159306i
\(77\) −2.01598 −0.229742
\(78\) 0 0
\(79\) 10.1368 1.14048 0.570241 0.821477i \(-0.306850\pi\)
0.570241 + 0.821477i \(0.306850\pi\)
\(80\) −3.13825 + 1.81187i −0.350867 + 0.202573i
\(81\) 0 0
\(82\) −5.81297 + 10.0684i −0.641935 + 1.11186i
\(83\) 1.97093i 0.216338i 0.994133 + 0.108169i \(0.0344987\pi\)
−0.994133 + 0.108169i \(0.965501\pi\)
\(84\) 0 0
\(85\) −23.7913 13.7359i −2.58053 1.48987i
\(86\) 5.27482i 0.568798i
\(87\) 0 0
\(88\) 1.00799 + 1.74589i 0.107452 + 0.186112i
\(89\) −11.8252 + 6.82727i −1.25347 + 0.723689i −0.971796 0.235823i \(-0.924222\pi\)
−0.281670 + 0.959511i \(0.590888\pi\)
\(90\) 0 0
\(91\) −3.25092 1.55933i −0.340789 0.163462i
\(92\) 7.91165 0.824847
\(93\) 0 0
\(94\) 2.81829 + 4.88142i 0.290684 + 0.503480i
\(95\) 5.03265 8.71681i 0.516339 0.894326i
\(96\) 0 0
\(97\) −13.6356 7.87254i −1.38449 0.799336i −0.391802 0.920049i \(-0.628148\pi\)
−0.992687 + 0.120714i \(0.961482\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) −4.06575 + 7.04209i −0.406575 + 0.704209i
\(101\) −0.160081 0.277268i −0.0159286 0.0275892i 0.857951 0.513731i \(-0.171737\pi\)
−0.873880 + 0.486142i \(0.838404\pi\)
\(102\) 0 0
\(103\) −0.139970 −0.0137917 −0.00689583 0.999976i \(-0.502195\pi\)
−0.00689583 + 0.999976i \(0.502195\pi\)
\(104\) 0.275040 + 3.59505i 0.0269699 + 0.352523i
\(105\) 0 0
\(106\) 0.0633177 0.0365565i 0.00614996 0.00355068i
\(107\) 0.690440 + 1.19588i 0.0667474 + 0.115610i 0.897468 0.441080i \(-0.145405\pi\)
−0.830720 + 0.556690i \(0.812071\pi\)
\(108\) 0 0
\(109\) 3.13642i 0.300415i −0.988655 0.150207i \(-0.952006\pi\)
0.988655 0.150207i \(-0.0479941\pi\)
\(110\) 6.32665 + 3.65269i 0.603223 + 0.348271i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 6.23703 10.8029i 0.586731 1.01625i −0.407927 0.913015i \(-0.633748\pi\)
0.994657 0.103233i \(-0.0329186\pi\)
\(114\) 0 0
\(115\) 24.8288 14.3349i 2.31529 1.33674i
\(116\) −5.66908 −0.526361
\(117\) 0 0
\(118\) 1.33583 0.122973
\(119\) −6.56541 + 3.79054i −0.601850 + 0.347478i
\(120\) 0 0
\(121\) −3.46791 + 6.00660i −0.315265 + 0.546055i
\(122\) 0.375574i 0.0340029i
\(123\) 0 0
\(124\) 5.05098 + 2.91618i 0.453591 + 0.261881i
\(125\) 11.3477i 1.01497i
\(126\) 0 0
\(127\) −3.04409 5.27252i −0.270119 0.467861i 0.698773 0.715344i \(-0.253730\pi\)
−0.968892 + 0.247483i \(0.920397\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 7.37690 + 10.7838i 0.646997 + 0.945804i
\(131\) −4.04885 −0.353749 −0.176875 0.984233i \(-0.556599\pi\)
−0.176875 + 0.984233i \(0.556599\pi\)
\(132\) 0 0
\(133\) −1.38880 2.40547i −0.120424 0.208581i
\(134\) 7.15378 12.3907i 0.617992 1.07039i
\(135\) 0 0
\(136\) 6.56541 + 3.79054i 0.562979 + 0.325036i
\(137\) −7.38057 4.26117i −0.630565 0.364057i 0.150406 0.988624i \(-0.451942\pi\)
−0.780971 + 0.624568i \(0.785275\pi\)
\(138\) 0 0
\(139\) 9.60631 16.6386i 0.814797 1.41127i −0.0946772 0.995508i \(-0.530182\pi\)
0.909474 0.415761i \(-0.136485\pi\)
\(140\) 1.81187 + 3.13825i 0.153131 + 0.265231i
\(141\) 0 0
\(142\) 12.7858 1.07296
\(143\) 5.99932 4.10396i 0.501688 0.343190i
\(144\) 0 0
\(145\) −17.7910 + 10.2716i −1.47746 + 0.853014i
\(146\) −2.40035 4.15753i −0.198655 0.344080i
\(147\) 0 0
\(148\) 1.71896i 0.141298i
\(149\) 0.132571 + 0.0765401i 0.0108607 + 0.00627041i 0.505421 0.862873i \(-0.331337\pi\)
−0.494560 + 0.869144i \(0.664671\pi\)
\(150\) 0 0
\(151\) 11.7618i 0.957159i −0.878044 0.478580i \(-0.841152\pi\)
0.878044 0.478580i \(-0.158848\pi\)
\(152\) −1.38880 + 2.40547i −0.112647 + 0.195110i
\(153\) 0 0
\(154\) 1.74589 1.00799i 0.140688 0.0812261i
\(155\) 21.1350 1.69760
\(156\) 0 0
\(157\) 23.5119 1.87645 0.938226 0.346024i \(-0.112468\pi\)
0.938226 + 0.346024i \(0.112468\pi\)
\(158\) −8.77875 + 5.06841i −0.698400 + 0.403221i
\(159\) 0 0
\(160\) 1.81187 3.13825i 0.143241 0.248101i
\(161\) 7.91165i 0.623526i
\(162\) 0 0
