Properties

Label 1638.2.bj.g.127.3
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.3
Root \(0.500000 + 1.69027i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.g.1135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +3.48754i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +3.48754i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-1.74377 - 3.02030i) q^{10} +(2.32244 - 1.34086i) q^{11} +(-3.15338 + 1.74819i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.95758 - 5.12268i) q^{17} +(4.50154 + 2.59896i) q^{19} +(3.02030 + 1.74377i) q^{20} +(-1.34086 + 2.32244i) q^{22} +(3.52634 + 6.10780i) q^{23} -7.16292 q^{25} +(1.85681 - 3.09067i) q^{26} +(0.866025 - 0.500000i) q^{28} +(3.56639 + 6.17717i) q^{29} +0.782383i q^{31} +(0.866025 + 0.500000i) q^{32} +5.91517i q^{34} +(-1.74377 + 3.02030i) q^{35} +(6.76756 - 3.90725i) q^{37} -5.19793 q^{38} -3.48754 q^{40} +(-0.136579 + 0.0788541i) q^{41} +(-0.165101 + 0.285963i) q^{43} -2.68172i q^{44} +(-6.10780 - 3.52634i) q^{46} +1.60161i q^{47} +(0.500000 + 0.866025i) q^{49} +(6.20327 - 3.58146i) q^{50} +(-0.0627130 + 3.60501i) q^{52} -3.92601 q^{53} +(4.67630 + 8.09958i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(-6.17717 - 3.56639i) q^{58} +(-8.26207 - 4.77011i) q^{59} +(-7.70525 + 13.3459i) q^{61} +(-0.391192 - 0.677564i) q^{62} -1.00000 q^{64} +(-6.09688 - 10.9975i) q^{65} +(0.837243 - 0.483382i) q^{67} +(-2.95758 - 5.12268i) q^{68} -3.48754i q^{70} +(-3.62568 - 2.09329i) q^{71} -15.0361i q^{73} +(-3.90725 + 6.76756i) q^{74} +(4.50154 - 2.59896i) q^{76} +2.68172 q^{77} -0.293356 q^{79} +(3.02030 - 1.74377i) q^{80} +(0.0788541 - 0.136579i) q^{82} +2.87495i q^{83} +(17.8656 + 10.3147i) q^{85} -0.330202i q^{86} +(1.34086 + 2.32244i) q^{88} +(-4.51481 + 2.60662i) q^{89} +(-3.60501 - 0.0627130i) q^{91} +7.05268 q^{92} +(-0.800806 - 1.38704i) q^{94} +(-9.06398 + 15.6993i) q^{95} +(-2.73617 - 1.57973i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{4} - 2 q^{10} + 18 q^{11} - 8 q^{13} - 12 q^{14} - 6 q^{16} - 4 q^{17} + 12 q^{19} - 2 q^{22} + 6 q^{23} - 24 q^{25} + 14 q^{26} + 10 q^{29} - 2 q^{35} - 6 q^{37} - 8 q^{38} - 4 q^{40} + 24 q^{41} + 26 q^{43} - 6 q^{46} + 6 q^{49} + 12 q^{50} - 4 q^{52} - 36 q^{53} - 6 q^{55} - 6 q^{56} + 24 q^{58} - 6 q^{59} - 28 q^{61} + 2 q^{62} - 12 q^{64} + 34 q^{65} - 42 q^{67} + 4 q^{68} - 48 q^{71} + 12 q^{76} + 4 q^{77} + 44 q^{79} + 6 q^{82} + 54 q^{85} + 2 q^{88} - 12 q^{89} - 16 q^{91} + 12 q^{92} + 8 q^{94} - 32 q^{95} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.48754i 1.55967i 0.625983 + 0.779837i \(0.284698\pi\)
−0.625983 + 0.779837i \(0.715302\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.74377 3.02030i −0.551428 0.955101i
\(11\) 2.32244 1.34086i 0.700241 0.404284i −0.107196 0.994238i \(-0.534187\pi\)
0.807437 + 0.589954i \(0.200854\pi\)
\(12\) 0 0
\(13\) −3.15338 + 1.74819i −0.874591 + 0.484861i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.95758 5.12268i 0.717319 1.24243i −0.244739 0.969589i \(-0.578702\pi\)
0.962058 0.272844i \(-0.0879644\pi\)
\(18\) 0 0
\(19\) 4.50154 + 2.59896i 1.03272 + 0.596243i 0.917764 0.397127i \(-0.129993\pi\)
0.114960 + 0.993370i \(0.463326\pi\)
\(20\) 3.02030 + 1.74377i 0.675359 + 0.389919i
\(21\) 0 0
\(22\) −1.34086 + 2.32244i −0.285872 + 0.495145i
\(23\) 3.52634 + 6.10780i 0.735292 + 1.27356i 0.954595 + 0.297907i \(0.0962885\pi\)
−0.219303 + 0.975657i \(0.570378\pi\)
\(24\) 0 0
\(25\) −7.16292 −1.43258
\(26\) 1.85681 3.09067i 0.364151 0.606130i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) 3.56639 + 6.17717i 0.662262 + 1.14707i 0.980020 + 0.198900i \(0.0637369\pi\)
−0.317758 + 0.948172i \(0.602930\pi\)
\(30\) 0 0
\(31\) 0.782383i 0.140520i 0.997529 + 0.0702601i \(0.0223829\pi\)
−0.997529 + 0.0702601i \(0.977617\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.91517i 1.01444i
\(35\) −1.74377 + 3.02030i −0.294751 + 0.510523i
\(36\) 0 0
\(37\) 6.76756 3.90725i 1.11258 0.642348i 0.173083 0.984907i \(-0.444627\pi\)
0.939496 + 0.342559i \(0.111294\pi\)
\(38\) −5.19793 −0.843215
\(39\) 0 0
\(40\) −3.48754 −0.551428
\(41\) −0.136579 + 0.0788541i −0.0213301 + 0.0123149i −0.510627 0.859802i \(-0.670587\pi\)
0.489297 + 0.872117i \(0.337253\pi\)
\(42\) 0 0
\(43\) −0.165101 + 0.285963i −0.0251777 + 0.0436090i −0.878340 0.478037i \(-0.841348\pi\)
0.853162 + 0.521646i \(0.174682\pi\)
\(44\) 2.68172i 0.404284i
\(45\) 0 0
\(46\) −6.10780 3.52634i −0.900546 0.519930i
\(47\) 1.60161i 0.233619i 0.993154 + 0.116810i \(0.0372667\pi\)
−0.993154 + 0.116810i \(0.962733\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 6.20327 3.58146i 0.877275 0.506495i
