Properties

Label 1638.2.bj.g.127.1
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.1
Root \(0.500000 - 0.399480i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.g.1135.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -3.38938i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -3.38938i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(1.69469 + 2.93529i) q^{10} +(-0.712505 + 0.411365i) q^{11} +(-2.74987 + 2.33200i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-2.29065 + 3.96752i) q^{17} +(-5.11492 - 2.95310i) q^{19} +(-2.93529 - 1.69469i) q^{20} +(0.411365 - 0.712505i) q^{22} +(3.06527 + 5.30921i) q^{23} -6.48787 q^{25} +(1.21546 - 3.39451i) q^{26} +(0.866025 - 0.500000i) q^{28} +(-3.43406 - 5.94797i) q^{29} +4.28683i q^{31} +(0.866025 + 0.500000i) q^{32} -4.58130i q^{34} +(1.69469 - 2.93529i) q^{35} +(-8.39253 + 4.84543i) q^{37} +5.90621 q^{38} +3.38938 q^{40} +(0.0774019 - 0.0446880i) q^{41} +(3.67687 - 6.36853i) q^{43} +0.822730i q^{44} +(-5.30921 - 3.06527i) q^{46} +11.1759i q^{47} +(0.500000 + 0.866025i) q^{49} +(5.61866 - 3.24394i) q^{50} +(0.644638 + 3.54746i) q^{52} +7.01530 q^{53} +(1.39427 + 2.41495i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(5.94797 + 3.43406i) q^{58} +(-1.50790 - 0.870585i) q^{59} +(-1.18972 + 2.06066i) q^{61} +(-2.14342 - 3.71251i) q^{62} -1.00000 q^{64} +(7.90403 + 9.32034i) q^{65} +(0.252636 - 0.145859i) q^{67} +(2.29065 + 3.96752i) q^{68} +3.38938i q^{70} +(-9.48158 - 5.47419i) q^{71} +12.7187i q^{73} +(4.84543 - 8.39253i) q^{74} +(-5.11492 + 2.95310i) q^{76} -0.822730 q^{77} +9.95602 q^{79} +(-2.93529 + 1.69469i) q^{80} +(-0.0446880 + 0.0774019i) q^{82} +3.23553i q^{83} +(13.4474 + 7.76387i) q^{85} +7.35374i q^{86} +(-0.411365 - 0.712505i) q^{88} +(-6.96514 + 4.02133i) q^{89} +(-3.54746 + 0.644638i) q^{91} +6.13055 q^{92} +(-5.58797 - 9.67865i) q^{94} +(-10.0092 + 17.3364i) q^{95} +(12.7945 + 7.38693i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{4} - 2 q^{10} + 18 q^{11} - 8 q^{13} - 12 q^{14} - 6 q^{16} - 4 q^{17} + 12 q^{19} - 2 q^{22} + 6 q^{23} - 24 q^{25} + 14 q^{26} + 10 q^{29} - 2 q^{35} - 6 q^{37} - 8 q^{38} - 4 q^{40} + 24 q^{41} + 26 q^{43} - 6 q^{46} + 6 q^{49} + 12 q^{50} - 4 q^{52} - 36 q^{53} - 6 q^{55} - 6 q^{56} + 24 q^{58} - 6 q^{59} - 28 q^{61} + 2 q^{62} - 12 q^{64} + 34 q^{65} - 42 q^{67} + 4 q^{68} - 48 q^{71} + 12 q^{76} + 4 q^{77} + 44 q^{79} + 6 q^{82} + 54 q^{85} + 2 q^{88} - 12 q^{89} - 16 q^{91} + 12 q^{92} + 8 q^{94} - 32 q^{95} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.38938i 1.51578i −0.652385 0.757888i \(-0.726232\pi\)
