Properties

Label 1638.2.bj.h.127.4
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 18 x^{13} + 143 x^{12} - 148 x^{11} + 172 x^{10} + 1612 x^{9} + \cdots + 97344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.4
Root \(-2.02798 + 2.02798i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.h.1135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +2.19147i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +2.19147i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-1.09573 - 1.89787i) q^{10} +(-3.54195 + 2.04495i) q^{11} +(3.53557 - 0.706919i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.85204 - 4.93987i) q^{17} +(6.69612 + 3.86601i) q^{19} +(1.89787 + 1.09573i) q^{20} +(2.04495 - 3.54195i) q^{22} +(-1.23791 - 2.14412i) q^{23} +0.197462 q^{25} +(-2.70844 + 2.38000i) q^{26} +(0.866025 - 0.500000i) q^{28} +(4.90888 + 8.50243i) q^{29} -7.19507i q^{31} +(0.866025 + 0.500000i) q^{32} +5.70407i q^{34} +(-1.09573 + 1.89787i) q^{35} +(-8.79425 + 5.07736i) q^{37} -7.73201 q^{38} -2.19147 q^{40} +(-3.14093 + 1.81341i) q^{41} +(-1.37769 + 2.38624i) q^{43} +4.08989i q^{44} +(2.14412 + 1.23791i) q^{46} +7.70008i q^{47} +(0.500000 + 0.866025i) q^{49} +(-0.171007 + 0.0987308i) q^{50} +(1.15558 - 3.41535i) q^{52} +6.31111 q^{53} +(-4.48144 - 7.76207i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(-8.50243 - 4.90888i) q^{58} +(4.20781 + 2.42938i) q^{59} +(5.63434 - 9.75896i) q^{61} +(3.59754 + 6.23112i) q^{62} -1.00000 q^{64} +(1.54919 + 7.74810i) q^{65} +(-5.49094 + 3.17020i) q^{67} +(-2.85204 - 4.93987i) q^{68} -2.19147i q^{70} +(-7.21341 - 4.16466i) q^{71} +7.37805i q^{73} +(5.07736 - 8.79425i) q^{74} +(6.69612 - 3.86601i) q^{76} -4.08989 q^{77} +3.45834 q^{79} +(1.89787 - 1.09573i) q^{80} +(1.81341 - 3.14093i) q^{82} -0.332783i q^{83} +(10.8256 + 6.25015i) q^{85} -2.75539i q^{86} +(-2.04495 - 3.54195i) q^{88} +(-11.7151 + 6.76374i) q^{89} +(3.41535 + 1.15558i) q^{91} -2.47582 q^{92} +(-3.85004 - 6.66847i) q^{94} +(-8.47223 + 14.6743i) q^{95} +(10.0600 + 5.80816i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} + 2 q^{10} - 12 q^{11} + 10 q^{13} - 16 q^{14} - 8 q^{16} - 6 q^{17} - 4 q^{22} - 12 q^{23} - 20 q^{25} - 2 q^{26} + 16 q^{29} + 2 q^{35} - 6 q^{37} + 4 q^{40} + 12 q^{41} - 6 q^{43} + 6 q^{46} + 8 q^{49} - 24 q^{50} - 4 q^{52} - 40 q^{53} + 20 q^{55} - 8 q^{56} + 6 q^{58} + 6 q^{59} - 2 q^{61} - 14 q^{62} - 16 q^{64} - 52 q^{65} - 30 q^{67} + 6 q^{68} + 12 q^{71} + 24 q^{74} + 8 q^{77} - 16 q^{79} + 2 q^{82} + 6 q^{85} + 4 q^{88} + 30 q^{89} + 4 q^{91} - 24 q^{92} - 8 q^{94} - 40 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.19147i 0.980055i 0.871707 + 0.490027i \(0.163013\pi\)
−0.871707 + 0.490027i \(0.836987\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.09573 1.89787i −0.346502 0.600159i
\(11\) −3.54195 + 2.04495i −1.06794 + 0.616574i −0.927617 0.373532i \(-0.878147\pi\)
−0.140321 + 0.990106i \(0.544813\pi\)
\(12\) 0 0
\(13\) 3.53557 0.706919i 0.980591 0.196064i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.85204 4.93987i 0.691720 1.19809i −0.279553 0.960130i \(-0.590186\pi\)
0.971274 0.237965i \(-0.0764803\pi\)
\(18\) 0 0
\(19\) 6.69612 + 3.86601i 1.53620 + 0.886923i 0.999057 + 0.0434286i \(0.0138281\pi\)
0.537139 + 0.843494i \(0.319505\pi\)
\(20\) 1.89787 + 1.09573i 0.424376 + 0.245014i
\(21\) 0 0
\(22\) 2.04495 3.54195i 0.435984 0.755146i
\(23\) −1.23791 2.14412i −0.258122 0.447080i 0.707617 0.706596i \(-0.249770\pi\)
−0.965739 + 0.259516i \(0.916437\pi\)
\(24\) 0 0
\(25\) 0.197462 0.0394923
\(26\) −2.70844 + 2.38000i −0.531168 + 0.466755i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) 4.90888 + 8.50243i 0.911556 + 1.57886i 0.811866 + 0.583844i \(0.198452\pi\)
0.0996903 + 0.995019i \(0.468215\pi\)
\(30\) 0 0
\(31\) 7.19507i 1.29227i −0.763222 0.646137i \(-0.776384\pi\)
0.763222 0.646137i \(-0.223616\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.70407i 0.978240i
\(35\) −1.09573 + 1.89787i −0.185213 + 0.320798i
\(36\) 0 0
\(37\) −8.79425 + 5.07736i −1.44577 + 0.834713i −0.998225 0.0595505i \(-0.981033\pi\)
−0.447540 + 0.894264i \(0.647700\pi\)
\(38\) −7.73201 −1.25430
\(39\) 0 0
\(40\) −2.19147 −0.346502
\(41\) −3.14093 + 1.81341i −0.490530 + 0.283208i −0.724794 0.688965i \(-0.758065\pi\)
0.234264 + 0.972173i \(0.424732\pi\)
\(42\) 0 0
\(43\) −1.37769 + 2.38624i −0.210096 + 0.363897i −0.951744 0.306892i \(-0.900711\pi\)
0.741648 + 0.670789i \(0.234044\pi\)
\(44\) 4.08989i 0.616574i
\(45\) 0 0
\(46\) 2.14412 + 1.23791i 0.316133 + 0.182520i
\(47\) 7.70008i 1.12317i 0.827418 + 0.561586i \(0.189809\pi\)