\(51\) 0 0
\(52\) −0.0627130 + 3.60501i −0.00869673 + 0.499924i
\(53\) −3.92601 −0.539279 −0.269639 0.962961i \(-0.586905\pi\)
−0.269639 + 0.962961i \(0.586905\pi\)
\(54\) 0 0
\(55\) 4.67630 + 8.09958i 0.630552 + 1.09215i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) −6.17717 3.56639i −0.811102 0.468290i
\(59\) −8.26207 4.77011i −1.07563 0.621015i −0.145915 0.989297i \(-0.546613\pi\)
−0.929714 + 0.368282i \(0.879946\pi\)
\(60\) 0 0
\(61\) −7.70525 + 13.3459i −0.986556 + 1.70877i −0.351752 + 0.936093i \(0.614414\pi\)
−0.634805 + 0.772673i \(0.718919\pi\)
\(62\) −0.391192 0.677564i −0.0496814 0.0860507i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −6.09688 10.9975i −0.756225 1.36408i
\(66\) 0 0
\(67\) 0.837243 0.483382i 0.102286 0.0590546i −0.447985 0.894041i \(-0.647858\pi\)
0.550270 + 0.834987i \(0.314525\pi\)
\(68\) −2.95758 5.12268i −0.358660 0.621217i
\(69\) 0 0
\(70\) 3.48754i 0.416840i
\(71\) −3.62568 2.09329i −0.430289 0.248428i 0.269181 0.963090i \(-0.413247\pi\)
−0.699470 + 0.714662i \(0.746580\pi\)
\(72\) 0 0
\(73\) 15.0361i 1.75984i −0.475124 0.879919i \(-0.657597\pi\)
0.475124 0.879919i \(-0.342403\pi\)
\(74\) −3.90725 + 6.76756i −0.454209 + 0.786713i
\(75\) 0 0
\(76\) 4.50154 2.59896i 0.516362 0.298122i
\(77\) 2.68172 0.305610
\(78\) 0 0
\(79\) −0.293356 −0.0330052 −0.0165026 0.999864i \(-0.505253\pi\)
−0.0165026 + 0.999864i \(0.505253\pi\)
\(80\) 3.02030 1.74377i 0.337679 0.194959i
\(81\) 0 0
\(82\) 0.0788541 0.136579i 0.00870797 0.0150827i
\(83\) 2.87495i 0.315566i 0.987474 + 0.157783i \(0.0504347\pi\)
−0.987474 + 0.157783i \(0.949565\pi\)
\(84\) 0 0
\(85\) 17.8656 + 10.3147i 1.93779 + 1.11878i
\(86\) 0.330202i 0.0356066i
\(87\) 0 0
\(88\) 1.34086 + 2.32244i 0.142936 + 0.247573i
\(89\) −4.51481 + 2.60662i −0.478569 + 0.276302i −0.719820 0.694161i \(-0.755776\pi\)
0.241251 + 0.970463i \(0.422442\pi\)
\(90\) 0 0
\(91\) −3.60501 0.0627130i −0.377907 0.00657411i
\(92\) 7.05268 0.735292
\(93\) 0 0
\(94\) −0.800806 1.38704i −0.0825968 0.143062i
\(95\) −9.06398 + 15.6993i −0.929945 + 1.61071i
\(96\) 0 0
\(97\) −2.73617 1.57973i −0.277816 0.160397i 0.354618 0.935011i \(-0.384611\pi\)
−0.632434 + 0.774614i \(0.717944\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) −3.58146 + 6.20327i −0.358146 + 0.620327i
\(101\) −1.89325 3.27921i −0.188386 0.326293i 0.756327 0.654194i \(-0.226992\pi\)
−0.944712 + 0.327901i \(0.893659\pi\)
\(102\) 0 0
\(103\) −6.80839 −0.670850 −0.335425 0.942067i \(-0.608880\pi\)
−0.335425 + 0.942067i \(0.608880\pi\)
\(104\) −1.74819 3.15338i −0.171424 0.309215i
\(105\) 0 0
\(106\) 3.40002 1.96300i 0.330240 0.190664i
\(107\) 7.15083 + 12.3856i 0.691297 + 1.19736i 0.971413 + 0.237396i \(0.0762938\pi\)
−0.280116 + 0.959966i \(0.590373\pi\)
\(108\) 0 0
\(109\) 4.57669i 0.438367i 0.975684 + 0.219184i \(0.0703394\pi\)
−0.975684 + 0.219184i \(0.929661\pi\)
\(110\) −8.09958 4.67630i −0.772265 0.445867i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) −1.50648 + 2.60930i −0.141718 + 0.245463i −0.928144 0.372222i \(-0.878596\pi\)
0.786426 + 0.617685i \(0.211929\pi\)
\(114\) 0 0
\(115\) −21.3012 + 12.2982i −1.98634 + 1.14682i
\(116\) 7.13278 0.662262
\(117\) 0 0
\(118\) 9.54021 0.878248
\(119\) 5.12268 2.95758i 0.469596 0.271121i
\(120\) 0 0
\(121\) −1.90419 + 3.29816i −0.173108 + 0.299833i
\(122\) 15.4105i 1.39520i
\(123\) 0 0
\(124\) 0.677564 + 0.391192i 0.0608470 + 0.0351300i
\(125\) 7.54326i 0.674689i
\(126\) 0 0
\(127\) 5.56278 + 9.63501i 0.493616 + 0.854969i 0.999973 0.00735543i \(-0.00234133\pi\)
−0.506356 + 0.862324i \(0.669008\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 10.7788 + 6.47571i 0.945366 + 0.567957i
\(131\) −14.9117 −1.30284 −0.651420 0.758718i \(-0.725826\pi\)
−0.651420 + 0.758718i \(0.725826\pi\)
\(132\) 0 0
\(133\) 2.59896 + 4.50154i 0.225359 + 0.390333i
\(134\) −0.483382 + 0.837243i −0.0417579 + 0.0723268i
\(135\) 0 0
\(136\) 5.12268 + 2.95758i 0.439267 + 0.253611i
\(137\) 13.3902 + 7.73086i 1.14401 + 0.660492i 0.947419 0.319995i \(-0.103681\pi\)
0.196586 + 0.980487i \(0.437014\pi\)
\(138\) 0 0
\(139\) −7.15110 + 12.3861i −0.606548 + 1.05057i 0.385256 + 0.922810i \(0.374113\pi\)
−0.991805 + 0.127763i \(0.959220\pi\)
\(140\) 1.74377 + 3.02030i 0.147375 + 0.255262i
\(141\) 0 0
\(142\) 4.18658 0.351330
\(143\) −4.97945 + 8.28831i −0.416403 + 0.693103i
\(144\) 0 0
\(145\) −21.5431 + 12.4379i −1.78906 + 1.03291i
\(146\) 7.51803 + 13.0216i 0.622197 + 1.07768i
\(147\) 0 0
\(148\) 7.81450i 0.642348i
\(149\) 3.08060 + 1.77859i 0.252373 + 0.145708i 0.620850 0.783929i \(-0.286787\pi\)