0.652385 0.757888i \(-0.273768\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.69469 + 2.93529i 0.535907 + 0.928219i
\(11\) −0.712505 + 0.411365i −0.214828 + 0.124031i −0.603553 0.797323i \(-0.706249\pi\)
0.388725 + 0.921354i \(0.372916\pi\)
\(12\) 0 0
\(13\) −2.74987 + 2.33200i −0.762676 + 0.646781i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.29065 + 3.96752i −0.555564 + 0.962265i 0.442296 + 0.896869i \(0.354164\pi\)
−0.997859 + 0.0653954i \(0.979169\pi\)
\(18\) 0 0
\(19\) −5.11492 2.95310i −1.17344 0.677488i −0.218955 0.975735i \(-0.570265\pi\)
−0.954489 + 0.298247i \(0.903598\pi\)
\(20\) −2.93529 1.69469i −0.656350 0.378944i
\(21\) 0 0
\(22\) 0.411365 0.712505i 0.0877033 0.151907i
\(23\) 3.06527 + 5.30921i 0.639154 + 1.10705i 0.985619 + 0.168984i \(0.0540485\pi\)
−0.346465 + 0.938063i \(0.612618\pi\)
\(24\) 0 0
\(25\) −6.48787 −1.29757
\(26\) 1.21546 3.39451i 0.238370 0.665717i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) −3.43406 5.94797i −0.637690 1.10451i −0.985938 0.167109i \(-0.946557\pi\)
0.348249 0.937402i \(-0.386776\pi\)
\(30\) 0 0
\(31\) 4.28683i 0.769938i 0.922930 + 0.384969i \(0.125788\pi\)
−0.922930 + 0.384969i \(0.874212\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 4.58130i 0.785686i
\(35\) 1.69469 2.93529i 0.286455 0.496154i
\(36\) 0 0
\(37\) −8.39253 + 4.84543i −1.37972 + 0.796584i −0.992126 0.125245i \(-0.960028\pi\)
−0.387598 + 0.921829i \(0.626695\pi\)
\(38\) 5.90621 0.958113
\(39\) 0 0
\(40\) 3.38938 0.535907
\(41\) 0.0774019 0.0446880i 0.0120881 0.00697909i −0.493944 0.869494i \(-0.664445\pi\)
0.506032 + 0.862515i \(0.331112\pi\)
\(42\) 0 0
\(43\) 3.67687 6.36853i 0.560718 0.971191i −0.436716 0.899599i \(-0.643859\pi\)
0.997434 0.0715921i \(-0.0228080\pi\)
\(44\) 0.822730i 0.124031i
\(45\) 0 0
\(46\) −5.30921 3.06527i −0.782800 0.451950i
\(47\) 11.1759i 1.63018i 0.579335 + 0.815089i \(0.303312\pi\)
−0.579335 + 0.815089i \(0.696688\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 5.61866 3.24394i 0.794599 0.458762i
\(51\) 0 0
\(52\) 0.644638 + 3.54746i 0.0893952 + 0.491944i
\(53\) 7.01530 0.963625 0.481813 0.876274i \(-0.339979\pi\)
0.481813 + 0.876274i \(0.339979\pi\)
\(54\) 0 0
\(55\) 1.39427 + 2.41495i 0.188003 + 0.325632i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 5.94797 + 3.43406i 0.781007 + 0.450915i
\(59\) −1.50790 0.870585i −0.196311 0.113340i 0.398622 0.917115i \(-0.369488\pi\)