−0.827418 + 0.561586i \(0.810191\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −0.171007 + 0.0987308i −0.0241840 + 0.0139626i
\(51\) 0 0
\(52\) 1.15558 3.41535i 0.160250 0.473624i
\(53\) 6.31111 0.866898 0.433449 0.901178i \(-0.357296\pi\)
0.433449 + 0.901178i \(0.357296\pi\)
\(54\) 0 0
\(55\) −4.48144 7.76207i −0.604277 1.04664i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) −8.50243 4.90888i −1.11642 0.644568i
\(59\) 4.20781 + 2.42938i 0.547810 + 0.316278i 0.748238 0.663430i \(-0.230900\pi\)
−0.200428 + 0.979708i \(0.564233\pi\)
\(60\) 0 0
\(61\) 5.63434 9.75896i 0.721403 1.24951i −0.239035 0.971011i \(-0.576831\pi\)
0.960438 0.278496i \(-0.0898357\pi\)
\(62\) 3.59754 + 6.23112i 0.456888 + 0.791353i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.54919 + 7.74810i 0.192153 + 0.961033i
\(66\) 0 0
\(67\) −5.49094 + 3.17020i −0.670825 + 0.387301i −0.796389 0.604784i \(-0.793259\pi\)
0.125564 + 0.992086i \(0.459926\pi\)
\(68\) −2.85204 4.93987i −0.345860 0.599047i
\(69\) 0 0
\(70\) 2.19147i 0.261931i
\(71\) −7.21341 4.16466i −0.856074 0.494255i 0.00662155 0.999978i \(-0.497892\pi\)
−0.862696 + 0.505723i \(0.831226\pi\)
\(72\) 0 0
\(73\) 7.37805i 0.863536i 0.901985 + 0.431768i \(0.142110\pi\)
−0.901985 + 0.431768i \(0.857890\pi\)
\(74\) 5.07736 8.79425i 0.590231 1.02231i
\(75\) 0 0
\(76\) 6.69612 3.86601i 0.768098 0.443461i
\(77\) −4.08989 −0.466086
\(78\) 0 0
\(79\) 3.45834 0.389094 0.194547 0.980893i \(-0.437676\pi\)
0.194547 + 0.980893i \(0.437676\pi\)
\(80\) 1.89787 1.09573i 0.212188 0.122507i
\(81\) 0 0
\(82\) 1.81341 3.14093i 0.200258 0.346857i
\(83\) 0.332783i 0.0365277i −0.999833 0.0182638i \(-0.994186\pi\)
0.999833 0.0182638i \(-0.00581389\pi\)
\(84\) 0 0
\(85\) 10.8256 + 6.25015i 1.17420 + 0.677924i
\(86\) 2.75539i 0.297121i
\(87\) 0 0
\(88\) −2.04495 3.54195i −0.217992 0.377573i
\(89\) −11.7151 + 6.76374i −1.24180 + 0.716956i −0.969461 0.245245i \(-0.921132\pi\)
−0.272342 + 0.962200i \(0.587798\pi\)
\(90\) 0 0
\(91\) 3.41535 + 1.15558i 0.358026 + 0.121137i
\(92\) −2.47582 −0.258122
\(93\) 0 0
\(94\) −3.85004 6.66847i −0.397101 0.687800i
\(95\) −8.47223 + 14.6743i −0.869233 + 1.50556i
\(96\) 0 0
\(97\) 10.0600 + 5.80816i 1.02144 + 0.589729i 0.914521 0.404539i \(-0.132568\pi\)
0.106920 + 0.994268i \(0.465901\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) 0.0987308 0.171007i 0.00987308 0.0171007i
\(101\) 1.12692 + 1.95189i 0.112133 + 0.194220i 0.916630 0.399737i \(-0.130898\pi\)
−0.804497 + 0.593957i \(0.797565\pi\)
\(102\) 0 0
\(103\) −16.0325 −1.57973 −0.789867 0.613278i \(-0.789850\pi\)
−0.789867 + 0.613278i \(0.789850\pi\)
\(104\) 0.706919 + 3.53557i 0.0693191 + 0.346691i
\(105\) 0 0
\(106\) −5.46559 + 3.15556i −0.530865 + 0.306495i
\(107\) 4.30793 + 7.46156i 0.416464 + 0.721336i 0.995581 0.0939082i \(-0.0299360\pi\)
−0.579117 + 0.815244i \(0.696603\pi\)
\(108\) 0 0
\(109\) 10.0318i 0.960870i 0.877030 + 0.480435i \(0.159521\pi\)
−0.877030 + 0.480435i \(0.840479\pi\)
\(110\) 7.76207 + 4.48144i 0.740085 + 0.427288i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 9.27760 16.0693i 0.872763 1.51167i 0.0136363 0.999907i \(-0.495659\pi\)
0.859127 0.511763i \(-0.171007\pi\)
\(114\) 0 0
\(115\) 4.69878 2.71284i 0.438163 0.252974i
\(116\) 9.81776 0.911556
\(117\) 0 0
\(118\) −4.85876 −0.447285
\(119\) 4.93987 2.85204i 0.452837 0.261446i
\(120\) 0 0
\(121\) 2.86360 4.95991i 0.260328 0.450901i
\(122\) 11.2687i 1.02022i
\(123\) 0 0
\(124\) −6.23112 3.59754i −0.559571 0.323068i
\(125\) 11.3901i 1.01876i
\(126\) 0 0
\(127\) −0.132439 0.229390i −0.0117520 0.0203551i 0.860090 0.510143i \(-0.170408\pi\)
−0.871842 + 0.489788i \(0.837074\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −5.21569 5.93545i −0.457446 0.520574i
\(131\) 5.10237 0.445796 0.222898 0.974842i \(-0.428448\pi\)
0.222898 + 0.974842i \(0.428448\pi\)
\(132\) 0 0
\(133\) 3.86601 + 6.69612i 0.335225 + 0.580627i
\(134\) 3.17020 5.49094i 0.273863 0.474345i
\(135\) 0 0
\(136\) 4.93987 + 2.85204i 0.423591 + 0.244560i
\(137\) −18.8812 10.9011i −1.61313 0.931342i −0.988639 0.150312i \(-0.951972\pi\)
−0.624493 0.781030i \(-0.714694\pi\)
\(138\) 0 0
\(139\) −8.22455 + 14.2453i −0.697597 + 1.20827i 0.271700 + 0.962382i \(0.412414\pi\)
−0.969297 + 0.245892i \(0.920919\pi\)
\(140\) 1.09573 + 1.89787i 0.0926065 + 0.160399i
\(141\) 0 0
\(142\) 8.32933 0.698982
\(143\) −11.0772 + 9.73392i −0.926322 + 0.813991i
\(144\) 0 0
\(145\) −18.6328 + 10.7577i −1.54737 + 0.893375i
\(146\) −3.68903 6.38958i −0.305306 0.528806i
\(147\) 0 0
\(148\) 10.1547i 0.834713i
\(149\) 12.8023 + 7.39139i 1.04880 + 0.605526i 0.922314 0.386442i \(-0.126296\pi\)