−0.368477 + 0.929637i \(0.620121\pi\)
\(150\) 0 0
\(151\) 9.52740i 0.775329i −0.921801 0.387664i \(-0.873282\pi\)
0.921801 0.387664i \(-0.126718\pi\)
\(152\) −2.59896 + 4.50154i −0.210804 + 0.365123i
\(153\) 0 0
\(154\) −2.32244 + 1.34086i −0.187147 + 0.108050i
\(155\) −2.72859 −0.219166
\(156\) 0 0
\(157\) 20.8345 1.66278 0.831388 0.555692i \(-0.187547\pi\)
0.831388 + 0.555692i \(0.187547\pi\)
\(158\) 0.254054 0.146678i 0.0202115 0.0116691i
\(159\) 0 0
\(160\) −1.74377 + 3.02030i −0.137857 + 0.238775i
\(161\) 7.05268i 0.555829i
\(162\) 0 0
\(163\) 5.46119 + 3.15302i 0.427753 + 0.246963i 0.698389 0.715718i \(-0.253901\pi\)
−0.270636 + 0.962682i \(0.587234\pi\)
\(164\) 0.157708i 0.0123149i
\(165\) 0 0
\(166\) −1.43747 2.48978i −0.111570 0.193244i
\(167\) −5.77528 + 3.33436i −0.446904 + 0.258020i −0.706522 0.707691i \(-0.749737\pi\)
0.259618 + 0.965711i \(0.416403\pi\)
\(168\) 0 0
\(169\) 6.88765 11.0254i 0.529819 0.848111i
\(170\) −20.6294 −1.58220
\(171\) 0 0
\(172\) 0.165101 + 0.285963i 0.0125888 + 0.0218045i
\(173\) 10.6596 18.4630i 0.810434 1.40371i −0.102126 0.994771i \(-0.532565\pi\)
0.912560 0.408942i \(-0.134102\pi\)
\(174\) 0 0
\(175\) −6.20327 3.58146i −0.468923 0.270733i
\(176\) −2.32244 1.34086i −0.175060 0.101071i
\(177\) 0 0
\(178\) 2.60662 4.51481i 0.195375 0.338399i
\(179\) −7.71921 13.3701i −0.576961 0.999325i −0.995826 0.0912768i \(-0.970905\pi\)
0.418865 0.908049i \(-0.362428\pi\)
\(180\) 0 0
\(181\) −13.2818 −0.987231 −0.493616 0.869680i \(-0.664325\pi\)
−0.493616 + 0.869680i \(0.664325\pi\)
\(182\) 3.15338 1.74819i 0.233744 0.129585i
\(183\) 0 0
\(184\) −6.10780 + 3.52634i −0.450273 + 0.259965i
\(185\) 13.6267 + 23.6021i 1.00185 + 1.73526i
\(186\) 0 0
\(187\) 15.8628i 1.16000i
\(188\) 1.38704 + 0.800806i 0.101160 + 0.0584048i
\(189\) 0 0
\(190\) 18.1280i 1.31514i
\(191\) −5.96230 + 10.3270i −0.431417 + 0.747235i −0.996996 0.0774587i \(-0.975319\pi\)
0.565579 + 0.824694i \(0.308653\pi\)
\(192\) 0 0
\(193\) 4.63268 2.67468i 0.333467 0.192528i −0.323912 0.946087i \(-0.604998\pi\)
0.657380 + 0.753560i \(0.271665\pi\)
\(194\) 3.15946 0.226836
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 11.4261 6.59688i 0.814079 0.470009i −0.0342916 0.999412i \(-0.510917\pi\)
0.848370 + 0.529403i \(0.177584\pi\)
\(198\) 0 0
\(199\) 10.0258 17.3652i 0.710709 1.23098i −0.253883 0.967235i \(-0.581708\pi\)
0.964591 0.263749i \(-0.0849589\pi\)
\(200\) 7.16292i 0.506495i
\(201\) 0 0
\(202\) 3.27921 + 1.89325i 0.230724 + 0.133209i
\(203\) 7.13278i 0.500623i
\(204\) 0 0
\(205\) −0.275006 0.476325i −0.0192073 0.0332680i
\(206\) 5.89623 3.40419i 0.410810 0.237181i
\(207\) 0 0
\(208\) 3.09067 + 1.85681i 0.214299 + 0.128747i
\(209\) 13.9394 0.964207
\(210\) 0 0
\(211\) 3.98072 + 6.89481i 0.274044 + 0.474658i 0.969893 0.243530i \(-0.0783053\pi\)
−0.695849 + 0.718188i \(0.744972\pi\)
\(212\) −1.96300 + 3.40002i −0.134820 + 0.233515i
\(213\) 0 0
\(214\) −12.3856 7.15083i −0.846663 0.488821i
\(215\) −0.997308 0.575796i −0.0680158 0.0392690i
\(216\) 0 0
\(217\) −0.391192 + 0.677564i −0.0265558 + 0.0459960i
\(218\) −2.28834 3.96353i −0.154986 0.268444i
\(219\) 0 0
\(220\) 9.35259 0.630552
\(221\) −0.370958 + 21.3242i −0.0249533 + 1.43442i
\(222\) 0 0
\(223\) −18.6557 + 10.7709i −1.24928 + 0.721271i −0.970965 0.239220i \(-0.923108\pi\)
−0.278312 + 0.960491i \(0.589775\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 3.01297i 0.200419i
\(227\) −3.16767 1.82886i −0.210246 0.121385i 0.391180 0.920314i \(-0.372067\pi\)
−0.601426 + 0.798929i \(0.705400\pi\)
\(228\) 0 0
\(229\) 9.74752i 0.644134i 0.946717 + 0.322067i \(0.104378\pi\)
−0.946717 + 0.322067i \(0.895622\pi\)
\(230\) 12.2982 21.3012i 0.810922 1.40456i
\(231\) 0 0
\(232\) −6.17717 + 3.56639i −0.405551 + 0.234145i
\(233\) 2.72895 0.178779 0.0893897 0.995997i \(-0.471508\pi\)
0.0893897 + 0.995997i \(0.471508\pi\)
\(234\) 0 0
\(235\) −5.58568 −0.364370
\(236\) −8.26207 + 4.77011i −0.537815 + 0.310508i
\(237\) 0 0
\(238\) −2.95758 + 5.12268i −0.191712 + 0.332054i
\(239\) 12.2347i 0.791400i −0.918380 0.395700i \(-0.870502\pi\)
0.918380 0.395700i \(-0.129498\pi\)
\(240\) 0 0
\(241\) −20.9731 12.1088i −1.35100 0.779998i −0.362607 0.931942i \(-0.618113\pi\)
−0.988389 + 0.151944i \(0.951447\pi\)
\(242\) 3.80839i 0.244812i
\(243\) 0 0
\(244\) 7.70525 + 13.3459i 0.493278 + 0.854383i
\(245\) −3.02030 + 1.74377i −0.192960 + 0.111405i
\(246\) 0 0
\(247\) −18.7386 0.325978i −1.19231 0.0207415i
\(248\) −0.782383 −0.0496814
\(249\) 0 0
\(250\) 3.77163 + 6.53265i 0.238539 + 0.413161i
\(251\) −1.00685 + 1.74392i −0.0635521 + 0.110075i −0.896051 0.443952i \(-0.853576\pi\)