−0.594934 + 0.803775i \(0.702822\pi\)
\(60\) 0 0
\(61\) −1.18972 + 2.06066i −0.152329 + 0.263841i −0.932083 0.362245i \(-0.882011\pi\)
0.779754 + 0.626085i \(0.215344\pi\)
\(62\) −2.14342 3.71251i −0.272214 0.471489i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.90403 + 9.32034i 0.980374 + 1.15605i
\(66\) 0 0
\(67\) 0.252636 0.145859i 0.0308644 0.0178196i −0.484488 0.874798i \(-0.660994\pi\)
0.515353 + 0.856978i \(0.327661\pi\)
\(68\) 2.29065 + 3.96752i 0.277782 + 0.481132i
\(69\) 0 0
\(70\) 3.38938i 0.405108i
\(71\) −9.48158 5.47419i −1.12526 0.649667i −0.182519 0.983202i \(-0.558425\pi\)
−0.942738 + 0.333535i \(0.891758\pi\)
\(72\) 0 0
\(73\) 12.7187i 1.48861i 0.667841 + 0.744304i \(0.267219\pi\)
−0.667841 + 0.744304i \(0.732781\pi\)
\(74\) 4.84543 8.39253i 0.563270 0.975612i
\(75\) 0 0
\(76\) −5.11492 + 2.95310i −0.586722 + 0.338744i
\(77\) −0.822730 −0.0937588
\(78\) 0 0
\(79\) 9.95602 1.12014 0.560070 0.828445i \(-0.310774\pi\)
0.560070 + 0.828445i \(0.310774\pi\)
\(80\) −2.93529 + 1.69469i −0.328175 + 0.189472i
\(81\) 0 0
\(82\) −0.0446880 + 0.0774019i −0.00493496 + 0.00854761i
\(83\) 3.23553i 0.355146i 0.984108 + 0.177573i \(0.0568246\pi\)
−0.984108 + 0.177573i \(0.943175\pi\)
\(84\) 0 0
\(85\) 13.4474 + 7.76387i 1.45858 + 0.842110i
\(86\) 7.35374i 0.792974i
\(87\) 0 0
\(88\) −0.411365 0.712505i −0.0438517 0.0759533i
\(89\) −6.96514 + 4.02133i −0.738303 + 0.426260i −0.821452 0.570277i \(-0.806836\pi\)
0.0831487 + 0.996537i \(0.473502\pi\)
\(90\) 0 0
\(91\) −3.54746 + 0.644638i −0.371874 + 0.0675764i
\(92\) 6.13055 0.639154
\(93\) 0 0
\(94\) −5.58797 9.67865i −0.576355 0.998277i
\(95\) −10.0092 + 17.3364i −1.02692 + 1.77868i
\(96\) 0 0
\(97\) 12.7945 + 7.38693i 1.29909 + 0.750029i 0.980247 0.197778i \(-0.0633726\pi\)
0.318842 + 0.947808i \(0.396706\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) −3.24394 + 5.61866i −0.324394 + 0.561866i
\(101\) 4.11988 + 7.13584i 0.409943 + 0.710043i 0.994883 0.101034i \(-0.0322151\pi\)
−0.584939 + 0.811077i \(0.698882\pi\)
\(102\) 0 0
\(103\) −13.3231 −1.31277 −0.656383 0.754428i \(-0.727914\pi\)
−0.656383 + 0.754428i \(0.727914\pi\)
\(104\) −2.33200 2.74987i −0.228671 0.269647i
\(105\) 0 0
\(106\) −6.07543 + 3.50765i −0.590098 + 0.340693i
\(107\) −4.51325 7.81717i −0.436312 0.755715i 0.561090 0.827755i \(-0.310382\pi\)
−0.997402 + 0.0720404i \(0.977049\pi\)
\(108\) 0 0
\(109\) 0.397192i 0.0380441i 0.999819 + 0.0190220i \(0.00605527\pi\)
−0.999819 + 0.0190220i \(0.993945\pi\)