0.126489 + 0.991968i \(0.459629\pi\)
\(150\) 0 0
\(151\) 18.9896i 1.54535i 0.634803 + 0.772674i \(0.281081\pi\)
−0.634803 + 0.772674i \(0.718919\pi\)
\(152\) −3.86601 + 6.69612i −0.313575 + 0.543127i
\(153\) 0 0
\(154\) 3.54195 2.04495i 0.285418 0.164786i
\(155\) 15.7678 1.26650
\(156\) 0 0
\(157\) −13.5474 −1.08120 −0.540601 0.841279i \(-0.681803\pi\)
−0.540601 + 0.841279i \(0.681803\pi\)
\(158\) −2.99501 + 1.72917i −0.238270 + 0.137565i
\(159\) 0 0
\(160\) −1.09573 + 1.89787i −0.0866254 + 0.150040i
\(161\) 2.47582i 0.195122i
\(162\) 0 0
\(163\) −3.86502 2.23147i −0.302732 0.174782i 0.340938 0.940086i \(-0.389256\pi\)
−0.643670 + 0.765304i \(0.722589\pi\)
\(164\) 3.62683i 0.283208i
\(165\) 0 0
\(166\) 0.166392 + 0.288199i 0.0129145 + 0.0223685i
\(167\) 2.86448 1.65381i 0.221660 0.127976i −0.385059 0.922892i \(-0.625819\pi\)
0.606719 + 0.794917i \(0.292485\pi\)
\(168\) 0 0
\(169\) 12.0005 4.99872i 0.923118 0.384517i
\(170\) −12.5003 −0.958729
\(171\) 0 0
\(172\) 1.37769 + 2.38624i 0.105048 + 0.181949i
\(173\) −5.06107 + 8.76603i −0.384786 + 0.666469i −0.991740 0.128268i \(-0.959058\pi\)
0.606953 + 0.794737i \(0.292391\pi\)
\(174\) 0 0
\(175\) 0.171007 + 0.0987308i 0.0129269 + 0.00746335i
\(176\) 3.54195 + 2.04495i 0.266984 + 0.154144i
\(177\) 0 0
\(178\) 6.76374 11.7151i 0.506964 0.878088i
\(179\) −4.62579 8.01210i −0.345748 0.598853i 0.639742 0.768590i \(-0.279041\pi\)
−0.985489 + 0.169737i \(0.945708\pi\)
\(180\) 0 0
\(181\) 23.2645 1.72923 0.864617 0.502431i \(-0.167561\pi\)
0.864617 + 0.502431i \(0.167561\pi\)
\(182\) −3.53557 + 0.706919i −0.262074 + 0.0524003i
\(183\) 0 0
\(184\) 2.14412 1.23791i 0.158067 0.0912598i
\(185\) −11.1269 19.2723i −0.818065 1.41693i
\(186\) 0 0
\(187\) 23.3290i 1.70599i
\(188\) 6.66847 + 3.85004i 0.486348 + 0.280793i
\(189\) 0 0
\(190\) 16.9445i 1.22928i
\(191\) −4.45096 + 7.70929i −0.322060 + 0.557825i −0.980913 0.194447i \(-0.937709\pi\)
0.658853 + 0.752272i \(0.271042\pi\)
\(192\) 0 0
\(193\) 7.69754 4.44417i 0.554081 0.319899i −0.196685 0.980467i \(-0.563018\pi\)
0.750766 + 0.660568i \(0.229684\pi\)
\(194\) −11.6163 −0.834003
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 20.2586 11.6963i 1.44336 0.833326i 0.445291 0.895386i \(-0.353100\pi\)
0.998072 + 0.0620596i \(0.0197669\pi\)
\(198\) 0 0
\(199\) −1.96804 + 3.40875i −0.139511 + 0.241640i −0.927312 0.374290i \(-0.877886\pi\)
0.787801 + 0.615930i \(0.211220\pi\)
\(200\) 0.197462i 0.0139626i
\(201\) 0 0
\(202\) −1.95189 1.12692i −0.137334 0.0792900i
\(203\) 9.81776i 0.689072i
\(204\) 0 0
\(205\) −3.97404 6.88324i −0.277559 0.480747i
\(206\) 13.8846 8.01627i 0.967385 0.558520i
\(207\) 0 0
\(208\) −2.38000 2.70844i −0.165023 0.187796i
\(209\) −31.6231 −2.18741
\(210\) 0 0
\(211\) −6.40104 11.0869i −0.440666 0.763256i 0.557073 0.830464i \(-0.311924\pi\)
−0.997739 + 0.0672076i \(0.978591\pi\)
\(212\) 3.15556 5.46559i 0.216725 0.375378i
\(213\) 0 0
\(214\) −7.46156 4.30793i −0.510062 0.294484i
\(215\) −5.22936 3.01917i −0.356639 0.205906i
\(216\) 0 0
\(217\) 3.59754 6.23112i 0.244217 0.422996i
\(218\) −5.01589 8.68777i −0.339719 0.588410i
\(219\) 0 0
\(220\) −8.96287 −0.604277
\(221\) 6.59149 19.4814i 0.443392 1.31046i
\(222\) 0 0
\(223\) 16.3236 9.42444i 1.09311 0.631107i 0.158707 0.987326i \(-0.449267\pi\)
0.934403 + 0.356218i \(0.115934\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 18.5552i 1.23427i
\(227\) 1.14246 + 0.659599i 0.0758276 + 0.0437791i 0.537434 0.843306i \(-0.319394\pi\)
−0.461607 + 0.887085i \(0.652727\pi\)
\(228\) 0 0
\(229\) 4.34109i 0.286867i −0.989660 0.143434i \(-0.954186\pi\)
0.989660 0.143434i \(-0.0458143\pi\)
\(230\) −2.71284 + 4.69878i −0.178879 + 0.309828i
\(231\) 0 0
\(232\) −8.50243 + 4.90888i −0.558212 + 0.322284i
\(233\) 5.76422 0.377627 0.188813 0.982013i \(-0.439536\pi\)
0.188813 + 0.982013i \(0.439536\pi\)
\(234\) 0 0
\(235\) −16.8745 −1.10077
\(236\) 4.20781 2.42938i 0.273905 0.158139i
\(237\) 0 0
\(238\) −2.85204 + 4.93987i −0.184870 + 0.320204i
\(239\) 13.0951i 0.847049i −0.905885 0.423525i \(-0.860793\pi\)
0.905885 0.423525i \(-0.139207\pi\)
\(240\) 0 0
\(241\) −0.389769 0.225033i −0.0251072 0.0144957i 0.487394 0.873182i \(-0.337948\pi\)
−0.512501 + 0.858687i \(0.671281\pi\)
\(242\) 5.72721i 0.368159i
\(243\) 0 0
\(244\) −5.63434 9.75896i −0.360701 0.624753i
\(245\) −1.89787 + 1.09573i −0.121250 + 0.0700039i
\(246\) 0 0
\(247\) 26.4076 + 8.93493i 1.68027 + 0.568516i
\(248\) 7.19507 0.456888
\(249\) 0 0
\(250\) −5.69504 9.86410i −0.360186 0.623860i
\(251\) −9.35111 + 16.1966i −0.590237 + 1.02232i 0.403963 + 0.914775i \(0.367632\pi\)