0.832499 + 0.554027i \(0.186910\pi\)
\(252\) 0 0
\(253\) 16.3794 + 9.45665i 1.02976 + 0.594534i
\(254\) −9.63501 5.56278i −0.604554 0.349040i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.07109 + 1.85518i 0.0668127 + 0.115723i 0.897497 0.441021i \(-0.145384\pi\)
−0.830684 + 0.556744i \(0.812050\pi\)
\(258\) 0 0
\(259\) 7.81450 0.485570
\(260\) −12.5726 0.218714i −0.779719 0.0135641i
\(261\) 0 0
\(262\) 12.9139 7.45584i 0.797823 0.460623i
\(263\) −5.43131 9.40731i −0.334909 0.580080i 0.648558 0.761165i \(-0.275372\pi\)
−0.983467 + 0.181085i \(0.942039\pi\)
\(264\) 0 0
\(265\) 13.6921i 0.841099i
\(266\) −4.50154 2.59896i −0.276007 0.159353i
\(267\) 0 0
\(268\) 0.966765i 0.0590546i
\(269\) −7.40257 + 12.8216i −0.451343 + 0.781749i −0.998470 0.0553009i \(-0.982388\pi\)
0.547127 + 0.837050i \(0.315722\pi\)
\(270\) 0 0
\(271\) 0.0559765 0.0323180i 0.00340033 0.00196318i −0.498299 0.867005i \(-0.666042\pi\)
0.501699 + 0.865042i \(0.332708\pi\)
\(272\) −5.91517 −0.358660
\(273\) 0 0
\(274\) −15.4617 −0.934077
\(275\) −16.6354 + 9.60446i −1.00315 + 0.579171i
\(276\) 0 0
\(277\) 2.12558 3.68160i 0.127713 0.221206i −0.795077 0.606509i \(-0.792570\pi\)
0.922790 + 0.385302i \(0.125903\pi\)
\(278\) 14.3022i 0.857789i
\(279\) 0 0
\(280\) −3.02030 1.74377i −0.180497 0.104210i
\(281\) 11.0454i 0.658916i 0.944170 + 0.329458i \(0.106866\pi\)
−0.944170 + 0.329458i \(0.893134\pi\)
\(282\) 0 0
\(283\) 5.64271 + 9.77346i 0.335424 + 0.580972i 0.983566 0.180548i \(-0.0577870\pi\)
−0.648142 + 0.761520i \(0.724454\pi\)
\(284\) −3.62568 + 2.09329i −0.215145 + 0.124214i
\(285\) 0 0
\(286\) 0.168179 9.66761i 0.00994461 0.571658i
\(287\) −0.157708 −0.00930922
\(288\) 0 0
\(289\) −8.99459 15.5791i −0.529094 0.916417i
\(290\) 12.4379 21.5431i 0.730380 1.26506i
\(291\) 0 0
\(292\) −13.0216 7.51803i −0.762032 0.439959i
\(293\) 22.5549 + 13.0221i 1.31767 + 0.760758i 0.983354 0.181703i \(-0.0581609\pi\)
0.334318 + 0.942460i \(0.391494\pi\)
\(294\) 0 0
\(295\) 16.6359 28.8143i 0.968581 1.67763i
\(296\) 3.90725 + 6.76756i 0.227104 + 0.393356i
\(297\) 0 0
\(298\) −3.55717 −0.206062
\(299\) −21.7975 13.0955i −1.26058 0.757333i
\(300\) 0 0
\(301\) −0.285963 + 0.165101i −0.0164827 + 0.00951627i
\(302\) 4.76370 + 8.25097i 0.274120 + 0.474790i
\(303\) 0 0
\(304\) 5.19793i 0.298122i
\(305\) −46.5443 26.8724i −2.66512 1.53871i
\(306\) 0 0
\(307\) 25.0551i 1.42997i −0.699139 0.714986i \(-0.746433\pi\)
0.699139 0.714986i \(-0.253567\pi\)
\(308\) 1.34086 2.32244i 0.0764025 0.132333i
\(309\) 0 0
\(310\) 2.36303 1.36430i 0.134211 0.0774868i
\(311\) 32.4330 1.83911 0.919554 0.392964i \(-0.128550\pi\)
0.919554 + 0.392964i \(0.128550\pi\)
\(312\) 0 0
\(313\) 2.22517 0.125774 0.0628870 0.998021i \(-0.479969\pi\)
0.0628870 + 0.998021i \(0.479969\pi\)
\(314\) −18.0432 + 10.4173i −1.01824 + 0.587880i
\(315\) 0 0
\(316\) −0.146678 + 0.254054i −0.00825129 + 0.0142917i
\(317\) 3.83753i 0.215537i −0.994176 0.107769i \(-0.965629\pi\)
0.994176 0.107769i \(-0.0343706\pi\)
\(318\) 0 0
\(319\) 16.5654 + 9.56406i 0.927486 + 0.535484i
\(320\) 3.48754i 0.194959i
\(321\) 0 0
\(322\) −3.52634 6.10780i −0.196515 0.340374i
\(323\) 26.6273 15.3733i 1.48158 0.855393i
\(324\) 0 0
\(325\) 22.5874 12.5222i 1.25292 0.694604i
\(326\) −6.30603 −0.349259
\(327\) 0 0
\(328\) −0.0788541 0.136579i −0.00435399 0.00754133i
\(329\) −0.800806 + 1.38704i −0.0441499 + 0.0764698i
\(330\) 0 0
\(331\) 5.26859 + 3.04182i 0.289588 + 0.167194i 0.637756 0.770238i \(-0.279863\pi\)
−0.348168 + 0.937432i \(0.613196\pi\)
\(332\) 2.48978 + 1.43747i 0.136644 + 0.0788916i
\(333\) 0 0
\(334\) 3.33436 5.77528i 0.182448 0.316009i
\(335\) 1.68581 + 2.91992i 0.0921059 + 0.159532i
\(336\) 0 0
\(337\) −19.3746 −1.05540 −0.527700 0.849431i \(-0.676946\pi\)
−0.527700 + 0.849431i \(0.676946\pi\)
\(338\) −0.452161 + 12.9921i −0.0245943 + 0.706679i
\(339\) 0 0
\(340\) 17.8656 10.3147i 0.968896 0.559392i
\(341\) 1.04907 + 1.81703i 0.0568101 + 0.0983980i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −0.285963 0.165101i −0.0154181 0.00890165i
\(345\) 0 0
\(346\) 21.3192i 1.14613i
\(347\) −4.51028 + 7.81203i −0.242124 + 0.419372i −0.961319 0.275437i \(-0.911178\pi\)
0.719195 + 0.694809i \(0.244511\pi\)
\(348\) 0 0
\(349\) 6.04213 3.48843i 0.323428 0.186731i −0.329492 0.944159i \(-0.606877\pi\)
0.652919 + 0.757427i \(0.273544\pi\)
\(350\) 7.16292 0.382874
\(351\) 0 0
\(352\) 2.68172 0.142936
\(353\) 21.6841 12.5193i 1.15413 0.666335i 0.204237 0.978922i \(-0.434529\pi\)
0.949889 + 0.312587i \(0.101195\pi\)
\(354\) 0 0
\(355\) 7.30042 12.6447i 0.387466 0.671111i