\(110\) −2.41495 1.39427i −0.230256 0.132939i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 2.23661 3.87392i 0.210402 0.364428i −0.741438 0.671021i \(-0.765856\pi\)
0.951841 + 0.306594i \(0.0991892\pi\)
\(114\) 0 0
\(115\) 17.9949 10.3894i 1.67803 0.968813i
\(116\) −6.86813 −0.637690
\(117\) 0 0
\(118\) 1.74117 0.160288
\(119\) −3.96752 + 2.29065i −0.363702 + 0.209983i
\(120\) 0 0
\(121\) −5.16156 + 8.94008i −0.469232 + 0.812735i
\(122\) 2.37945i 0.215425i
\(123\) 0 0
\(124\) 3.71251 + 2.14342i 0.333393 + 0.192484i
\(125\) 5.04295i 0.451056i
\(126\) 0 0
\(127\) −0.270063 0.467763i −0.0239642 0.0415073i 0.853795 0.520610i \(-0.174295\pi\)
−0.877759 + 0.479103i \(0.840962\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −11.5053 4.11964i −1.00908 0.361316i
\(131\) 7.72615 0.675037 0.337518 0.941319i \(-0.390413\pi\)
0.337518 + 0.941319i \(0.390413\pi\)
\(132\) 0 0
\(133\) −2.95310 5.11492i −0.256067 0.443520i
\(134\) −0.145859 + 0.252636i −0.0126003 + 0.0218244i
\(135\) 0 0
\(136\) −3.96752 2.29065i −0.340212 0.196421i
\(137\) −10.8600 6.27005i −0.927837 0.535687i −0.0417099 0.999130i \(-0.513281\pi\)
−0.886127 + 0.463443i \(0.846614\pi\)
\(138\) 0 0
\(139\) −6.04868 + 10.4766i −0.513042 + 0.888615i 0.486843 + 0.873489i \(0.338148\pi\)
−0.999886 + 0.0151258i \(0.995185\pi\)
\(140\) −1.69469 2.93529i −0.143227 0.248077i
\(141\) 0 0
\(142\) 10.9484 0.918768
\(143\) 0.999992 2.79276i 0.0836235 0.233543i
\(144\) 0 0
\(145\) −20.1599 + 11.6393i −1.67419 + 0.966594i
\(146\) −6.35934 11.0147i −0.526303 0.911583i
\(147\) 0 0
\(148\) 9.69086i 0.796584i
\(149\) −14.7292 8.50389i −1.20666 0.696666i −0.244633 0.969616i \(-0.578667\pi\)
−0.962028 + 0.272950i \(0.912001\pi\)
\(150\) 0 0
\(151\) 5.54567i 0.451300i −0.974208 0.225650i \(-0.927549\pi\)
0.974208 0.225650i \(-0.0724506\pi\)
\(152\) 2.95310 5.11492i 0.239528 0.414875i
\(153\) 0 0
\(154\) 0.712505 0.411365i 0.0574153 0.0331487i
\(155\) 14.5297 1.16705
\(156\) 0 0
\(157\) 2.29353 0.183044 0.0915218 0.995803i \(-0.470827\pi\)
0.0915218 + 0.995803i \(0.470827\pi\)
\(158\) −8.62217 + 4.97801i −0.685943 + 0.396029i
\(159\) 0 0
\(160\) 1.69469 2.93529i 0.133977 0.232055i
\(161\) 6.13055i 0.483155i
\(162\) 0 0
\(163\) −20.2269 11.6780i −1.58429 0.914691i −0.994223 0.107337i \(-0.965768\pi\)
−0.590068 0.807354i \(-0.700899\pi\)
\(164\) 0.0893760i 0.00697909i
\(165\) 0 0
\(166\) −1.61777 2.80205i −0.125563 0.217482i
\(167\) 18.8603 10.8890i 1.45945 0.842614i 0.460467 0.887677i \(-0.347682\pi\)
0.998984 + 0.0450626i \(0.0143487\pi\)