\(163\) 16.0068 + 9.24154i 1.25375 + 0.723853i 0.971852 0.235591i \(-0.0757026\pi\)
0.281898 + 0.959444i \(0.409036\pi\)
\(164\) 11.6259i 0.907834i
\(165\) 0 0
\(166\) −0.985464 1.70687i −0.0764869 0.132479i
\(167\) −11.5477 + 6.66706i −0.893587 + 0.515912i −0.875114 0.483917i \(-0.839214\pi\)
−0.0184727 + 0.999829i \(0.505880\pi\)
\(168\) 0 0
\(169\) 12.8487 1.97756i 0.988362 0.152120i
\(170\) 27.4719 2.10700
\(171\) 0 0
\(172\) −2.63741 4.56813i −0.201101 0.348316i
\(173\) −8.41536 + 14.5758i −0.639808 + 1.10818i 0.345667 + 0.938357i \(0.387653\pi\)
−0.985475 + 0.169823i \(0.945681\pi\)
\(174\) 0 0
\(175\) 7.04209 + 4.06575i 0.532332 + 0.307342i
\(176\) −1.74589 1.00799i −0.131601 0.0759801i
\(177\) 0 0
\(178\) 6.82727 11.8252i 0.511725 0.886334i
\(179\) 5.44812 + 9.43642i 0.407212 + 0.705311i 0.994576 0.104011i \(-0.0331678\pi\)
−0.587364 + 0.809323i \(0.699834\pi\)
\(180\) 0 0
\(181\) 16.4301 1.22124 0.610619 0.791924i \(-0.290921\pi\)
0.610619 + 0.791924i \(0.290921\pi\)
\(182\) 3.59505 0.275040i 0.266483 0.0203873i
\(183\) 0 0
\(184\) −6.85169 + 3.95583i −0.505113 + 0.291627i
\(185\) 3.11453 + 5.39453i 0.228985 + 0.396613i
\(186\) 0 0
\(187\) 15.2833i 1.11763i
\(188\) −4.88142 2.81829i −0.356014 0.205545i
\(189\) 0 0
\(190\) 10.0653i 0.730214i
\(191\) −3.49738 + 6.05765i −0.253062 + 0.438316i −0.964367 0.264567i \(-0.914771\pi\)
0.711305 + 0.702883i \(0.248104\pi\)
\(192\) 0 0
\(193\) 4.67583 2.69959i 0.336574 0.194321i −0.322182 0.946678i \(-0.604416\pi\)
0.658756 + 0.752357i \(0.271083\pi\)
\(194\) 15.7451 1.13043
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 3.43204 1.98149i 0.244523 0.141175i −0.372731 0.927939i \(-0.621579\pi\)
0.617254 + 0.786764i \(0.288245\pi\)
\(198\) 0 0
\(199\) −12.7019 + 22.0004i −0.900417 + 1.55957i −0.0734626 + 0.997298i \(0.523405\pi\)
−0.826954 + 0.562270i \(0.809928\pi\)
\(200\) 8.13150i 0.574984i
\(201\) 0 0
\(202\) 0.277268 + 0.160081i 0.0195085 + 0.0112632i
\(203\) 5.66908i 0.397892i
\(204\) 0 0
\(205\) −21.0647 36.4851i −1.47122 2.54823i
\(206\) 0.121218 0.0699850i 0.00844563 0.00487609i
\(207\) 0 0
\(208\) −2.03571 2.97588i −0.141151 0.206340i
\(209\) 5.59959 0.387331
\(210\) 0 0
\(211\) −1.10268 1.90990i −0.0759118 0.131483i 0.825571 0.564299i \(-0.190853\pi\)
−0.901482 + 0.432816i \(0.857520\pi\)
\(212\) −0.0365565 + 0.0633177i −0.00251071 + 0.00434868i
\(213\) 0 0
\(214\) −1.19588 0.690440i −0.0817485 0.0471975i
\(215\) −16.5537 9.55729i −1.12895 0.651802i
\(216\) 0 0
\(217\) 2.91618 5.05098i 0.197963 0.342883i
\(218\) 1.56821 + 2.71622i 0.106213 + 0.183966i
\(219\) 0 0
\(220\) −7.30539 −0.492529
\(221\) 11.8214 24.6455i 0.795194 1.65784i
\(222\) 0 0
\(223\) −7.93739 + 4.58265i −0.531527 + 0.306877i −0.741638 0.670800i \(-0.765951\pi\)
0.210111 + 0.977678i \(0.432617\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 0 0
\(226\) 12.4741i 0.829762i
\(227\) −8.63738 4.98679i −0.573283 0.330985i 0.185176 0.982705i \(-0.440714\pi\)
−0.758460 + 0.651720i \(0.774048\pi\)
\(228\) 0 0
\(229\) 1.30526i 0.0862538i 0.999070 + 0.0431269i \(0.0137320\pi\)
−0.999070 + 0.0431269i \(0.986268\pi\)
\(230\) −14.3349 + 24.8288i −0.945215 + 1.63716i
\(231\) 0 0
\(232\) 4.90957 2.83454i 0.322329 0.186097i
\(233\) −27.4165 −1.79612 −0.898058 0.439876i \(-0.855022\pi\)
−0.898058 + 0.439876i \(0.855022\pi\)
\(234\) 0 0
\(235\) −20.4255 −1.33241
\(236\) −1.15686 + 0.667915i −0.0753053 + 0.0434775i
\(237\) 0 0
\(238\) 3.79054 6.56541i 0.245704 0.425572i
\(239\) 0.343121i 0.0221946i 0.999938 + 0.0110973i \(0.00353246\pi\)
−0.999938 + 0.0110973i \(0.996468\pi\)
\(240\) 0 0
\(241\) 9.39860 + 5.42628i 0.605417 + 0.349538i 0.771170 0.636630i \(-0.219672\pi\)
−0.165753 + 0.986167i \(0.553005\pi\)
\(242\) 6.93583i 0.445852i
\(243\) 0 0
\(244\) −0.187787 0.325257i −0.0120218 0.0208224i
\(245\) 3.13825 1.81187i 0.200496 0.115756i
\(246\) 0 0
\(247\) 9.02976 + 4.33120i 0.574550 + 0.275588i