\(356\) 5.21325i 0.276302i
\(357\) 0 0
\(358\) 13.3701 + 7.71921i 0.706630 + 0.407973i
\(359\) 37.6090i 1.98493i −0.122545 0.992463i \(-0.539106\pi\)
0.122545 0.992463i \(-0.460894\pi\)
\(360\) 0 0
\(361\) 4.00922 + 6.94418i 0.211012 + 0.365483i
\(362\) 11.5024 6.64092i 0.604553 0.349039i
\(363\) 0 0
\(364\) −1.85681 + 3.09067i −0.0973235 + 0.161995i
\(365\) 52.4388 2.74477
\(366\) 0 0
\(367\) −10.5455 18.2653i −0.550470 0.953442i −0.998241 0.0592934i \(-0.981115\pi\)
0.447771 0.894148i \(-0.352218\pi\)
\(368\) 3.52634 6.10780i 0.183823 0.318391i
\(369\) 0 0
\(370\) −23.6021 13.6267i −1.22702 0.708418i
\(371\) −3.40002 1.96300i −0.176520 0.101914i
\(372\) 0 0
\(373\) −7.04708 + 12.2059i −0.364884 + 0.631998i −0.988758 0.149528i \(-0.952225\pi\)
0.623874 + 0.781525i \(0.285558\pi\)
\(374\) 7.93141 + 13.7376i 0.410123 + 0.710354i
\(375\) 0 0
\(376\) −1.60161 −0.0825968
\(377\) −22.0451 13.2443i −1.13538 0.682114i
\(378\) 0 0
\(379\) 28.6773 16.5568i 1.47305 0.850467i 0.473512 0.880787i \(-0.342986\pi\)
0.999540 + 0.0303204i \(0.00965277\pi\)
\(380\) 9.06398 + 15.6993i 0.464973 + 0.805356i
\(381\) 0 0
\(382\) 11.9246i 0.610115i
\(383\) 22.4578 + 12.9660i 1.14754 + 0.662534i 0.948287 0.317414i \(-0.102814\pi\)
0.199255 + 0.979948i \(0.436148\pi\)
\(384\) 0 0
\(385\) 9.35259i 0.476652i
\(386\) −2.67468 + 4.63268i −0.136138 + 0.235797i
\(387\) 0 0
\(388\) −2.73617 + 1.57973i −0.138908 + 0.0801986i
\(389\) 30.5647 1.54969 0.774847 0.632149i \(-0.217827\pi\)
0.774847 + 0.632149i \(0.217827\pi\)
\(390\) 0 0
\(391\) 41.7178 2.10976
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) −6.59688 + 11.4261i −0.332346 + 0.575641i
\(395\) 1.02309i 0.0514773i
\(396\) 0 0
\(397\) 19.4521 + 11.2307i 0.976275 + 0.563653i 0.901144 0.433521i \(-0.142729\pi\)
0.0751317 + 0.997174i \(0.476062\pi\)
\(398\) 20.0516i 1.00509i
\(399\) 0 0
\(400\) 3.58146 + 6.20327i 0.179073 + 0.310163i
\(401\) 14.7473 8.51438i 0.736447 0.425188i −0.0843289 0.996438i \(-0.526875\pi\)
0.820776 + 0.571250i \(0.193541\pi\)
\(402\) 0 0
\(403\) −1.36776 2.46715i −0.0681328 0.122898i
\(404\) −3.78650 −0.188386
\(405\) 0 0
\(406\) −3.56639 6.17717i −0.176997 0.306568i
\(407\) 10.4781 18.1487i 0.519382 0.899597i
\(408\) 0 0
\(409\) 4.44731 + 2.56766i 0.219906 + 0.126963i 0.605907 0.795536i \(-0.292811\pi\)
−0.386001 + 0.922498i \(0.626144\pi\)
\(410\) 0.476325 + 0.275006i 0.0235240 + 0.0135816i
\(411\) 0 0
\(412\) −3.40419 + 5.89623i −0.167713 + 0.290487i
\(413\) −4.77011 8.26207i −0.234722 0.406550i
\(414\) 0 0
\(415\) −10.0265 −0.492181
\(416\) −3.60501 0.0627130i −0.176750 0.00307476i
\(417\) 0 0
\(418\) −12.0719 + 6.96969i −0.590454 + 0.340899i
\(419\) −15.9418 27.6120i −0.778808 1.34893i −0.932629 0.360836i \(-0.882491\pi\)
0.153822 0.988099i \(-0.450842\pi\)
\(420\) 0 0
\(421\) 14.7648i 0.719594i −0.933031 0.359797i \(-0.882846\pi\)
0.933031 0.359797i \(-0.117154\pi\)
\(422\) −6.89481 3.98072i −0.335634 0.193778i
\(423\) 0 0
\(424\) 3.92601i 0.190664i
\(425\) −21.1849 + 36.6934i −1.02762 + 1.77989i
\(426\) 0 0
\(427\) −13.3459 + 7.70525i −0.645853 + 0.372883i
\(428\) 14.3017 0.691297
\(429\) 0 0
\(430\) 1.15159 0.0555347
\(431\) −30.4051 + 17.5544i −1.46456 + 0.845565i −0.999217 0.0395640i \(-0.987403\pi\)
−0.465345 + 0.885129i \(0.654070\pi\)
\(432\) 0 0
\(433\) −1.98625 + 3.44029i −0.0954533 + 0.165330i −0.909798 0.415052i \(-0.863763\pi\)
0.814344 + 0.580382i \(0.197097\pi\)
\(434\) 0.782383i 0.0375556i
\(435\) 0 0
\(436\) 3.96353 + 2.28834i 0.189819 + 0.109592i
\(437\) 36.6593i 1.75365i
\(438\) 0 0
\(439\) 2.87638 + 4.98204i 0.137282 + 0.237780i 0.926467 0.376376i \(-0.122830\pi\)
−0.789185 + 0.614156i \(0.789497\pi\)
\(440\) −8.09958 + 4.67630i −0.386133 + 0.222934i
\(441\) 0 0
\(442\) −10.3408 18.6528i −0.491864 0.887222i
\(443\) 27.0804 1.28663 0.643315 0.765602i \(-0.277559\pi\)
0.643315 + 0.765602i \(0.277559\pi\)
\(444\) 0 0
\(445\) −9.09070 15.7456i −0.430941 0.746411i
\(446\) 10.7709 18.6557i 0.510015 0.883373i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) −7.14396 4.12457i −0.337145 0.194650i 0.321864 0.946786i \(-0.395691\pi\)
−0.659009 + 0.752135i \(0.729024\pi\)
\(450\) 0 0
\(451\) −0.211464 + 0.366267i −0.00995747 + 0.0172468i
\(452\) 1.50648 + 2.60930i 0.0708590 + 0.122731i
\(453\) 0 0
\(454\) 3.65771 0.171665
\(455\) 0.218714 12.5726i 0.0102535 0.589412i
\(456\) 0 0
\(457\) 33.5123 19.3483i 1.56764 0.905077i 0.571197 0.820813i \(-0.306479\pi\)
0.996443 0.0842643i \(-0.0268540\pi\)
\(458\) −4.87376 8.44160i −0.227736 0.394450i
\(459\) 0 0
\(460\) 24.5965i 1.14682i