−0.994200 + 0.107545i \(0.965701\pi\)
\(252\) 0 0
\(253\) 8.76922 + 5.06291i 0.551316 + 0.318303i
\(254\) 0.229390 + 0.132439i 0.0143932 + 0.00830994i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −9.88929 17.1287i −0.616877 1.06846i −0.990052 0.140701i \(-0.955064\pi\)
0.373175 0.927761i \(-0.378269\pi\)
\(258\) 0 0
\(259\) −10.1547 −0.630984
\(260\) 7.48464 + 2.53241i 0.464178 + 0.157053i
\(261\) 0 0
\(262\) −4.41878 + 2.55119i −0.272993 + 0.157613i
\(263\) 11.7723 + 20.3903i 0.725914 + 1.25732i 0.958597 + 0.284767i \(0.0919162\pi\)
−0.232683 + 0.972553i \(0.574750\pi\)
\(264\) 0 0
\(265\) 13.8306i 0.849608i
\(266\) −6.69612 3.86601i −0.410565 0.237040i
\(267\) 0 0
\(268\) 6.34039i 0.387301i
\(269\) 11.4216 19.7827i 0.696384 1.20617i −0.273327 0.961921i \(-0.588124\pi\)
0.969712 0.244252i \(-0.0785424\pi\)
\(270\) 0 0
\(271\) −11.2562 + 6.49877i −0.683766 + 0.394772i −0.801272 0.598300i \(-0.795843\pi\)
0.117507 + 0.993072i \(0.462510\pi\)
\(272\) −5.70407 −0.345860
\(273\) 0 0
\(274\) 21.8022 1.31712
\(275\) −0.699399 + 0.403798i −0.0421753 + 0.0243499i
\(276\) 0 0
\(277\) −13.4753 + 23.3399i −0.809652 + 1.40236i 0.103453 + 0.994634i \(0.467011\pi\)
−0.913105 + 0.407724i \(0.866323\pi\)
\(278\) 16.4491i 0.986551i
\(279\) 0 0
\(280\) −1.89787 1.09573i −0.113419 0.0654827i
\(281\) 0.0773961i 0.00461706i −0.999997 0.00230853i \(-0.999265\pi\)
0.999997 0.00230853i \(-0.000734829\pi\)
\(282\) 0 0
\(283\) 11.1534 + 19.3183i 0.663002 + 1.14835i 0.979823 + 0.199867i \(0.0640511\pi\)
−0.316821 + 0.948485i \(0.602616\pi\)
\(284\) −7.21341 + 4.16466i −0.428037 + 0.247127i
\(285\) 0 0
\(286\) 4.72618 13.9684i 0.279465 0.825970i
\(287\) −3.62683 −0.214085
\(288\) 0 0
\(289\) −7.76822 13.4550i −0.456954 0.791468i
\(290\) 10.7577 18.6328i 0.631712 1.09416i
\(291\) 0 0
\(292\) 6.38958 + 3.68903i 0.373922 + 0.215884i
\(293\) −5.16126 2.97986i −0.301524 0.174085i 0.341603 0.939844i \(-0.389030\pi\)
−0.643127 + 0.765759i \(0.722363\pi\)
\(294\) 0 0
\(295\) −5.32391 + 9.22128i −0.309970 + 0.536884i
\(296\) −5.07736 8.79425i −0.295116 0.511155i
\(297\) 0 0
\(298\) −14.7828 −0.856344
\(299\) −5.89243 6.70559i −0.340768 0.387794i
\(300\) 0 0
\(301\) −2.38624 + 1.37769i −0.137540 + 0.0794089i
\(302\) −9.49478 16.4454i −0.546363 0.946329i
\(303\) 0 0
\(304\) 7.73201i 0.443461i
\(305\) 21.3865 + 12.3475i 1.22459 + 0.707015i
\(306\) 0 0
\(307\) 31.1089i 1.77548i −0.460349 0.887738i \(-0.652276\pi\)
0.460349 0.887738i \(-0.347724\pi\)
\(308\) −2.04495 + 3.54195i −0.116522 + 0.201821i
\(309\) 0 0
\(310\) −13.6553 + 7.88389i −0.775569 + 0.447775i
\(311\) −3.48435 −0.197579 −0.0987896 0.995108i \(-0.531497\pi\)
−0.0987896 + 0.995108i \(0.531497\pi\)
\(312\) 0 0
\(313\) 10.2750 0.580779 0.290389 0.956909i \(-0.406215\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(314\) 11.7324 6.77371i 0.662098 0.382262i
\(315\) 0 0
\(316\) 1.72917 2.99501i 0.0972734 0.168483i
\(317\) 26.5282i 1.48997i −0.667080 0.744986i \(-0.732456\pi\)
0.667080 0.744986i \(-0.267544\pi\)
\(318\) 0 0
\(319\) −34.7740 20.0768i −1.94697 1.12408i
\(320\) 2.19147i 0.122507i
\(321\) 0 0
\(322\) 1.23791 + 2.14412i 0.0689860 + 0.119487i
\(323\) 38.1951 22.0520i 2.12523 1.22700i
\(324\) 0 0
\(325\) 0.698140 0.139589i 0.0387258 0.00774302i
\(326\) 4.46294 0.247180
\(327\) 0 0
\(328\) −1.81341 3.14093i −0.100129 0.173429i
\(329\) −3.85004 + 6.66847i −0.212260 + 0.367645i
\(330\) 0 0
\(331\) −24.8329 14.3373i −1.36494 0.788048i −0.374663 0.927161i \(-0.622242\pi\)
−0.990277 + 0.139113i \(0.955575\pi\)
\(332\) −0.288199 0.166392i −0.0158170 0.00913192i
\(333\) 0 0
\(334\) −1.65381 + 2.86448i −0.0904924 + 0.156737i
\(335\) −6.94739 12.0332i −0.379576 0.657445i
\(336\) 0 0
\(337\) 4.82923 0.263065 0.131532 0.991312i \(-0.458010\pi\)
0.131532 + 0.991312i \(0.458010\pi\)
\(338\) −7.89340 + 10.3293i −0.429345 + 0.561839i
\(339\) 0 0
\(340\) 10.8256 6.25015i 0.587099 0.338962i
\(341\) 14.7135 + 25.4846i 0.796783 + 1.38007i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −2.38624 1.37769i −0.128657 0.0742803i
\(345\) 0 0
\(346\) 10.1221i 0.544170i
\(347\) 15.2594 26.4300i 0.819167 1.41884i −0.0871296 0.996197i \(-0.527769\pi\)
0.906297 0.422642i \(-0.138897\pi\)
\(348\) 0 0
\(349\) −4.60570 + 2.65910i −0.246537 + 0.142338i −0.618178 0.786038i \(-0.712129\pi\)
0.371640 + 0.928377i \(0.378795\pi\)
\(350\) −0.197462 −0.0105548
\(351\) 0 0
\(352\) −4.08989 −0.217992
\(353\) 24.4457 14.1137i 1.30111 0.751199i 0.320519 0.947242i \(-0.396143\pi\)
0.980595 + 0.196043i \(0.0628094\pi\)
\(354\) 0 0
\(355\) 9.12673 15.8080i 0.484397 0.839000i