\(248\) −5.83236 −0.370356
\(249\) 0 0
\(250\) −5.67387 9.82744i −0.358847 0.621542i
\(251\) −2.26799 + 3.92828i −0.143154 + 0.247951i −0.928683 0.370875i \(-0.879058\pi\)
0.785528 + 0.618826i \(0.212391\pi\)
\(252\) 0 0
\(253\) 13.8129 + 7.97487i 0.868408 + 0.501376i
\(254\) 5.27252 + 3.04409i 0.330827 + 0.191003i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.1494 + 17.5792i 0.633101 + 1.09656i 0.986914 + 0.161247i \(0.0515515\pi\)
−0.353813 + 0.935316i \(0.615115\pi\)
\(258\) 0 0
\(259\) 1.71896 0.106811
\(260\) −11.7805 5.65061i −0.730595 0.350436i
\(261\) 0 0
\(262\) 3.50640 2.02442i 0.216626 0.125069i
\(263\) 9.81314 + 16.9969i 0.605104 + 1.04807i 0.992035 + 0.125962i \(0.0402019\pi\)
−0.386931 + 0.922109i \(0.626465\pi\)
\(264\) 0 0
\(265\) 0.264942i 0.0162753i
\(266\) 2.40547 + 1.38880i 0.147489 + 0.0851528i
\(267\) 0 0
\(268\) 14.3076i 0.873973i
\(269\) 4.52417 7.83610i 0.275844 0.477775i −0.694504 0.719489i \(-0.744376\pi\)
0.970348 + 0.241714i \(0.0777095\pi\)
\(270\) 0 0
\(271\) 19.6128 11.3234i 1.19139 0.687850i 0.232769 0.972532i \(-0.425221\pi\)
0.958622 + 0.284682i \(0.0918880\pi\)
\(272\) −7.58108 −0.459670
\(273\) 0 0
\(274\) 8.52235 0.514854
\(275\) −14.1967 + 8.19647i −0.856093 + 0.494266i
\(276\) 0 0
\(277\) −10.5587 + 18.2881i −0.634409 + 1.09883i 0.352231 + 0.935913i \(0.385423\pi\)
−0.986640 + 0.162915i \(0.947910\pi\)
\(278\) 19.2126i 1.15230i
\(279\) 0 0
\(280\) −3.13825 1.81187i −0.187546 0.108280i
\(281\) 19.3644i 1.15518i −0.816325 0.577592i \(-0.803992\pi\)
0.816325 0.577592i \(-0.196008\pi\)
\(282\) 0 0
\(283\) −2.78361 4.82136i −0.165469 0.286600i 0.771353 0.636407i \(-0.219580\pi\)
−0.936822 + 0.349808i \(0.886247\pi\)
\(284\) −11.0728 + 6.39291i −0.657052 + 0.379349i
\(285\) 0 0
\(286\) −3.14358 + 6.55379i −0.185884 + 0.387534i
\(287\) −11.6259 −0.686258
\(288\) 0 0
\(289\) −20.2364 35.0504i −1.19038 2.06179i
\(290\) 10.2716 17.7910i 0.603172 1.04472i
\(291\) 0 0
\(292\) 4.15753 + 2.40035i 0.243301 + 0.140470i
\(293\) 27.2323 + 15.7226i 1.59093 + 0.918523i 0.993148 + 0.116864i \(0.0372841\pi\)
0.597781 + 0.801659i \(0.296049\pi\)
\(294\) 0 0
\(295\) −2.42035 + 4.19217i −0.140918 + 0.244078i
\(296\) −0.859480 1.48866i −0.0499562 0.0865267i
\(297\) 0 0
\(298\) −0.153080 −0.00886770
\(299\) 16.1059 + 23.5441i 0.931426 + 1.36159i
\(300\) 0 0
\(301\) −4.56813 + 2.63741i −0.263303 + 0.152018i
\(302\) 5.88088 + 10.1860i 0.338407 + 0.586138i
\(303\) 0 0
\(304\) 2.77760i 0.159306i
\(305\) −1.17865 0.680492i −0.0674891 0.0389648i
\(306\) 0 0
\(307\) 13.6952i 0.781626i 0.920470 + 0.390813i \(0.127806\pi\)
−0.920470 + 0.390813i \(0.872194\pi\)
\(308\) −1.00799 + 1.74589i −0.0574356 + 0.0994813i
\(309\) 0 0
\(310\) −18.3034 + 10.5675i −1.03956 + 0.600193i
\(311\) 20.9665 1.18890 0.594451 0.804132i \(-0.297369\pi\)
0.594451 + 0.804132i \(0.297369\pi\)
\(312\) 0 0
\(313\) −12.2102 −0.690163 −0.345082 0.938573i \(-0.612149\pi\)
−0.345082 + 0.938573i \(0.612149\pi\)
\(314\) −20.3619 + 11.7559i −1.14909 + 0.663426i
\(315\) 0 0
\(316\) 5.06841 8.77875i 0.285121 0.493843i
\(317\) 12.5110i 0.702686i 0.936247 + 0.351343i \(0.114275\pi\)
−0.936247 + 0.351343i \(0.885725\pi\)
\(318\) 0 0
\(319\) −9.89759 5.71438i −0.554159 0.319944i
\(320\) 3.62374i 0.202573i
\(321\) 0 0
\(322\) 3.95583 + 6.85169i 0.220450 + 0.381830i
\(323\) 18.2361 10.5286i 1.01468 0.585827i
\(324\) 0 0
\(325\) −29.2331 + 2.23649i −1.62156 + 0.124058i
\(326\) −18.4831 −1.02368
\(327\) 0 0
\(328\) 5.81297 + 10.0684i 0.320968 + 0.555932i
\(329\) −2.81829 + 4.88142i −0.155377 + 0.269121i
\(330\) 0 0
\(331\) −19.0473 10.9970i −1.04693 0.604448i −0.125145 0.992138i \(-0.539940\pi\)
−0.921790 + 0.387690i \(0.873273\pi\)
\(332\) 1.70687 + 0.985464i 0.0936769 + 0.0540844i
\(333\) 0 0
\(334\) 6.66706 11.5477i 0.364805 0.631861i
\(335\) 25.9234 + 44.9007i 1.41635 + 2.45319i
\(336\) 0 0