\(461\) −11.3751 6.56742i −0.529792 0.305875i 0.211140 0.977456i \(-0.432282\pi\)
−0.740932 + 0.671581i \(0.765616\pi\)
\(462\) 0 0
\(463\) 6.98417i 0.324582i −0.986743 0.162291i \(-0.948112\pi\)
0.986743 0.162291i \(-0.0518883\pi\)
\(464\) 3.56639 6.17717i 0.165566 0.286768i
\(465\) 0 0
\(466\) −2.36334 + 1.36448i −0.109480 + 0.0632081i
\(467\) −5.62691 −0.260382 −0.130191 0.991489i \(-0.541559\pi\)
−0.130191 + 0.991489i \(0.541559\pi\)
\(468\) 0 0
\(469\) 0.966765 0.0446411
\(470\) 4.83734 2.79284i 0.223130 0.128824i
\(471\) 0 0
\(472\) 4.77011 8.26207i 0.219562 0.380292i
\(473\) 0.885509i 0.0407158i
\(474\) 0 0
\(475\) −32.2441 18.6162i −1.47946 0.854168i
\(476\) 5.91517i 0.271121i
\(477\) 0 0
\(478\) 6.11737 + 10.5956i 0.279802 + 0.484632i
\(479\) −21.7538 + 12.5596i −0.993956 + 0.573861i −0.906454 0.422304i \(-0.861222\pi\)
−0.0875014 + 0.996164i \(0.527888\pi\)
\(480\) 0 0
\(481\) −14.5101 + 24.1520i −0.661602 + 1.10124i
\(482\) 24.2176 1.10308
\(483\) 0 0
\(484\) 1.90419 + 3.29816i 0.0865542 + 0.149916i
\(485\) 5.50936 9.54249i 0.250167 0.433302i
\(486\) 0 0
\(487\) −15.3077 8.83791i −0.693659 0.400484i 0.111323 0.993784i \(-0.464491\pi\)
−0.804981 + 0.593300i \(0.797825\pi\)
\(488\) −13.3459 7.70525i −0.604140 0.348800i
\(489\) 0 0
\(490\) 1.74377 3.02030i 0.0787754 0.136443i
\(491\) −15.9975 27.7084i −0.721956 1.25046i −0.960215 0.279262i \(-0.909910\pi\)
0.238259 0.971202i \(-0.423423\pi\)
\(492\) 0 0
\(493\) 42.1916 1.90021
\(494\) 16.3911 9.08697i 0.737468 0.408842i
\(495\) 0 0
\(496\) 0.677564 0.391192i 0.0304235 0.0175650i
\(497\) −2.09329 3.62568i −0.0938968 0.162634i
\(498\) 0 0
\(499\) 11.6416i 0.521149i −0.965454 0.260574i \(-0.916088\pi\)
0.965454 0.260574i \(-0.0839119\pi\)
\(500\) −6.53265 3.77163i −0.292149 0.168672i
\(501\) 0 0
\(502\) 2.01371i 0.0898762i
\(503\) 7.51764 13.0209i 0.335195 0.580574i −0.648327 0.761362i \(-0.724531\pi\)
0.983522 + 0.180787i \(0.0578645\pi\)
\(504\) 0 0
\(505\) 11.4364 6.60278i 0.508911 0.293820i
\(506\) −18.9133 −0.840798
\(507\) 0 0
\(508\) 11.1256 0.493616
\(509\) −2.21786 + 1.28048i −0.0983047 + 0.0567563i −0.548346 0.836251i \(-0.684742\pi\)
0.450042 + 0.893008i \(0.351409\pi\)
\(510\) 0 0
\(511\) 7.51803 13.0216i 0.332578 0.576042i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −1.85518 1.07109i −0.0818285 0.0472437i
\(515\) 23.7445i 1.04631i
\(516\) 0 0
\(517\) 2.14754 + 3.71964i 0.0944485 + 0.163590i
\(518\) −6.76756 + 3.90725i −0.297349 + 0.171675i
\(519\) 0 0
\(520\) 10.9975 6.09688i 0.482274 0.267366i
\(521\) 31.0544 1.36052 0.680259 0.732972i \(-0.261867\pi\)
0.680259 + 0.732972i \(0.261867\pi\)
\(522\) 0 0
\(523\) 2.18180 + 3.77899i 0.0954035 + 0.165244i 0.909777 0.415098i \(-0.136253\pi\)
−0.814373 + 0.580341i \(0.802919\pi\)
\(524\) −7.45584 + 12.9139i −0.325710 + 0.564146i
\(525\) 0 0
\(526\) 9.40731 + 5.43131i 0.410178 + 0.236817i
\(527\) 4.00790 + 2.31396i 0.174587 + 0.100798i
\(528\) 0 0
\(529\) −13.3701 + 23.1577i −0.581310 + 1.00686i
\(530\) 6.84605 + 11.8577i 0.297374 + 0.515066i
\(531\) 0 0
\(532\) 5.19793 0.225359
\(533\) 0.292835 0.487424i 0.0126841 0.0211127i
\(534\) 0 0
\(535\) −43.1953 + 24.9388i −1.86749 + 1.07820i
\(536\) 0.483382 + 0.837243i 0.0208789 + 0.0361634i
\(537\) 0 0
\(538\) 14.8051i 0.638295i
\(539\) 2.32244 + 1.34086i 0.100034 + 0.0577549i
\(540\) 0 0
\(541\) 17.2191i 0.740305i 0.928971 + 0.370152i \(0.120695\pi\)
−0.928971 + 0.370152i \(0.879305\pi\)
\(542\) −0.0323180 + 0.0559765i −0.00138818 + 0.00240440i
\(543\) 0 0
\(544\) 5.12268 2.95758i 0.219633 0.126805i
\(545\) −15.9614 −0.683710
\(546\) 0 0
\(547\) 42.8331 1.83141 0.915706 0.401849i \(-0.131632\pi\)
0.915706 + 0.401849i \(0.131632\pi\)
\(548\) 13.3902 7.73086i 0.572003 0.330246i
\(549\) 0 0
\(550\) 9.60446 16.6354i 0.409536 0.709337i
\(551\) 37.0757i 1.57948i
\(552\) 0 0
\(553\) −0.254054 0.146678i −0.0108035 0.00623739i
\(554\) 4.25115i 0.180614i
\(555\) 0 0
\(556\) 7.15110 + 12.3861i 0.303274 + 0.525286i
\(557\) 20.9756 12.1103i 0.888765 0.513129i 0.0152269 0.999884i \(-0.495153\pi\)
0.873538 + 0.486755i \(0.161820\pi\)
\(558\) 0 0
\(559\) 0.0207080 1.19038i 0.000875853 0.0503477i
\(560\) 3.48754 0.147375
\(561\) 0 0
\(562\) −5.52272 9.56563i −0.232962 0.403502i
\(563\) 6.62405 11.4732i 0.279170 0.483537i −0.692008 0.721889i \(-0.743274\pi\)
0.971179 + 0.238352i \(0.0766072\pi\)
\(564\) 0 0
\(565\) −9.10005 5.25391i −0.382842 0.221034i
\(566\) −9.77346 5.64271i −0.410809 0.237181i
\(567\) 0 0
\(568\) 2.09329 3.62568i 0.0878324 0.152130i
\(569\) 12.4960 + 21.6438i 0.523861 + 0.907354i 0.999614 + 0.0277752i \(0.00884224\pi\)
−0.475753 + 0.879579i \(0.657824\pi\)