\(356\) 13.5275i 0.716956i
\(357\) 0 0
\(358\) 8.01210 + 4.62579i 0.423453 + 0.244481i
\(359\) 7.58573i 0.400359i −0.979759 0.200180i \(-0.935847\pi\)
0.979759 0.200180i \(-0.0641526\pi\)
\(360\) 0 0
\(361\) 20.3920 + 35.3200i 1.07326 + 1.85895i
\(362\) −20.1476 + 11.6322i −1.05894 + 0.611377i
\(363\) 0 0
\(364\) 2.70844 2.38000i 0.141961 0.124746i
\(365\) −16.1688 −0.846313
\(366\) 0 0
\(367\) 5.92558 + 10.2634i 0.309313 + 0.535746i 0.978212 0.207607i \(-0.0665676\pi\)
−0.668899 + 0.743353i \(0.733234\pi\)
\(368\) −1.23791 + 2.14412i −0.0645305 + 0.111770i
\(369\) 0 0
\(370\) 19.2723 + 11.1269i 1.00192 + 0.578459i
\(371\) 5.46559 + 3.15556i 0.283759 + 0.163828i
\(372\) 0 0
\(373\) 14.9133 25.8306i 0.772182 1.33746i −0.164183 0.986430i \(-0.552499\pi\)
0.936365 0.351028i \(-0.114168\pi\)
\(374\) −11.6645 20.2035i −0.603158 1.04470i
\(375\) 0 0
\(376\) −7.70008 −0.397101
\(377\) 23.3662 + 26.5908i 1.20342 + 1.36949i
\(378\) 0 0
\(379\) −1.55298 + 0.896611i −0.0797711 + 0.0460558i −0.539355 0.842079i \(-0.681332\pi\)
0.459584 + 0.888134i \(0.347999\pi\)
\(380\) 8.47223 + 14.6743i 0.434616 + 0.752778i
\(381\) 0 0
\(382\) 8.90192i 0.455462i
\(383\) −14.4611 8.34912i −0.738927 0.426620i 0.0827518 0.996570i \(-0.473629\pi\)
−0.821679 + 0.569950i \(0.806962\pi\)
\(384\) 0 0
\(385\) 8.96287i 0.456790i
\(386\) −4.44417 + 7.69754i −0.226203 + 0.391794i
\(387\) 0 0
\(388\) 10.0600 5.80816i 0.510720 0.294864i
\(389\) −15.6288 −0.792413 −0.396207 0.918161i \(-0.629674\pi\)
−0.396207 + 0.918161i \(0.629674\pi\)
\(390\) 0 0
\(391\) −14.1222 −0.714192
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) −11.6963 + 20.2586i −0.589251 + 1.02061i
\(395\) 7.57885i 0.381333i
\(396\) 0 0
\(397\) 4.86182 + 2.80697i 0.244008 + 0.140878i 0.617017 0.786950i \(-0.288341\pi\)
−0.373010 + 0.927827i \(0.621674\pi\)
\(398\) 3.93608i 0.197298i
\(399\) 0 0
\(400\) −0.0987308 0.171007i −0.00493654 0.00855034i
\(401\) −21.8559 + 12.6185i −1.09143 + 0.630139i −0.933957 0.357384i \(-0.883669\pi\)
−0.157475 + 0.987523i \(0.550335\pi\)
\(402\) 0 0
\(403\) −5.08633 25.4387i −0.253368 1.26719i
\(404\) 2.25385 0.112133
\(405\) 0 0
\(406\) −4.90888 8.50243i −0.243624 0.421969i
\(407\) 20.7659 35.9675i 1.02933 1.78284i
\(408\) 0 0
\(409\) 25.0467 + 14.4607i 1.23848 + 0.715037i 0.968784 0.247908i \(-0.0797430\pi\)
0.269697 + 0.962945i \(0.413076\pi\)
\(410\) 6.88324 + 3.97404i 0.339939 + 0.196264i
\(411\) 0 0
\(412\) −8.01627 + 13.8846i −0.394933 + 0.684045i
\(413\) 2.42938 + 4.20781i 0.119542 + 0.207053i
\(414\) 0 0
\(415\) 0.729284 0.0357991
\(416\) 3.41535 + 1.15558i 0.167452 + 0.0566568i
\(417\) 0 0
\(418\) 27.3864 15.8115i 1.33951 0.773368i
\(419\) −16.0468 27.7939i −0.783938 1.35782i −0.929631 0.368491i \(-0.879875\pi\)
0.145693 0.989330i \(-0.453459\pi\)
\(420\) 0 0
\(421\) 1.02963i 0.0501810i −0.999685 0.0250905i \(-0.992013\pi\)
0.999685 0.0250905i \(-0.00798740\pi\)
\(422\) 11.0869 + 6.40104i 0.539703 + 0.311598i
\(423\) 0 0
\(424\) 6.31111i 0.306495i
\(425\) 0.563168 0.975435i 0.0273176 0.0473155i
\(426\) 0 0
\(427\) 9.75896 5.63434i 0.472269 0.272665i
\(428\) 8.61586 0.416464
\(429\) 0 0
\(430\) 6.03835 0.291195
\(431\) 30.5908 17.6616i 1.47350 0.850728i 0.473950 0.880552i \(-0.342828\pi\)
0.999555 + 0.0298236i \(0.00949455\pi\)
\(432\) 0 0
\(433\) 10.0469 17.4018i 0.482824 0.836276i −0.516981 0.855997i \(-0.672944\pi\)
0.999806 + 0.0197204i \(0.00627760\pi\)
\(434\) 7.19507i 0.345375i
\(435\) 0 0
\(436\) 8.68777 + 5.01589i 0.416069 + 0.240217i
\(437\) 19.1431i 0.915736i
\(438\) 0 0
\(439\) 6.52940 + 11.3093i 0.311631 + 0.539761i 0.978716 0.205221i \(-0.0657913\pi\)
−0.667084 + 0.744982i \(0.732458\pi\)
\(440\) 7.76207 4.48144i 0.370042 0.213644i
\(441\) 0 0
\(442\) 4.03232 + 20.1672i 0.191798 + 0.959254i
\(443\) −7.46148 −0.354506 −0.177253 0.984165i \(-0.556721\pi\)
−0.177253 + 0.984165i \(0.556721\pi\)
\(444\) 0 0
\(445\) −14.8225 25.6734i −0.702656 1.21704i
\(446\) −9.42444 + 16.3236i −0.446260 + 0.772945i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) 8.28796 + 4.78506i 0.391133 + 0.225821i 0.682651 0.730745i \(-0.260827\pi\)
−0.291518 + 0.956565i \(0.594160\pi\)
\(450\) 0 0
\(451\) 7.41667 12.8460i 0.349237 0.604897i
\(452\) −9.27760 16.0693i −0.436382 0.755835i
\(453\) 0 0
\(454\) −1.31920 −0.0619130
\(455\) −2.53241 + 7.48464i −0.118721 + 0.350886i
\(456\) 0 0
\(457\) 22.3679 12.9141i 1.04633 0.604097i 0.124708 0.992194i \(-0.460201\pi\)
0.921619 + 0.388097i \(0.126867\pi\)
\(458\) 2.17054 + 3.75949i 0.101423 + 0.175670i
\(459\) 0 0
\(460\) 5.42568i 0.252974i
\(461\) 1.35535 + 0.782512i 0.0631250 + 0.0364452i 0.531230 0.847227i \(-0.321730\pi\)