\(337\) 7.58788 0.413338 0.206669 0.978411i \(-0.433738\pi\)
0.206669 + 0.978411i \(0.433738\pi\)
\(338\) −10.1385 + 8.13697i −0.551463 + 0.442593i
\(339\) 0 0
\(340\) −23.7913 + 13.7359i −1.29027 + 0.744936i
\(341\) 5.87896 + 10.1827i 0.318364 + 0.551422i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 4.56813 + 2.63741i 0.246297 + 0.142200i
\(345\) 0 0
\(346\) 16.8307i 0.904825i
\(347\) −3.75725 + 6.50774i −0.201700 + 0.349354i −0.949076 0.315047i \(-0.897980\pi\)
0.747377 + 0.664401i \(0.231313\pi\)
\(348\) 0 0
\(349\) −19.9831 + 11.5373i −1.06967 + 0.617575i −0.928092 0.372352i \(-0.878551\pi\)
−0.141580 + 0.989927i \(0.545218\pi\)
\(350\) −8.13150 −0.434647
\(351\) 0 0
\(352\) 2.01598 0.107452
\(353\) −30.2137 + 17.4439i −1.60811 + 0.928443i −0.618318 + 0.785928i \(0.712186\pi\)
−0.989793 + 0.142515i \(0.954481\pi\)
\(354\) 0 0
\(355\) −23.1662 + 40.1251i −1.22954 + 2.12962i
\(356\) 13.6545i 0.723689i
\(357\) 0 0
\(358\) −9.43642 5.44812i −0.498731 0.287942i
\(359\) 4.29129i 0.226486i 0.993567 + 0.113243i \(0.0361238\pi\)
−0.993567 + 0.113243i \(0.963876\pi\)
\(360\) 0 0
\(361\) −5.64247 9.77304i −0.296972 0.514371i
\(362\) −14.2289 + 8.21504i −0.747853 + 0.431773i
\(363\) 0 0
\(364\) −2.97588 + 2.03571i −0.155979 + 0.106700i
\(365\) 17.3965 0.910575
\(366\) 0 0
\(367\) −12.4286 21.5270i −0.648767 1.12370i −0.983418 0.181356i \(-0.941951\pi\)
0.334650 0.942342i \(-0.391382\pi\)
\(368\) 3.95583 6.85169i 0.206212 0.357169i
\(369\) 0 0
\(370\) −5.39453 3.11453i −0.280448 0.161917i
\(371\) 0.0633177 + 0.0365565i 0.00328729 + 0.00189792i
\(372\) 0 0
\(373\) −17.2705 + 29.9134i −0.894233 + 1.54886i −0.0594830 + 0.998229i \(0.518945\pi\)
−0.834750 + 0.550628i \(0.814388\pi\)
\(374\) 7.64165 + 13.2357i 0.395140 + 0.684403i
\(375\) 0 0
\(376\) 5.63658 0.290684
\(377\) −11.5406 16.8705i −0.594373 0.868876i
\(378\) 0 0
\(379\) 23.5599 13.6023i 1.21019 0.698704i 0.247391 0.968916i \(-0.420427\pi\)
0.962801 + 0.270211i \(0.0870936\pi\)
\(380\) −5.03265 8.71681i −0.258170 0.447163i
\(381\) 0 0
\(382\) 6.99477i 0.357883i
\(383\) −25.0615 14.4693i −1.28058 0.739344i −0.303627 0.952791i \(-0.598198\pi\)
−0.976955 + 0.213447i \(0.931531\pi\)
\(384\) 0 0
\(385\) 7.30539i 0.372317i
\(386\) −2.69959 + 4.67583i −0.137406 + 0.237993i
\(387\) 0 0
\(388\) −13.6356 + 7.87254i −0.692245 + 0.399668i
\(389\) 21.5418 1.09221 0.546106 0.837716i \(-0.316109\pi\)
0.546106 + 0.837716i \(0.316109\pi\)
\(390\) 0 0
\(391\) 59.9789 3.03326
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) −1.98149 + 3.43204i −0.0998259 + 0.172904i
\(395\) 36.7332i 1.84825i
\(396\) 0 0
\(397\) 2.96408 + 1.71131i 0.148763 + 0.0858883i 0.572534 0.819881i \(-0.305960\pi\)
−0.423771 + 0.905769i \(0.639294\pi\)
\(398\) 25.4039i 1.27338i
\(399\) 0 0
\(400\) 4.06575 + 7.04209i 0.203288 + 0.352104i
\(401\) 6.45616 3.72747i 0.322405 0.186141i −0.330059 0.943960i \(-0.607069\pi\)
0.652464 + 0.757819i \(0.273735\pi\)
\(402\) 0 0
\(403\) 1.60413 + 20.9676i 0.0799076 + 1.04447i
\(404\) −0.320161 −0.0159286
\(405\) 0 0
\(406\) −2.83454 4.90957i −0.140676 0.243658i
\(407\) −1.73269 + 3.00111i −0.0858864 + 0.148760i
\(408\) 0 0
\(409\) −5.65842 3.26689i −0.279791 0.161537i 0.353538 0.935420i \(-0.384979\pi\)
−0.633329 + 0.773883i \(0.718312\pi\)
\(410\) 36.4851 + 21.0647i 1.80187 + 1.04031i
\(411\) 0 0
\(412\) −0.0699850 + 0.121218i −0.00344791 + 0.00597196i
\(413\) 0.667915 + 1.15686i 0.0328659 + 0.0569255i
\(414\) 0 0
\(415\) 7.14213 0.350594
\(416\) 3.25092 + 1.55933i 0.159390 + 0.0764525i
\(417\) 0 0
\(418\) −4.84938 + 2.79979i −0.237191 + 0.136942i
\(419\) −8.61309 14.9183i −0.420777 0.728807i 0.575239 0.817986i \(-0.304909\pi\)
−0.996016 + 0.0891785i \(0.971576\pi\)
\(420\) 0 0
\(421\) 2.95781i 0.144155i 0.997399 + 0.0720774i \(0.0229629\pi\)
−0.997399 + 0.0720774i \(0.977037\pi\)
\(422\) 1.90990 + 1.10268i 0.0929726 + 0.0536777i