\(570\) 0 0
\(571\) 22.5276 0.942750 0.471375 0.881933i \(-0.343758\pi\)
0.471375 + 0.881933i \(0.343758\pi\)
\(572\) 4.68816 + 8.45649i 0.196022 + 0.353583i
\(573\) 0 0
\(574\) 0.136579 0.0788541i 0.00570071 0.00329130i
\(575\) −25.2589 43.7496i −1.05337 1.82449i
\(576\) 0 0
\(577\) 12.9848i 0.540564i 0.962781 + 0.270282i \(0.0871170\pi\)
−0.962781 + 0.270282i \(0.912883\pi\)
\(578\) 15.5791 + 8.99459i 0.648005 + 0.374126i
\(579\) 0 0
\(580\) 24.8758i 1.03291i
\(581\) −1.43747 + 2.48978i −0.0596364 + 0.103293i
\(582\) 0 0
\(583\) −9.11791 + 5.26423i −0.377625 + 0.218022i
\(584\) 15.0361 0.622197
\(585\) 0 0
\(586\) −26.0442 −1.07587
\(587\) −3.02617 + 1.74716i −0.124903 + 0.0721131i −0.561150 0.827714i \(-0.689641\pi\)
0.436246 + 0.899827i \(0.356308\pi\)
\(588\) 0 0
\(589\) −2.03339 + 3.52193i −0.0837842 + 0.145118i
\(590\) 33.2719i 1.36978i
\(591\) 0 0
\(592\) −6.76756 3.90725i −0.278145 0.160587i
\(593\) 23.2140i 0.953283i −0.879098 0.476642i \(-0.841854\pi\)
0.879098 0.476642i \(-0.158146\pi\)
\(594\) 0 0
\(595\) 10.3147 + 17.8656i 0.422861 + 0.732416i
\(596\) 3.08060 1.77859i 0.126186 0.0728538i
\(597\) 0 0
\(598\) 25.4249 + 0.442294i 1.03970 + 0.0180868i
\(599\) −18.3645 −0.750354 −0.375177 0.926953i \(-0.622418\pi\)
−0.375177 + 0.926953i \(0.622418\pi\)
\(600\) 0 0
\(601\) 2.37983 + 4.12198i 0.0970751 + 0.168139i 0.910473 0.413569i \(-0.135718\pi\)
−0.813398 + 0.581708i \(0.802385\pi\)
\(602\) 0.165101 0.285963i 0.00672902 0.0116550i
\(603\) 0 0
\(604\) −8.25097 4.76370i −0.335727 0.193832i
\(605\) −11.5025 6.64094i −0.467641 0.269993i
\(606\) 0 0
\(607\) −10.4828 + 18.1568i −0.425484 + 0.736960i −0.996466 0.0840029i \(-0.973230\pi\)
0.570981 + 0.820963i \(0.306563\pi\)
\(608\) 2.59896 + 4.50154i 0.105402 + 0.182561i
\(609\) 0 0
\(610\) 53.7447 2.17606
\(611\) −2.79992 5.05050i −0.113273 0.204321i
\(612\) 0 0
\(613\) −25.3853 + 14.6562i −1.02530 + 0.591959i −0.915635 0.402010i \(-0.868312\pi\)
−0.109667 + 0.993968i \(0.534978\pi\)
\(614\) 12.5276 + 21.6984i 0.505571 + 0.875675i
\(615\) 0 0
\(616\) 2.68172i 0.108050i
\(617\) 4.55827 + 2.63172i 0.183509 + 0.105949i 0.588940 0.808177i \(-0.299545\pi\)
−0.405431 + 0.914125i \(0.632879\pi\)
\(618\) 0 0
\(619\) 10.9663i 0.440774i 0.975413 + 0.220387i \(0.0707320\pi\)
−0.975413 + 0.220387i \(0.929268\pi\)
\(620\) −1.36430 + 2.36303i −0.0547914 + 0.0949015i
\(621\) 0 0
\(622\) −28.0878 + 16.2165i −1.12622 + 0.650223i
\(623\) −5.21325 −0.208864
\(624\) 0 0
\(625\) −9.50720 −0.380288
\(626\) −1.92705 + 1.11259i −0.0770206 + 0.0444678i
\(627\) 0 0
\(628\) 10.4173 18.0432i 0.415694 0.720003i
\(629\) 46.2241i 1.84307i
\(630\) 0 0
\(631\) −21.0642 12.1614i −0.838553 0.484139i 0.0182188 0.999834i \(-0.494200\pi\)
−0.856772 + 0.515695i \(0.827534\pi\)
\(632\) 0.293356i 0.0116691i
\(633\) 0 0
\(634\) 1.91877 + 3.32340i 0.0762039 + 0.131989i
\(635\) −33.6025 + 19.4004i −1.33347 + 0.769881i
\(636\) 0 0
\(637\) −3.09067 1.85681i −0.122457 0.0735696i
\(638\) −19.1281 −0.757289
\(639\) 0 0
\(640\) 1.74377 + 3.02030i 0.0689285 + 0.119388i
\(641\) −0.650592 + 1.12686i −0.0256968 + 0.0445082i −0.878588 0.477581i \(-0.841514\pi\)
0.852891 + 0.522089i \(0.174847\pi\)
\(642\) 0 0
\(643\) 4.87547 + 2.81485i 0.192270 + 0.111007i 0.593045 0.805170i \(-0.297926\pi\)
−0.400775 + 0.916177i \(0.631259\pi\)
\(644\) 6.10780 + 3.52634i 0.240681 + 0.138957i
\(645\) 0 0
\(646\) −15.3733 + 26.6273i −0.604854 + 1.04764i
\(647\) 5.90635 + 10.2301i 0.232202 + 0.402186i 0.958456 0.285241i \(-0.0920735\pi\)
−0.726254 + 0.687427i \(0.758740\pi\)
\(648\) 0 0
\(649\) −25.5842 −1.00427
\(650\) −13.3002 + 22.1382i −0.521677 + 0.868332i
\(651\) 0 0
\(652\) 5.46119 3.15302i 0.213877 0.123482i
\(653\) −1.56006 2.70211i −0.0610500 0.105742i 0.833885 0.551938i \(-0.186112\pi\)
−0.894935 + 0.446196i \(0.852778\pi\)
\(654\) 0 0
\(655\) 52.0050i 2.03201i
\(656\) 0.136579 + 0.0788541i 0.00533252 + 0.00307873i
\(657\) 0 0
\(658\) 1.60161i 0.0624373i
\(659\) 18.7533 32.4817i 0.730526 1.26531i −0.226133 0.974096i \(-0.572608\pi\)
0.956659 0.291211i \(-0.0940583\pi\)
\(660\) 0 0
\(661\) 30.9817 17.8873i 1.20505 0.695735i 0.243375 0.969932i \(-0.421746\pi\)
0.961673 + 0.274198i \(0.0884122\pi\)
\(662\) −6.08365 −0.236448
\(663\) 0 0
\(664\) −2.87495 −0.111570
\(665\) −15.6993 + 9.06398i −0.608792 + 0.351486i
\(666\) 0 0
\(667\) −25.1526 + 43.5656i −0.973913 + 1.68687i
\(668\) 6.66871i 0.258020i
\(669\) 0 0
\(670\) −2.91992 1.68581i −0.112806 0.0651287i
\(671\) 41.3266i 1.59540i
\(672\) 0 0
\(673\) −4.31081 7.46655i −0.166170 0.287814i 0.770900 0.636956i \(-0.219807\pi\)