\(168\) 0 0
\(169\) 2.12355 12.8254i 0.163350 0.986568i
\(170\) −15.5277 −1.19092
\(171\) 0 0
\(172\) −3.67687 6.36853i −0.280359 0.485596i
\(173\) −4.04866 + 7.01249i −0.307814 + 0.533150i −0.977884 0.209148i \(-0.932931\pi\)
0.670070 + 0.742298i \(0.266264\pi\)
\(174\) 0 0
\(175\) −5.61866 3.24394i −0.424731 0.245218i
\(176\) 0.712505 + 0.411365i 0.0537071 + 0.0310078i
\(177\) 0 0
\(178\) 4.02133 6.96514i 0.301411 0.522059i
\(179\) −4.95442 8.58130i −0.370310 0.641397i 0.619303 0.785152i \(-0.287415\pi\)
−0.989613 + 0.143756i \(0.954082\pi\)
\(180\) 0 0
\(181\) 1.27902 0.0950685 0.0475343 0.998870i \(-0.484864\pi\)
0.0475343 + 0.998870i \(0.484864\pi\)
\(182\) 2.74987 2.33200i 0.203834 0.172859i
\(183\) 0 0
\(184\) −5.30921 + 3.06527i −0.391400 + 0.225975i
\(185\) 16.4230 + 28.4454i 1.20744 + 2.09135i
\(186\) 0 0
\(187\) 3.76917i 0.275629i
\(188\) 9.67865 + 5.58797i 0.705888 + 0.407545i
\(189\) 0 0
\(190\) 20.0184i 1.45228i
\(191\) −5.01710 + 8.68988i −0.363025 + 0.628777i −0.988457 0.151501i \(-0.951589\pi\)
0.625432 + 0.780278i \(0.284923\pi\)
\(192\) 0 0
\(193\) −13.7336 + 7.92911i −0.988567 + 0.570750i −0.904846 0.425740i \(-0.860014\pi\)
−0.0837217 + 0.996489i \(0.526681\pi\)
\(194\) −14.7739 −1.06070
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −12.8242 + 7.40403i −0.913683 + 0.527515i −0.881614 0.471971i \(-0.843543\pi\)
−0.0320686 + 0.999486i \(0.510210\pi\)
\(198\) 0 0
\(199\) −1.27771 + 2.21306i −0.0905747 + 0.156880i −0.907753 0.419505i \(-0.862204\pi\)
0.817178 + 0.576385i \(0.195537\pi\)
\(200\) 6.48787i 0.458762i
\(201\) 0 0
\(202\) −7.13584 4.11988i −0.502076 0.289874i
\(203\) 6.86813i 0.482048i
\(204\) 0 0
\(205\) −0.151464 0.262344i −0.0105787 0.0183229i
\(206\) 11.5382 6.66156i 0.803901 0.464133i
\(207\) 0 0
\(208\) 3.39451 + 1.21546i 0.235367 + 0.0842767i
\(209\) 4.85921 0.336119
\(210\) 0 0
\(211\) 4.31824 + 7.47942i 0.297280 + 0.514904i 0.975513 0.219943i \(-0.0705872\pi\)
−0.678233 + 0.734847i \(0.737254\pi\)
\(212\) 3.50765 6.07543i 0.240906 0.417262i
\(213\) 0 0
\(214\) 7.81717 + 4.51325i 0.534371 + 0.308519i
\(215\) −21.5853 12.4623i −1.47211 0.849922i
\(216\) 0 0
\(217\) −2.14342 + 3.71251i −0.145505 + 0.252021i
\(218\) −0.198596 0.343978i −0.0134506 0.0232971i
\(219\) 0 0
\(220\) 2.78854 0.188003
\(221\) −2.95328 16.2519i −0.198659 1.09322i
\(222\) 0 0
\(223\) −17.2579 + 9.96384i −1.15567 + 0.667228i −0.950263 0.311448i \(-0.899186\pi\)
−0.205410 + 0.978676i \(0.565853\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 4.47322i 0.297554i