\(423\) 0 0
\(424\) 0.0731130i 0.00355068i
\(425\) −30.8228 + 53.3866i −1.49512 + 2.58963i
\(426\) 0 0
\(427\) −0.325257 + 0.187787i −0.0157403 + 0.00908765i
\(428\) 1.38088 0.0667474
\(429\) 0 0
\(430\) 19.1146 0.921787
\(431\) −17.3358 + 10.0088i −0.835037 + 0.482109i −0.855574 0.517680i \(-0.826796\pi\)
0.0205370 + 0.999789i \(0.493462\pi\)
\(432\) 0 0
\(433\) 16.9433 29.3466i 0.814241 1.41031i −0.0956311 0.995417i \(-0.530487\pi\)
0.909872 0.414890i \(-0.136180\pi\)
\(434\) 5.83236i 0.279962i
\(435\) 0 0
\(436\) −2.71622 1.56821i −0.130083 0.0751036i
\(437\) 21.9754i 1.05123i
\(438\) 0 0
\(439\) 13.6418 + 23.6283i 0.651089 + 1.12772i 0.982859 + 0.184359i \(0.0590209\pi\)
−0.331770 + 0.943360i \(0.607646\pi\)
\(440\) 6.32665 3.65269i 0.301611 0.174135i
\(441\) 0 0
\(442\) 2.08510 + 27.2543i 0.0991781 + 1.29636i
\(443\) −3.73740 −0.177569 −0.0887845 0.996051i \(-0.528298\pi\)
−0.0887845 + 0.996051i \(0.528298\pi\)
\(444\) 0 0
\(445\) 24.7402 + 42.8514i 1.17280 + 2.03135i
\(446\) 4.58265 7.93739i 0.216995 0.375846i
\(447\) 0 0
\(448\) 0.866025 + 0.500000i 0.0409159 + 0.0236228i
\(449\) −2.67990 1.54724i −0.126472 0.0730189i 0.435429 0.900223i \(-0.356597\pi\)
−0.561901 + 0.827204i \(0.689930\pi\)
\(450\) 0 0
\(451\) 11.7188 20.2976i 0.551818 0.955777i
\(452\) −6.23703 10.8029i −0.293365 0.508124i
\(453\) 0 0
\(454\) 9.97359 0.468084
\(455\) −5.65061 + 11.7805i −0.264905 + 0.552278i
\(456\) 0 0
\(457\) 17.4469 10.0730i 0.816130 0.471193i −0.0329500 0.999457i \(-0.510490\pi\)
0.849080 + 0.528264i \(0.177157\pi\)
\(458\) −0.652628 1.13039i −0.0304953 0.0528194i
\(459\) 0 0
\(460\) 28.6698i 1.33674i
\(461\) −25.0527 14.4642i −1.16682 0.673665i −0.213892 0.976857i \(-0.568614\pi\)
−0.952929 + 0.303192i \(0.901948\pi\)
\(462\) 0 0
\(463\) 27.2704i 1.26736i 0.773594 + 0.633681i \(0.218457\pi\)
−0.773594 + 0.633681i \(0.781543\pi\)
\(464\) −2.83454 + 4.90957i −0.131590 + 0.227921i
\(465\) 0 0
\(466\) 23.7434 13.7083i 1.09989 0.635023i
\(467\) 15.5605 0.720055 0.360028 0.932942i \(-0.382767\pi\)
0.360028 + 0.932942i \(0.382767\pi\)
\(468\) 0 0
\(469\) 14.3076 0.660661
\(470\) 17.6890 10.2128i 0.815933 0.471079i
\(471\) 0 0
\(472\) 0.667915 1.15686i 0.0307433 0.0532489i
\(473\) 10.6339i 0.488949i
\(474\) 0 0
\(475\) −19.5601 11.2930i −0.897479 0.518160i
\(476\) 7.58108i 0.347478i
\(477\) 0 0
\(478\) −0.171560 0.297151i −0.00784699 0.0135914i
\(479\) 32.3400 18.6715i 1.47765 0.853122i 0.477970 0.878376i \(-0.341373\pi\)
0.999681 + 0.0252536i \(0.00803931\pi\)
\(480\) 0 0
\(481\) −5.11542 + 3.49931i −0.233243 + 0.159555i
\(482\) −10.8526 −0.494321
\(483\) 0 0
\(484\) 3.46791 + 6.00660i 0.157632 + 0.273027i
\(485\) −28.5281 + 49.4120i −1.29539 + 2.24369i
\(486\) 0 0
\(487\) 23.6297 + 13.6426i 1.07076 + 0.618205i 0.928390 0.371608i \(-0.121194\pi\)
0.142373 + 0.989813i \(0.454527\pi\)
\(488\) 0.325257 + 0.187787i 0.0147237 + 0.00850072i
\(489\) 0 0
\(490\) −1.81187 + 3.13825i −0.0818520 + 0.141772i
\(491\) −10.3161 17.8680i −0.465559 0.806373i 0.533667 0.845695i \(-0.320814\pi\)
−0.999227 + 0.0393220i \(0.987480\pi\)
\(492\) 0 0
\(493\) −42.9778 −1.93562
\(494\) −9.98560 + 0.763951i −0.449273 + 0.0343718i
\(495\) 0 0
\(496\) 5.05098 2.91618i 0.226796 0.130940i
\(497\) 6.39291 + 11.0728i 0.286761 + 0.496685i
\(498\) 0 0
\(499\) 18.9558i 0.848580i −0.905526 0.424290i \(-0.860524\pi\)
0.905526 0.424290i \(-0.139476\pi\)
\(500\) 9.82744 + 5.67387i 0.439496 + 0.253743i
\(501\) 0 0
\(502\) 4.53598i 0.202451i
\(503\) −7.30193 + 12.6473i −0.325577 + 0.563916i −0.981629 0.190800i \(-0.938892\pi\)
0.656052 + 0.754716i \(0.272225\pi\)
\(504\) 0 0
\(505\) −1.00475 + 0.580091i −0.0447106 + 0.0258137i
\(506\) −15.9497 −0.709052
\(507\) 0 0
\(508\) −6.08818 −0.270119
\(509\) −26.0537 + 15.0421i −1.15481 + 0.666730i −0.950055 0.312083i \(-0.898973\pi\)
−0.204756 + 0.978813i \(0.565640\pi\)