−0.468105 + 0.883673i \(0.655063\pi\)
\(462\) 0 0
\(463\) 20.4863i 0.952080i −0.879424 0.476040i \(-0.842072\pi\)
0.879424 0.476040i \(-0.157928\pi\)
\(464\) 4.90888 8.50243i 0.227889 0.394716i
\(465\) 0 0
\(466\) −4.99196 + 2.88211i −0.231248 + 0.133511i
\(467\) 3.80822 0.176224 0.0881118 0.996111i \(-0.471917\pi\)
0.0881118 + 0.996111i \(0.471917\pi\)
\(468\) 0 0
\(469\) −6.34039 −0.292772
\(470\) 14.6137 8.43725i 0.674082 0.389181i
\(471\) 0 0
\(472\) −2.42938 + 4.20781i −0.111821 + 0.193680i
\(473\) 11.2692i 0.518160i
\(474\) 0 0
\(475\) 1.32223 + 0.763388i 0.0606679 + 0.0350266i
\(476\) 5.70407i 0.261446i
\(477\) 0 0
\(478\) 6.54753 + 11.3407i 0.299477 + 0.518710i
\(479\) 20.8886 12.0600i 0.954425 0.551037i 0.0599720 0.998200i \(-0.480899\pi\)
0.894453 + 0.447163i \(0.147566\pi\)
\(480\) 0 0
\(481\) −27.5034 + 24.1682i −1.25405 + 1.10197i
\(482\) 0.450067 0.0205000
\(483\) 0 0
\(484\) −2.86360 4.95991i −0.130164 0.225450i
\(485\) −12.7284 + 22.0462i −0.577967 + 1.00107i
\(486\) 0 0
\(487\) −6.65422 3.84182i −0.301532 0.174089i 0.341599 0.939846i \(-0.389031\pi\)
−0.643131 + 0.765756i \(0.722365\pi\)
\(488\) 9.75896 + 5.63434i 0.441767 + 0.255054i
\(489\) 0 0
\(490\) 1.09573 1.89787i 0.0495002 0.0857369i
\(491\) −16.2767 28.1921i −0.734557 1.27229i −0.954917 0.296872i \(-0.904056\pi\)
0.220360 0.975419i \(-0.429277\pi\)
\(492\) 0 0
\(493\) 56.0012 2.52217
\(494\) −27.3371 + 5.46590i −1.22995 + 0.245923i
\(495\) 0 0
\(496\) −6.23112 + 3.59754i −0.279785 + 0.161534i
\(497\) −4.16466 7.21341i −0.186811 0.323566i
\(498\) 0 0
\(499\) 5.87524i 0.263012i −0.991315 0.131506i \(-0.958019\pi\)
0.991315 0.131506i \(-0.0419813\pi\)
\(500\) 9.86410 + 5.69504i 0.441136 + 0.254690i
\(501\) 0 0
\(502\) 18.7022i 0.834721i
\(503\) 11.0238 19.0939i 0.491529 0.851353i −0.508424 0.861107i \(-0.669772\pi\)
0.999952 + 0.00975426i \(0.00310493\pi\)
\(504\) 0 0
\(505\) −4.27750 + 2.46962i −0.190346 + 0.109897i
\(506\) −10.1258 −0.450148
\(507\) 0 0
\(508\) −0.264877 −0.0117520
\(509\) 5.86940 3.38870i 0.260156 0.150201i −0.364249 0.931301i \(-0.618674\pi\)
0.624406 + 0.781100i \(0.285341\pi\)
\(510\) 0 0
\(511\) −3.68903 + 6.38958i −0.163193 + 0.282658i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 17.1287 + 9.88929i 0.755517 + 0.436198i
\(515\) 35.1348i 1.54823i
\(516\) 0 0
\(517\) −15.7463 27.2733i −0.692519 1.19948i
\(518\) 8.79425 5.07736i 0.386397 0.223086i
\(519\) 0 0
\(520\) −7.74810 + 1.54919i −0.339777 + 0.0679365i
\(521\) 2.61232 0.114448 0.0572240 0.998361i \(-0.481775\pi\)
0.0572240 + 0.998361i \(0.481775\pi\)
\(522\) 0 0
\(523\) −4.02060 6.96388i −0.175809 0.304509i 0.764632 0.644467i \(-0.222921\pi\)
−0.940441 + 0.339957i \(0.889587\pi\)
\(524\) 2.55119 4.41878i 0.111449 0.193035i
\(525\) 0 0
\(526\) −20.3903 11.7723i −0.889059 0.513299i
\(527\) −35.5427 20.5206i −1.54827 0.893892i
\(528\) 0 0
\(529\) 8.43516 14.6101i 0.366746 0.635223i
\(530\) −6.91531 11.9777i −0.300382 0.520276i
\(531\) 0 0
\(532\) 7.73201 0.335225
\(533\) −9.82303 + 8.63184i −0.425483 + 0.373886i
\(534\) 0 0
\(535\) −16.3518 + 9.44070i −0.706949 + 0.408157i
\(536\) −3.17020 5.49094i −0.136932 0.237172i
\(537\) 0 0
\(538\) 22.8431i 0.984836i
\(539\) −3.54195 2.04495i −0.152563 0.0880820i
\(540\) 0 0
\(541\) 21.6552i 0.931029i 0.885040 + 0.465514i \(0.154131\pi\)
−0.885040 + 0.465514i \(0.845869\pi\)
\(542\) 6.49877 11.2562i 0.279146 0.483495i
\(543\) 0 0
\(544\) 4.93987 2.85204i 0.211795 0.122280i
\(545\) −21.9843 −0.941705
\(546\) 0 0
\(547\) −32.9495 −1.40882 −0.704409 0.709795i \(-0.748788\pi\)
−0.704409 + 0.709795i \(0.748788\pi\)
\(548\) −18.8812 + 10.9011i −0.806566 + 0.465671i
\(549\) 0 0
\(550\) 0.403798 0.699399i 0.0172180 0.0298225i
\(551\) 75.9111i 3.23392i
\(552\) 0 0
\(553\) 2.99501 + 1.72917i 0.127361 + 0.0735318i
\(554\) 26.9506i 1.14502i
\(555\) 0 0
\(556\) 8.22455 + 14.2453i 0.348799 + 0.604137i
\(557\) 0.280535 0.161967i 0.0118866 0.00686276i −0.494045 0.869436i \(-0.664482\pi\)
0.505932 + 0.862574i \(0.331149\pi\)
\(558\) 0 0
\(559\) −3.18406 + 9.41062i −0.134671 + 0.398027i
\(560\) 2.19147 0.0926065
\(561\) 0 0
\(562\) 0.0386980 + 0.0670270i 0.00163238 + 0.00282736i
\(563\) −18.3668 + 31.8123i −0.774070 + 1.34073i 0.161245 + 0.986914i \(0.448449\pi\)
−0.935316 + 0.353815i \(0.884884\pi\)
\(564\) 0 0
\(565\) 35.2153 + 20.3316i 1.48152 + 0.855356i
\(566\) −19.3183 11.1534i −0.812008 0.468813i
\(567\) 0 0
\(568\) 4.16466 7.21341i 0.174745 0.302668i
\(569\) 1.32995 + 2.30354i 0.0557544 + 0.0965695i 0.892556 0.450937i \(-0.148910\pi\)
−0.836801 + 0.547507i \(0.815577\pi\)