\(227\) −0.305381 0.176312i −0.0202689 0.0117022i 0.489831 0.871817i \(-0.337058\pi\)
−0.510100 + 0.860115i \(0.670392\pi\)
\(228\) 0 0
\(229\) 8.31317i 0.549350i 0.961537 + 0.274675i \(0.0885702\pi\)
−0.961537 + 0.274675i \(0.911430\pi\)
\(230\) −10.3894 + 17.9949i −0.685054 + 1.18655i
\(231\) 0 0
\(232\) 5.94797 3.43406i 0.390504 0.225457i
\(233\) 15.3798 1.00756 0.503781 0.863831i \(-0.331942\pi\)
0.503781 + 0.863831i \(0.331942\pi\)
\(234\) 0 0
\(235\) 37.8795 2.47098
\(236\) −1.50790 + 0.870585i −0.0981557 + 0.0566702i
\(237\) 0 0
\(238\) 2.29065 3.96752i 0.148481 0.257176i
\(239\) 2.88606i 0.186684i 0.995634 + 0.0933418i \(0.0297549\pi\)
−0.995634 + 0.0933418i \(0.970245\pi\)
\(240\) 0 0
\(241\) −5.42777 3.13372i −0.349633 0.201861i 0.314891 0.949128i \(-0.398032\pi\)
−0.664524 + 0.747267i \(0.731366\pi\)
\(242\) 10.3231i 0.663595i
\(243\) 0 0
\(244\) 1.18972 + 2.06066i 0.0761643 + 0.131920i
\(245\) 2.93529 1.69469i 0.187529 0.108270i
\(246\) 0 0
\(247\) 20.9520 3.80736i 1.33314 0.242257i
\(248\) −4.28683 −0.272214
\(249\) 0 0
\(250\) −2.52148 4.36733i −0.159472 0.276214i
\(251\) −8.63325 + 14.9532i −0.544926 + 0.943839i 0.453686 + 0.891162i \(0.350109\pi\)
−0.998612 + 0.0526775i \(0.983224\pi\)
\(252\) 0 0
\(253\) −4.36805 2.52189i −0.274617 0.158550i
\(254\) 0.467763 + 0.270063i 0.0293501 + 0.0169453i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.59655 + 9.69351i 0.349103 + 0.604664i 0.986090 0.166210i \(-0.0531530\pi\)
−0.636987 + 0.770874i \(0.719820\pi\)
\(258\) 0 0
\(259\) −9.69086 −0.602161
\(260\) 12.0237 2.18492i 0.745676 0.135503i
\(261\) 0 0
\(262\) −6.69104 + 3.86307i −0.413374 + 0.238661i
\(263\) −14.2913 24.7533i −0.881240 1.52635i −0.849963 0.526842i \(-0.823376\pi\)
−0.0312773 0.999511i \(-0.509957\pi\)
\(264\) 0 0
\(265\) 23.7775i 1.46064i
\(266\) 5.11492 + 2.95310i 0.313616 + 0.181066i
\(267\) 0 0
\(268\) 0.291719i 0.0178196i
\(269\) −9.18769 + 15.9135i −0.560183 + 0.970266i 0.437297 + 0.899317i \(0.355936\pi\)
−0.997480 + 0.0709485i \(0.977397\pi\)
\(270\) 0 0
\(271\) 17.6518 10.1913i 1.07227 0.619075i 0.143468 0.989655i \(-0.454174\pi\)
0.928801 + 0.370580i \(0.120841\pi\)
\(272\) 4.58130 0.277782
\(273\) 0 0
\(274\) 12.5401 0.757575
\(275\) 4.62264 2.66888i 0.278756 0.160940i
\(276\) 0 0
\(277\) 3.61609 6.26326i 0.217270 0.376323i −0.736702 0.676217i \(-0.763618\pi\)
0.953972 + 0.299894i \(0.0969514\pi\)
\(278\) 12.0974i 0.725551i
\(279\) 0 0
\(280\) 2.93529 + 1.69469i 0.175417 + 0.101277i