\(510\) 0 0
\(511\) 2.40035 4.15753i 0.106185 0.183918i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −17.5792 10.1494i −0.775387 0.447670i
\(515\) 0.507215i 0.0223506i
\(516\) 0 0
\(517\) −5.68161 9.84085i −0.249877 0.432800i
\(518\) −1.48866 + 0.859480i −0.0654081 + 0.0377634i
\(519\) 0 0
\(520\) 13.0275 0.996674i 0.571294 0.0437070i
\(521\) 3.62407 0.158773 0.0793867 0.996844i \(-0.474704\pi\)
0.0793867 + 0.996844i \(0.474704\pi\)
\(522\) 0 0
\(523\) 13.0474 + 22.5988i 0.570523 + 0.988174i 0.996512 + 0.0834464i \(0.0265927\pi\)
−0.425989 + 0.904728i \(0.640074\pi\)
\(524\) −2.02442 + 3.50640i −0.0884374 + 0.153178i
\(525\) 0 0
\(526\) −16.9969 9.81314i −0.741098 0.427873i
\(527\) 38.2919 + 22.1078i 1.66802 + 0.963031i
\(528\) 0 0
\(529\) −19.7971 + 34.2896i −0.860745 + 1.49085i
\(530\) −0.132471 0.229447i −0.00575418 0.00996654i
\(531\) 0 0
\(532\) −2.77760 −0.120424
\(533\) 34.5974 23.6671i 1.49858 1.02514i
\(534\) 0 0
\(535\) 4.33355 2.50198i 0.187356 0.108170i
\(536\) −7.15378 12.3907i −0.308996 0.535197i
\(537\) 0 0
\(538\) 9.04835i 0.390102i
\(539\) 1.74589 + 1.00799i 0.0752008 + 0.0434172i
\(540\) 0 0
\(541\) 10.1512i 0.436436i −0.975900 0.218218i \(-0.929976\pi\)
0.975900 0.218218i \(-0.0700243\pi\)
\(542\) −11.3234 + 19.6128i −0.486383 + 0.842441i
\(543\) 0 0
\(544\) 6.56541 3.79054i 0.281490 0.162518i
\(545\) −11.3656 −0.486848
\(546\) 0 0
\(547\) 29.9605 1.28102 0.640509 0.767950i \(-0.278723\pi\)
0.640509 + 0.767950i \(0.278723\pi\)
\(548\) −7.38057 + 4.26117i −0.315282 + 0.182028i
\(549\) 0 0
\(550\) 8.19647 14.1967i 0.349499 0.605349i
\(551\) 15.7464i 0.670821i
\(552\) 0 0
\(553\) −8.77875 5.06841i −0.373310 0.215531i
\(554\) 21.1173i 0.897189i
\(555\) 0 0
\(556\) −9.60631 16.6386i −0.407398 0.705635i
\(557\) 3.62112 2.09066i 0.153432 0.0885839i −0.421318 0.906913i \(-0.638433\pi\)
0.574750 + 0.818329i \(0.305099\pi\)
\(558\) 0 0
\(559\) 8.22519 17.1480i 0.347889 0.725284i
\(560\) 3.62374 0.153131
\(561\) 0 0
\(562\) 9.68221 + 16.7701i 0.408419 + 0.707403i
\(563\) 13.4183 23.2412i 0.565514 0.979498i −0.431488 0.902119i \(-0.642011\pi\)
0.997002 0.0773798i \(-0.0246554\pi\)
\(564\) 0 0
\(565\) −39.1468 22.6014i −1.64692 0.950848i
\(566\) 4.82136 + 2.78361i 0.202657 + 0.117004i
\(567\) 0 0
\(568\) 6.39291 11.0728i 0.268240 0.464606i
\(569\) −7.77089 13.4596i −0.325773 0.564255i 0.655896 0.754851i \(-0.272291\pi\)
−0.981668 + 0.190597i \(0.938958\pi\)
\(570\) 0 0
\(571\) 47.3351 1.98091 0.990457 0.137825i \(-0.0440112\pi\)
0.990457 + 0.137825i \(0.0440112\pi\)
\(572\) −0.554475 7.24754i −0.0231838 0.303035i
\(573\) 0 0
\(574\) 10.0684 5.81297i 0.420245 0.242629i
\(575\) −32.1668 55.7145i −1.34145 2.32346i
\(576\) 0 0
\(577\) 1.85520i 0.0772330i 0.999254 + 0.0386165i \(0.0122951\pi\)
−0.999254 + 0.0386165i \(0.987705\pi\)
\(578\) 35.0504 + 20.2364i 1.45791 + 0.841723i
\(579\) 0 0
\(580\) 20.5433i 0.853014i
\(581\) 0.985464 1.70687i 0.0408839 0.0708131i
\(582\) 0 0
\(583\) −0.127647 + 0.0736971i −0.00528661 + 0.00305222i
\(584\) −4.80070 −0.198655
\(585\) 0 0
\(586\) −31.4452 −1.29899
\(587\) −3.73652 + 2.15728i −0.154223 + 0.0890405i −0.575125 0.818065i \(-0.695047\pi\)
0.420903 + 0.907106i \(0.361713\pi\)
\(588\) 0 0
\(589\) −8.09999 + 14.0296i −0.333754 + 0.578079i
\(590\) 4.84070i 0.199288i
\(591\) 0 0
\(592\) 1.48866 + 0.859480i 0.0611836 + 0.0353244i
\(593\) 13.8068i 0.566979i −0.958975 0.283490i \(-0.908508\pi\)
0.958975 0.283490i \(-0.0914921\pi\)
\(594\) 0 0
\(595\) 13.7359 + 23.7913i 0.563118 + 0.975350i
\(596\) 0.132571 0.0765401i 0.00543034 0.00313521i
\(597\) 0 0
\(598\) −25.7202 12.3369i −1.05178 0.504493i
\(599\) 19.0317 0.777612 0.388806 0.921320i \(-0.372888\pi\)
0.388806 + 0.921320i \(0.372888\pi\)
\(600\) 0 0
\(601\) 7.20400 + 12.4777i 0.293857 + 0.508975i 0.974718 0.223437i \(-0.0717277\pi\)
−0.680861 + 0.732412i \(0.738394\pi\)