\(570\) 0 0
\(571\) 4.29994 0.179947 0.0899735 0.995944i \(-0.471322\pi\)
0.0899735 + 0.995944i \(0.471322\pi\)
\(572\) 2.89122 + 14.4601i 0.120888 + 0.604607i
\(573\) 0 0
\(574\) 3.14093 1.81341i 0.131100 0.0756905i
\(575\) −0.244439 0.423381i −0.0101938 0.0176562i
\(576\) 0 0
\(577\) 2.08429i 0.0867702i 0.999058 + 0.0433851i \(0.0138142\pi\)
−0.999058 + 0.0433851i \(0.986186\pi\)
\(578\) 13.4550 + 7.76822i 0.559652 + 0.323115i
\(579\) 0 0
\(580\) 21.5153i 0.893375i
\(581\) 0.166392 0.288199i 0.00690308 0.0119565i
\(582\) 0 0
\(583\) −22.3536 + 12.9059i −0.925793 + 0.534507i
\(584\) −7.37805 −0.305306
\(585\) 0 0
\(586\) 5.95971 0.246193
\(587\) −12.9028 + 7.44945i −0.532556 + 0.307472i −0.742057 0.670337i \(-0.766150\pi\)
0.209500 + 0.977809i \(0.432816\pi\)
\(588\) 0 0
\(589\) 27.8162 48.1791i 1.14615 1.98518i
\(590\) 10.6478i 0.438364i
\(591\) 0 0
\(592\) 8.79425 + 5.07736i 0.361441 + 0.208678i
\(593\) 1.36361i 0.0559968i 0.999608 + 0.0279984i \(0.00891334\pi\)
−0.999608 + 0.0279984i \(0.991087\pi\)
\(594\) 0 0
\(595\) 6.25015 + 10.8256i 0.256231 + 0.443805i
\(596\) 12.8023 7.39139i 0.524401 0.302763i
\(597\) 0 0
\(598\) 8.45579 + 2.86100i 0.345783 + 0.116995i
\(599\) −18.0030 −0.735581 −0.367790 0.929909i \(-0.619886\pi\)
−0.367790 + 0.929909i \(0.619886\pi\)
\(600\) 0 0
\(601\) 6.76892 + 11.7241i 0.276110 + 0.478237i 0.970415 0.241445i \(-0.0776213\pi\)
−0.694305 + 0.719681i \(0.744288\pi\)
\(602\) 1.37769 2.38624i 0.0561506 0.0972557i
\(603\) 0 0
\(604\) 16.4454 + 9.49478i 0.669155 + 0.386337i
\(605\) 10.8695 + 6.27550i 0.441907 + 0.255135i
\(606\) 0 0
\(607\) 1.10556 1.91489i 0.0448733 0.0777228i −0.842716 0.538358i \(-0.819045\pi\)
0.887590 + 0.460635i \(0.152378\pi\)
\(608\) 3.86601 + 6.69612i 0.156787 + 0.271563i
\(609\) 0 0
\(610\) −24.6950 −0.999870
\(611\) 5.44333 + 27.2242i 0.220214 + 1.10137i
\(612\) 0 0
\(613\) 22.5849 13.0394i 0.912195 0.526656i 0.0310579 0.999518i \(-0.490112\pi\)
0.881137 + 0.472862i \(0.156779\pi\)
\(614\) 15.5544 + 26.9411i 0.627726 + 1.08725i
\(615\) 0 0
\(616\) 4.08989i 0.164786i
\(617\) 24.5921 + 14.1983i 0.990042 + 0.571601i 0.905287 0.424801i \(-0.139656\pi\)
0.0847549 + 0.996402i \(0.472989\pi\)
\(618\) 0 0
\(619\) 14.7197i 0.591633i −0.955245 0.295817i \(-0.904408\pi\)
0.955245 0.295817i \(-0.0955918\pi\)
\(620\) 7.88389 13.6553i 0.316625 0.548410i
\(621\) 0 0
\(622\) 3.01753 1.74217i 0.120992 0.0698548i
\(623\) −13.5275 −0.541967
\(624\) 0 0
\(625\) −23.9737 −0.958948
\(626\) −8.89843 + 5.13751i −0.355653 + 0.205336i
\(627\) 0 0
\(628\) −6.77371 + 11.7324i −0.270300 + 0.468174i
\(629\) 57.9233i 2.30955i
\(630\) 0 0
\(631\) −24.3684 14.0691i −0.970090 0.560082i −0.0708262 0.997489i \(-0.522564\pi\)
−0.899264 + 0.437407i \(0.855897\pi\)
\(632\) 3.45834i 0.137565i
\(633\) 0 0
\(634\) 13.2641 + 22.9741i 0.526785 + 0.912418i
\(635\) 0.502702 0.290235i 0.0199491 0.0115176i
\(636\) 0 0
\(637\) 2.38000 + 2.70844i 0.0942988 + 0.107312i
\(638\) 40.1536 1.58970
\(639\) 0 0
\(640\) 1.09573 + 1.89787i 0.0433127 + 0.0750198i
\(641\) −3.89572 + 6.74758i −0.153872 + 0.266513i −0.932648 0.360789i \(-0.882508\pi\)
0.778776 + 0.627302i \(0.215841\pi\)
\(642\) 0 0
\(643\) −29.3656 16.9542i −1.15807 0.668610i −0.207227 0.978293i \(-0.566444\pi\)
−0.950840 + 0.309683i \(0.899777\pi\)
\(644\) −2.14412 1.23791i −0.0844902 0.0487804i
\(645\) 0 0
\(646\) −22.0520 + 38.1951i −0.867624 + 1.50277i
\(647\) −2.20290 3.81554i −0.0866050 0.150004i 0.819469 0.573123i \(-0.194268\pi\)
−0.906074 + 0.423119i \(0.860935\pi\)
\(648\) 0 0
\(649\) −19.8718 −0.780036
\(650\) −0.534812 + 0.469958i −0.0209771 + 0.0184333i
\(651\) 0 0
\(652\) −3.86502 + 2.23147i −0.151366 + 0.0873912i
\(653\) 13.8081 + 23.9163i 0.540352 + 0.935916i 0.998884 + 0.0472385i \(0.0150421\pi\)
−0.458532 + 0.888678i \(0.651625\pi\)
\(654\) 0 0
\(655\) 11.1817i 0.436905i
\(656\) 3.14093 + 1.81341i 0.122633 + 0.0708019i
\(657\) 0 0
\(658\) 7.70008i 0.300181i
\(659\) 3.72022 6.44362i 0.144919 0.251008i −0.784423 0.620226i \(-0.787041\pi\)
0.929343 + 0.369218i \(0.120374\pi\)
\(660\) 0 0
\(661\) 1.02781 0.593407i 0.0399772 0.0230809i −0.479878 0.877335i \(-0.659319\pi\)
0.519855 + 0.854254i \(0.325986\pi\)
\(662\) 28.6746 1.11447
\(663\) 0 0
\(664\) 0.332783 0.0129145
\(665\) −14.6743 + 8.47223i −0.569047 + 0.328539i
\(666\) 0 0
\(667\) 12.1535 21.0505i 0.470585 0.815077i
\(668\) 3.30762i 0.127976i
\(669\) 0 0
\(670\) 12.0332 + 6.94739i 0.464884 + 0.268401i
\(671\) 46.0876i 1.77919i
\(672\) 0 0
\(673\) −1.14981 1.99153i −0.0443219 0.0767678i 0.843013 0.537893i \(-0.180779\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(674\) −4.18223 + 2.41461i −0.161094 + 0.0930074i