\(281\) 12.4585i 0.743215i 0.928390 + 0.371607i \(0.121193\pi\)
−0.928390 + 0.371607i \(0.878807\pi\)
\(282\) 0 0
\(283\) 6.53035 + 11.3109i 0.388189 + 0.672363i 0.992206 0.124608i \(-0.0397674\pi\)
−0.604017 + 0.796972i \(0.706434\pi\)
\(284\) −9.48158 + 5.47419i −0.562628 + 0.324834i
\(285\) 0 0
\(286\) 0.530363 + 2.91860i 0.0313610 + 0.172580i
\(287\) 0.0893760 0.00527570
\(288\) 0 0
\(289\) −1.99414 3.45395i −0.117302 0.203174i
\(290\) 11.6393 20.1599i 0.683485 1.18383i
\(291\) 0 0
\(292\) 11.0147 + 6.35934i 0.644586 + 0.372152i
\(293\) 12.6078 + 7.27909i 0.736553 + 0.425249i 0.820815 0.571195i \(-0.193520\pi\)
−0.0842617 + 0.996444i \(0.526853\pi\)
\(294\) 0 0
\(295\) −2.95074 + 5.11083i −0.171799 + 0.297564i
\(296\) −4.84543 8.39253i −0.281635 0.487806i
\(297\) 0 0
\(298\) 17.0078 0.985235
\(299\) −20.8102 7.45140i −1.20348 0.430926i
\(300\) 0 0
\(301\) 6.36853 3.67687i 0.367076 0.211931i
\(302\) 2.77283 + 4.80269i 0.159559 + 0.276364i
\(303\) 0 0
\(304\) 5.90621i 0.338744i
\(305\) 6.98436 + 4.03242i 0.399923 + 0.230896i
\(306\) 0 0
\(307\) 3.24267i 0.185069i 0.995709 + 0.0925345i \(0.0294968\pi\)
−0.995709 + 0.0925345i \(0.970503\pi\)
\(308\) −0.411365 + 0.712505i −0.0234397 + 0.0405988i
\(309\) 0 0
\(310\) −12.5831 + 7.26484i −0.714671 + 0.412615i
\(311\) 10.2709 0.582408 0.291204 0.956661i \(-0.405944\pi\)
0.291204 + 0.956661i \(0.405944\pi\)
\(312\) 0 0
\(313\) −6.13382 −0.346704 −0.173352 0.984860i \(-0.555460\pi\)
−0.173352 + 0.984860i \(0.555460\pi\)
\(314\) −1.98625 + 1.14676i −0.112091 + 0.0647157i
\(315\) 0 0
\(316\) 4.97801 8.62217i 0.280035 0.485035i
\(317\) 5.04487i 0.283348i 0.989913 + 0.141674i \(0.0452485\pi\)
−0.989913 + 0.141674i \(0.954752\pi\)
\(318\) 0 0
\(319\) 4.89358 + 2.82531i 0.273988 + 0.158187i
\(320\) 3.38938i 0.189472i
\(321\) 0 0
\(322\) −3.06527 5.30921i −0.170821 0.295871i
\(323\) 23.4330 13.5290i 1.30385 0.752776i
\(324\) 0 0
\(325\) 17.8408 15.1297i 0.989629 0.839246i
\(326\) 23.3560 1.29357
\(327\) 0 0
\(328\) 0.0446880 + 0.0774019i 0.00246748 + 0.00427380i
\(329\) −5.58797 + 9.67865i −0.308075 + 0.533601i
\(330\) 0 0
\(331\) −19.9943 11.5437i −1.09898 0.634499i −0.163030 0.986621i \(-0.552127\pi\)
−0.935954 + 0.352122i \(0.885460\pi\)
\(332\) 2.80205 + 1.61777i 0.153783 + 0.0887865i
\(333\) 0 0
\(334\) −10.8890 + 18.8603i −0.595818 + 1.03199i
\(335\) −0.494372 0.856278i −0.0270104 0.0467834i
\(336\) 0 0
\(337\) 29.1429 1.58751 0.793757 0.608235i \(-0.208122\pi\)
0.793757 + 0.608235i \(0.208122\pi\)