\(602\) 2.63741 4.56813i 0.107493 0.186183i
\(603\) 0 0
\(604\) −10.1860 5.88088i −0.414462 0.239290i
\(605\) 21.7664 + 12.5668i 0.884929 + 0.510914i
\(606\) 0 0
\(607\) −19.1587 + 33.1839i −0.777629 + 1.34689i 0.155676 + 0.987808i \(0.450244\pi\)
−0.933305 + 0.359085i \(0.883089\pi\)
\(608\) 1.38880 + 2.40547i 0.0563233 + 0.0975548i
\(609\) 0 0
\(610\) 1.36098 0.0551046
\(611\) −1.55029 20.2638i −0.0627178 0.819784i
\(612\) 0 0
\(613\) −24.7425 + 14.2851i −0.999339 + 0.576968i −0.908053 0.418856i \(-0.862431\pi\)
−0.0912860 + 0.995825i \(0.529098\pi\)
\(614\) −6.84760 11.8604i −0.276346 0.478646i
\(615\) 0 0
\(616\) 2.01598i 0.0812261i
\(617\) −2.64638 1.52789i −0.106539 0.0615105i 0.445784 0.895141i \(-0.352925\pi\)
−0.552323 + 0.833630i \(0.686258\pi\)
\(618\) 0 0
\(619\) 40.2175i 1.61648i 0.588856 + 0.808238i \(0.299579\pi\)
−0.588856 + 0.808238i \(0.700421\pi\)
\(620\) 10.5675 18.3034i 0.424401 0.735083i
\(621\) 0 0
\(622\) −18.1575 + 10.4833i −0.728051 + 0.420341i
\(623\) 13.6545 0.547057
\(624\) 0 0
\(625\) 0.463794 0.0185518
\(626\) 10.5744 6.10512i 0.422637 0.244010i
\(627\) 0 0
\(628\) 11.7559 20.3619i 0.469113 0.812527i
\(629\) 13.0316i 0.519603i
\(630\) 0 0
\(631\) 13.7571 + 7.94266i 0.547661 + 0.316192i 0.748178 0.663498i \(-0.230929\pi\)
−0.200517 + 0.979690i \(0.564262\pi\)
\(632\) 10.1368i 0.403221i
\(633\) 0 0
\(634\) −6.25548 10.8348i −0.248437 0.430305i
\(635\) −19.1063 + 11.0310i −0.758208 + 0.437752i
\(636\) 0 0
\(637\) 2.03571 + 2.97588i 0.0806579 + 0.117909i
\(638\) 11.4288 0.452469
\(639\) 0 0
\(640\) −1.81187 3.13825i −0.0716205 0.124050i
\(641\) 5.52325 9.56655i 0.218155 0.377856i −0.736089 0.676885i \(-0.763329\pi\)
0.954244 + 0.299029i \(0.0966628\pi\)
\(642\) 0 0
\(643\) −1.24600 0.719378i −0.0491374 0.0283695i 0.475230 0.879862i \(-0.342365\pi\)
−0.524367 + 0.851492i \(0.675698\pi\)
\(644\) −6.85169 3.95583i −0.269995 0.155881i
\(645\) 0 0
\(646\) −10.5286 + 18.2361i −0.414242 + 0.717489i
\(647\) 10.6562 + 18.4571i 0.418940 + 0.725625i 0.995833 0.0911948i \(-0.0290686\pi\)
−0.576894 + 0.816819i \(0.695735\pi\)
\(648\) 0 0
\(649\) −2.69301 −0.105710
\(650\) 24.1984 16.5534i 0.949138 0.649278i
\(651\) 0 0
\(652\) 16.0068 9.24154i 0.626875 0.361927i
\(653\) 15.5822 + 26.9891i 0.609778 + 1.05617i 0.991277 + 0.131797i \(0.0420746\pi\)
−0.381499 + 0.924369i \(0.624592\pi\)
\(654\) 0 0
\(655\) 14.6720i 0.573281i
\(656\) −10.0684 5.81297i −0.393104 0.226958i
\(657\) 0 0
\(658\) 5.63658i 0.219737i
\(659\) −11.9888 + 20.7653i −0.467019 + 0.808901i −0.999290 0.0376733i \(-0.988005\pi\)
0.532271 + 0.846574i \(0.321339\pi\)
\(660\) 0 0
\(661\) −5.12358 + 2.95810i −0.199284 + 0.115057i −0.596322 0.802746i \(-0.703372\pi\)
0.397037 + 0.917802i \(0.370038\pi\)
\(662\) 21.9939 0.854819
\(663\) 0 0
\(664\) −1.97093 −0.0764869
\(665\) −8.71681 + 5.03265i −0.338023 + 0.195158i
\(666\) 0 0
\(667\) 22.4259 38.8428i 0.868335 1.50400i
\(668\) 13.3341i 0.515912i
\(669\) 0 0
\(670\) −44.9007 25.9234i −1.73467 1.00151i
\(671\) 0.757150i 0.0292294i
\(672\) 0 0
\(673\) −2.01309 3.48677i −0.0775987 0.134405i 0.824615 0.565695i \(-0.191392\pi\)
−0.902213 + 0.431290i \(0.858059\pi\)
\(674\) −6.57130 + 3.79394i −0.253117 + 0.146137i
\(675\) 0 0
\(676\) 4.71173 12.1161i 0.181221 0.466003i
\(677\) 27.7397 1.06612 0.533061 0.846077i \(-0.321042\pi\)
0.533061 + 0.846077i \(0.321042\pi\)
\(678\) 0 0
\(679\) 7.87254 + 13.6356i 0.302120 + 0.523288i
\(680\) 13.7359 23.7913i 0.526749 0.912356i
\(681\) 0 0
\(682\) −10.1827 5.87896i −0.389914 0.225117i
\(683\) −40.8116 23.5626i −1.56161 0.901597i −0.997094 0.0761765i \(-0.975729\pi\)
−0.564518 0.825421i \(-0.690938\pi\)
\(684\) 0 0
\(685\) −15.4414 + 26.7453i −0.589985 + 1.02188i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) −5.27482 −0.201101
\(689\) −0.262844 + 0.0201090i −0.0100136 + 0.000766092i
\(690\) 0 0