−0.937070 + 0.349141i \(0.886473\pi\)
\(674\) 16.7789 9.68729i 0.646298 0.373140i
\(675\) 0 0
\(676\) −6.10448 11.4776i −0.234788 0.441446i
\(677\) 15.5551 0.597829 0.298915 0.954280i \(-0.403375\pi\)
0.298915 + 0.954280i \(0.403375\pi\)
\(678\) 0 0
\(679\) −1.57973 2.73617i −0.0606244 0.105005i
\(680\) −10.3147 + 17.8656i −0.395550 + 0.685113i
\(681\) 0 0
\(682\) −1.81703 1.04907i −0.0695779 0.0401708i
\(683\) 7.70585 + 4.44898i 0.294856 + 0.170235i 0.640130 0.768267i \(-0.278881\pi\)
−0.345274 + 0.938502i \(0.612214\pi\)
\(684\) 0 0
\(685\) −26.9617 + 46.6990i −1.03015 + 1.78428i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 0 0
\(688\) 0.330202 0.0125888
\(689\) 12.3802 6.86342i 0.471648 0.261475i
\(690\) 0 0
\(691\) −33.0646 + 19.0899i −1.25784 + 0.726213i −0.972654 0.232260i \(-0.925388\pi\)
−0.285184 + 0.958473i \(0.592055\pi\)
\(692\) −10.6596 18.4630i −0.405217 0.701857i
\(693\) 0 0
\(694\) 9.02056i 0.342416i
\(695\) −43.1969 24.9397i −1.63855 0.946018i
\(696\) 0 0
\(697\) 0.932870i 0.0353350i
\(698\) −3.48843 + 6.04213i −0.132039 + 0.228698i
\(699\) 0 0
\(700\) −6.20327 + 3.58146i −0.234462 + 0.135366i
\(701\) −44.0952 −1.66545 −0.832727 0.553684i \(-0.813221\pi\)
−0.832727 + 0.553684i \(0.813221\pi\)
\(702\) 0 0
\(703\) 40.6192 1.53198
\(704\) −2.32244 + 1.34086i −0.0875301 + 0.0505355i
\(705\) 0 0
\(706\) −12.5193 + 21.6841i −0.471170 + 0.816090i
\(707\) 3.78650i 0.142406i
\(708\) 0 0
\(709\) 10.6207 + 6.13185i 0.398868 + 0.230287i 0.685995 0.727606i \(-0.259367\pi\)
−0.287127 + 0.957892i \(0.592700\pi\)
\(710\) 14.6008i 0.547960i
\(711\) 0 0
\(712\) −2.60662 4.51481i −0.0976874 0.169200i
\(713\) −4.77864 + 2.75895i −0.178961 + 0.103323i
\(714\) 0 0
\(715\) −28.9058 17.3660i −1.08101 0.649453i
\(716\) −15.4384 −0.576961
\(717\) 0 0
\(718\) 18.8045 + 32.5703i 0.701777 + 1.21551i
\(719\) −13.5967 + 23.5501i −0.507070 + 0.878272i 0.492896 + 0.870088i \(0.335938\pi\)
−0.999967 + 0.00818343i \(0.997395\pi\)
\(720\) 0 0
\(721\) −5.89623 3.40419i −0.219587 0.126779i
\(722\) −6.94418 4.00922i −0.258436 0.149208i
\(723\) 0 0
\(724\) −6.64092 + 11.5024i −0.246808 + 0.427484i
\(725\) −25.5458 44.2466i −0.948746 1.64328i
\(726\) 0 0
\(727\) −18.5289 −0.687200 −0.343600 0.939116i \(-0.611646\pi\)
−0.343600 + 0.939116i \(0.611646\pi\)
\(728\) 0.0627130 3.60501i 0.00232430 0.133610i
\(729\) 0 0
\(730\) −45.4134 + 26.2194i −1.68082 + 0.970424i
\(731\) 0.976600 + 1.69152i 0.0361209 + 0.0625632i
\(732\) 0 0
\(733\) 50.8986i 1.87998i −0.341196 0.939992i \(-0.610832\pi\)
0.341196 0.939992i \(-0.389168\pi\)
\(734\) 18.2653 + 10.5455i 0.674185 + 0.389241i
\(735\) 0 0
\(736\) 7.05268i 0.259965i
\(737\) 1.29630 2.24525i 0.0477497 0.0827049i
\(738\) 0 0
\(739\) −7.43889 + 4.29485i −0.273644 + 0.157988i −0.630542 0.776155i \(-0.717168\pi\)
0.356898 + 0.934143i \(0.383834\pi\)
\(740\) 27.2534 1.00185
\(741\) 0 0
\(742\) 3.92601 0.144128
\(743\) −33.0711 + 19.0936i −1.21326 + 0.700477i −0.963468 0.267822i \(-0.913696\pi\)
−0.249794 + 0.968299i \(0.580363\pi\)
\(744\) 0 0
\(745\) −6.20289 + 10.7437i −0.227256 + 0.393619i
\(746\) 14.0942i 0.516024i
\(747\) 0 0
\(748\) −13.7376 7.93141i −0.502296 0.290001i
\(749\) 14.3017i 0.522572i
\(750\) 0 0
\(751\) −1.42486 2.46792i −0.0519937 0.0900558i 0.838857 0.544352i \(-0.183224\pi\)
−0.890851 + 0.454296i \(0.849891\pi\)
\(752\) 1.38704 0.800806i 0.0505800 0.0292024i
\(753\) 0 0
\(754\) 25.7137 + 0.447318i 0.936439 + 0.0162904i
\(755\) 33.2272 1.20926
\(756\) 0 0
\(757\) −9.63950 16.6961i −0.350354 0.606830i 0.635958 0.771724i \(-0.280605\pi\)
−0.986311 + 0.164894i \(0.947272\pi\)
\(758\) −16.5568 + 28.6773i −0.601371 + 1.04161i
\(759\) 0 0
\(760\) −15.6993 9.06398i −0.569473 0.328785i
\(761\) 10.0320 + 5.79199i 0.363660 + 0.209959i 0.670685 0.741742i \(-0.266000\pi\)
−0.307025 + 0.951701i \(0.599334\pi\)
\(762\) 0 0
\(763\) −2.28834 + 3.96353i −0.0828436 + 0.143489i
\(764\) 5.96230 + 10.3270i 0.215708 + 0.373618i
\(765\) 0 0
\(766\) −25.9321 −0.936964
\(767\) 34.3925 + 0.598295i 1.24184 + 0.0216032i
\(768\) 0 0
\(769\) 21.1486 12.2102i 0.762639 0.440310i −0.0676036 0.997712i \(-0.521535\pi\)
0.830242 + 0.557403i \(0.188202\pi\)
\(770\) −4.67630 8.09958i −0.168522 0.291889i
\(771\) 0 0
\(772\) 5.34936i 0.192528i
\(773\) −6.05019 3.49308i −0.217610 0.125637i 0.387233 0.921982i \(-0.373431\pi\)
−0.604843 + 0.796345i \(0.706764\pi\)
\(774\) 0 0
\(775\) 5.60415i 0.201307i
\(776\) 1.57973 2.73617i 0.0567089 0.0982228i
\(777\) 0 0
\(778\) −26.4698 + 15.2824i −0.948989 + 0.547899i
\(779\) −0.819755 −0.0293708
\(780\) 0 0
\(781\) −11.2272 −0.401741
\(782\)