\(675\) 0 0
\(676\) 1.67124 12.8921i 0.0642786 0.495851i
\(677\) −6.12752 −0.235500 −0.117750 0.993043i \(-0.537568\pi\)
−0.117750 + 0.993043i \(0.537568\pi\)
\(678\) 0 0
\(679\) 5.80816 + 10.0600i 0.222897 + 0.386068i
\(680\) −6.25015 + 10.8256i −0.239682 + 0.415142i
\(681\) 0 0
\(682\) −25.4846 14.7135i −0.975855 0.563410i
\(683\) 8.69462 + 5.01984i 0.332691 + 0.192079i 0.657035 0.753860i \(-0.271810\pi\)
−0.324344 + 0.945939i \(0.605144\pi\)
\(684\) 0 0
\(685\) 23.8894 41.3776i 0.912766 1.58096i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 0 0
\(688\) 2.75539 0.105048
\(689\) 22.3134 4.46144i 0.850073 0.169967i
\(690\) 0 0
\(691\) −19.2007 + 11.0855i −0.730428 + 0.421713i −0.818579 0.574394i \(-0.805238\pi\)
0.0881509 + 0.996107i \(0.471904\pi\)
\(692\) 5.06107 + 8.76603i 0.192393 + 0.333235i
\(693\) 0 0
\(694\) 30.5188i 1.15848i
\(695\) −31.2182 18.0238i −1.18417 0.683684i
\(696\) 0 0
\(697\) 20.6877i 0.783602i
\(698\) 2.65910 4.60570i 0.100648 0.174328i
\(699\) 0 0
\(700\) 0.171007 0.0987308i 0.00646345 0.00373167i
\(701\) −21.3510 −0.806416 −0.403208 0.915108i \(-0.632105\pi\)
−0.403208 + 0.915108i \(0.632105\pi\)
\(702\) 0 0
\(703\) −78.5165 −2.96130
\(704\) 3.54195 2.04495i 0.133492 0.0770718i
\(705\) 0 0
\(706\) −14.1137 + 24.4457i −0.531178 + 0.920027i
\(707\) 2.25385i 0.0847646i
\(708\) 0 0
\(709\) 21.5442 + 12.4385i 0.809109 + 0.467139i 0.846646 0.532156i \(-0.178618\pi\)
−0.0375376 + 0.999295i \(0.511951\pi\)
\(710\) 18.2535i 0.685040i
\(711\) 0 0
\(712\) −6.76374 11.7151i −0.253482 0.439044i
\(713\) −15.4271 + 8.90685i −0.577750 + 0.333564i
\(714\) 0 0
\(715\) −21.3316 24.2754i −0.797756 0.907847i
\(716\) −9.25158 −0.345748
\(717\) 0 0
\(718\) 3.79286 + 6.56943i 0.141548 + 0.245169i
\(719\) −11.5010 + 19.9203i −0.428914 + 0.742901i −0.996777 0.0802222i \(-0.974437\pi\)
0.567863 + 0.823123i \(0.307770\pi\)
\(720\) 0 0
\(721\) −13.8846 8.01627i −0.517089 0.298542i
\(722\) −35.3200 20.3920i −1.31447 0.758912i
\(723\) 0 0
\(724\) 11.6322 20.1476i 0.432309 0.748781i
\(725\) 0.969316 + 1.67890i 0.0359995 + 0.0623529i
\(726\) 0 0
\(727\) −3.42508 −0.127029 −0.0635146 0.997981i \(-0.520231\pi\)
−0.0635146 + 0.997981i \(0.520231\pi\)
\(728\) −1.15558 + 3.41535i −0.0428285 + 0.126581i
\(729\) 0 0
\(730\) 14.0026 8.08439i 0.518258 0.299217i
\(731\) 7.85846 + 13.6113i 0.290656 + 0.503431i
\(732\) 0 0
\(733\) 21.6929i 0.801247i −0.916243 0.400624i \(-0.868794\pi\)
0.916243 0.400624i \(-0.131206\pi\)
\(734\) −10.2634 5.92558i −0.378829 0.218717i
\(735\) 0 0
\(736\) 2.47582i 0.0912598i
\(737\) 12.9658 22.4573i 0.477600 0.827227i
\(738\) 0 0
\(739\) −44.6284 + 25.7662i −1.64168 + 0.947826i −0.661447 + 0.749992i \(0.730057\pi\)
−0.980236 + 0.197833i \(0.936610\pi\)
\(740\) −22.2538 −0.818065
\(741\) 0 0
\(742\) −6.31111 −0.231688
\(743\) 41.6540 24.0489i 1.52814 0.882270i 0.528697 0.848811i \(-0.322681\pi\)
0.999440 0.0334593i \(-0.0106524\pi\)
\(744\) 0 0
\(745\) −16.1980 + 28.0558i −0.593449 + 1.02788i
\(746\) 29.8266i 1.09203i
\(747\) 0 0
\(748\) 20.2035 + 11.6645i 0.738714 + 0.426497i
\(749\) 8.61586i 0.314817i
\(750\) 0 0
\(751\) −14.7133 25.4842i −0.536896 0.929931i −0.999069 0.0431415i \(-0.986263\pi\)
0.462173 0.886790i \(-0.347070\pi\)
\(752\) 6.66847 3.85004i 0.243174 0.140397i
\(753\) 0 0
\(754\) −33.5311 11.3452i −1.22113 0.413167i
\(755\) −41.6150 −1.51453
\(756\) 0 0
\(757\) 10.0541 + 17.4142i 0.365423 + 0.632931i 0.988844 0.148955i \(-0.0475911\pi\)
−0.623421 + 0.781886i \(0.714258\pi\)
\(758\) 0.896611 1.55298i 0.0325664 0.0564067i
\(759\) 0 0
\(760\) −14.6743 8.47223i −0.532294 0.307320i
\(761\) −28.0939 16.2200i −1.01840 0.587976i −0.104763 0.994497i \(-0.533409\pi\)
−0.913642 + 0.406521i \(0.866742\pi\)
\(762\) 0 0
\(763\) −5.01589 + 8.68777i −0.181587 + 0.314518i
\(764\) 4.45096 + 7.70929i 0.161030 + 0.278912i
\(765\) 0 0
\(766\) 16.6982 0.603332
\(767\) 16.5944 + 5.61466i 0.599188 + 0.202734i
\(768\) 0 0
\(769\) −37.1542 + 21.4510i −1.33982 + 0.773543i −0.986780 0.162067i \(-0.948184\pi\)
−0.353036 + 0.935610i \(0.614851\pi\)
\(770\) 4.48144 + 7.76207i 0.161500 + 0.279726i
\(771\) 0 0
\(772\) 8.88835i 0.319899i
\(773\) −12.8157 7.39912i −0.460947 0.266128i 0.251495 0.967858i \(-0.419078\pi\)
−0.712442 + 0.701731i \(0.752411\pi\)
\(774\) 0 0
\(775\) 1.42075i 0.0510349i
\(776\) −5.80816 + 10.0600i −0.208501 + 0.361134i
\(777\) 0 0
\(778\) 13.5350 7.81441i 0.485252 0.280160i
\(779\) −28.0427 −1.00473
\(780\) 0 0
\(781\) 34.0660 1.21898
\(782\) 12.2302 7.06112i 0.437352 0.252505i
\(783\)