\(691\) 9.13743 5.27550i 0.347604 0.200689i −0.316025 0.948751i \(-0.602348\pi\)
0.663630 + 0.748061i \(0.269015\pi\)
\(692\) 8.41536 + 14.5758i 0.319904 + 0.554090i
\(693\) 0 0
\(694\) 7.51449i 0.285246i
\(695\) −60.2940 34.8108i −2.28708 1.32045i
\(696\) 0 0
\(697\) 88.1372i 3.33844i
\(698\) 11.5373 19.9831i 0.436691 0.756372i
\(699\) 0 0
\(700\) 7.04209 4.06575i 0.266166 0.153671i
\(701\) 43.5823 1.64608 0.823041 0.567982i \(-0.192276\pi\)
0.823041 + 0.567982i \(0.192276\pi\)
\(702\) 0 0
\(703\) −4.77458 −0.180077
\(704\) −1.74589 + 1.00799i −0.0658007 + 0.0379900i
\(705\) 0 0
\(706\) 17.4439 30.2137i 0.656508 1.13711i
\(707\) 0.320161i 0.0120409i
\(708\) 0 0
\(709\) 17.0192 + 9.82602i 0.639168 + 0.369024i 0.784294 0.620389i \(-0.213025\pi\)
−0.145126 + 0.989413i \(0.546359\pi\)
\(710\) 46.3325i 1.73883i
\(711\) 0 0
\(712\) −6.82727 11.8252i −0.255863 0.443167i
\(713\) −39.9616 + 23.0718i −1.49657 + 0.864047i
\(714\) 0 0
\(715\) −14.8717 21.7400i −0.556170 0.813029i
\(716\) 10.8962 0.407212
\(717\) 0 0
\(718\) −2.14565 3.71637i −0.0800749 0.138694i
\(719\) 24.2207 41.9514i 0.903279 1.56452i 0.0800679 0.996789i \(-0.474486\pi\)
0.823211 0.567736i \(-0.192180\pi\)
\(720\) 0 0
\(721\) 0.121218 + 0.0699850i 0.00451438 + 0.00260638i
\(722\) 9.77304 + 5.64247i 0.363715 + 0.209991i
\(723\) 0 0
\(724\) 8.21504 14.2289i 0.305310 0.528812i
\(725\) 23.0491 + 39.9222i 0.856021 + 1.48267i
\(726\) 0 0
\(727\) −29.0669 −1.07803 −0.539016 0.842295i \(-0.681204\pi\)
−0.539016 + 0.842295i \(0.681204\pi\)
\(728\) 1.55933 3.25092i 0.0577927 0.120487i
\(729\) 0 0
\(730\) −15.0658 + 8.69825i −0.557611 + 0.321937i
\(731\) −19.9944 34.6313i −0.739520 1.28089i
\(732\) 0 0
\(733\) 5.40128i 0.199501i 0.995012 + 0.0997505i \(0.0318045\pi\)
−0.995012 + 0.0997505i \(0.968196\pi\)
\(734\) 21.5270 + 12.4286i 0.794575 + 0.458748i
\(735\) 0 0
\(736\) 7.91165i 0.291627i
\(737\) −14.4219 + 24.9794i −0.531236 + 0.920128i
\(738\) 0 0
\(739\) 26.0102 15.0170i 0.956800 0.552409i 0.0616132 0.998100i \(-0.480375\pi\)
0.895187 + 0.445691i \(0.147042\pi\)
\(740\) 6.22906 0.228985
\(741\) 0 0
\(742\) −0.0731130 −0.00268406
\(743\) −20.2184 + 11.6731i −0.741742 + 0.428245i −0.822702 0.568473i \(-0.807535\pi\)
0.0809605 + 0.996717i \(0.474201\pi\)
\(744\) 0 0
\(745\) 0.277362 0.480405i 0.0101617 0.0176007i
\(746\) 34.5410i 1.26464i
\(747\) 0 0
\(748\) −13.2357 7.64165i −0.483946 0.279406i
\(749\) 1.38088i 0.0504563i
\(750\) 0 0
\(751\) −17.0773 29.5788i −0.623160 1.07934i −0.988894 0.148625i \(-0.952515\pi\)
0.365734 0.930719i \(-0.380818\pi\)
\(752\) −4.88142 + 2.81829i −0.178007 + 0.102772i
\(753\) 0 0
\(754\) 18.4297 + 8.83998i 0.671172 + 0.321933i
\(755\) −42.6216 −1.55116
\(756\) 0 0
\(757\) 9.63731 + 16.6923i 0.350274 + 0.606693i 0.986297 0.164977i \(-0.0527551\pi\)
−0.636023 + 0.771670i \(0.719422\pi\)
\(758\) −13.6023 + 23.5599i −0.494059 + 0.855735i
\(759\) 0 0
\(760\) 8.71681 + 5.03265i 0.316192 + 0.182553i
\(761\) 19.3565 + 11.1755i 0.701673 + 0.405111i 0.807970 0.589223i \(-0.200566\pi\)
−0.106297 + 0.994334i \(0.533900\pi\)
\(762\) 0 0
\(763\) −1.56821 + 2.71622i −0.0567730 + 0.0983338i
\(764\) 3.49738 + 6.05765i 0.126531 + 0.219158i
\(765\) 0 0
\(766\) 28.9385 1.04559
\(767\) −4.34268 2.08300i −0.156805 0.0752128i
\(768\) 0 0
\(769\) 35.4214 20.4505i 1.27733 0.737466i 0.300972 0.953633i \(-0.402689\pi\)
0.976356 + 0.216168i \(0.0693557\pi\)
\(770\) −3.65269 6.32665i −0.131634 0.227997i
\(771\) 0 0
\(772\) 5.39918i 0.194321i
\(773\) 12.5621 + 7.25272i 0.451827 + 0.260862i 0.708601 0.705609i \(-0.249327\pi\)
−0.256775 + 0.966471i \(0.582660\pi\)
\(774\) 0 0
\(775\) 47.4259i 1.70359i
\(776\) 7.87254 13.6356i 0.282608 0.489491i
\(777\) 0 0
\(778\) −18.6557 + 10.7709i −0.668841 + 0.386156i
\(779\) 32.2922 1.15699
\(780\) 0 0
\(781\) −25.7759 −0.922335
\(782\) −51.9432 + 29.9894i −1.85749 + 1.07242i