\(338\) 4.57365 + 12.1689i 0.248774 + 0.661900i
\(339\) 0 0
\(340\) 13.4474 7.76387i 0.729288 0.421055i
\(341\) −1.76345 3.05439i −0.0954963 0.165405i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 6.36853 + 3.67687i 0.343368 + 0.198244i
\(345\) 0 0
\(346\) 8.09733i 0.435315i
\(347\) −14.5541 + 25.2085i −0.781306 + 1.35326i 0.149875 + 0.988705i \(0.452113\pi\)
−0.931181 + 0.364557i \(0.881221\pi\)
\(348\) 0 0
\(349\) 22.3263 12.8901i 1.19510 0.689992i 0.235642 0.971840i \(-0.424281\pi\)
0.959459 + 0.281848i \(0.0909475\pi\)
\(350\) 6.48787 0.346791
\(351\) 0 0
\(352\) −0.822730 −0.0438517
\(353\) 8.58906 4.95890i 0.457149 0.263935i −0.253695 0.967284i \(-0.581646\pi\)
0.710845 + 0.703349i \(0.248313\pi\)
\(354\) 0 0
\(355\) −18.5541 + 32.1367i −0.984750 + 1.70564i
\(356\) 8.04265i 0.426260i
\(357\) 0 0
\(358\) 8.58130 + 4.95442i 0.453536 + 0.261849i
\(359\) 25.2683i 1.33361i −0.745233 0.666804i \(-0.767662\pi\)
0.745233 0.666804i \(-0.232338\pi\)
\(360\) 0 0
\(361\) 7.94164 + 13.7553i 0.417981 + 0.723964i
\(362\) −1.10766 + 0.639508i −0.0582174 + 0.0336118i
\(363\) 0 0
\(364\) −1.21546 + 3.39451i −0.0637072 + 0.177920i
\(365\) 43.1084 2.25640
\(366\) 0 0
\(367\) −17.8919 30.9897i −0.933950 1.61765i −0.776496 0.630122i \(-0.783005\pi\)
−0.157454 0.987526i \(-0.550329\pi\)
\(368\) 3.06527 5.30921i 0.159788 0.276762i
\(369\) 0 0
\(370\) −28.4454 16.4230i −1.47881 0.853790i
\(371\) 6.07543 + 3.50765i 0.315420 + 0.182108i
\(372\) 0 0
\(373\) 11.6652 20.2047i 0.604000 1.04616i −0.388209 0.921572i \(-0.626906\pi\)
0.992209 0.124587i \(-0.0397607\pi\)
\(374\) 1.88459 + 3.26420i 0.0974496 + 0.168788i
\(375\) 0 0
\(376\) −11.1759 −0.576355
\(377\) 23.3139 + 8.34790i 1.20073 + 0.429939i
\(378\) 0 0
\(379\) 21.0502 12.1533i 1.08127 0.624274i 0.150034 0.988681i \(-0.452062\pi\)
0.931240 + 0.364407i \(0.118728\pi\)
\(380\) 10.0092 + 17.3364i 0.513460 + 0.889339i
\(381\) 0 0
\(382\) 10.0342i 0.513395i
\(383\) −4.25348 2.45575i −0.217343 0.125483i 0.387376 0.921922i \(-0.373381\pi\)
−0.604719 + 0.796439i \(0.706715\pi\)
\(384\) 0 0
\(385\) 2.78854i 0.142117i
\(386\) 7.92911 13.7336i 0.403581 0.699023i
\(387\) 0 0
\(388\) 12.7945 7.38693i 0.649545 0.375015i
\(389\) 5.14522 0.260873 0.130437 0.991457i \(-0.458362\pi\)
0.130437 + 0.991457i \(0.458362\pi\)
\(390\) 0 0
\(391\) −28.0858 −1.42036
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 7.40403 12.8242i 0.373009 0.646071i
\(395\) 33.7447i 1.69788i
\(396\) 0 0
\(397\) −10.6954 6.17498i −0.536786 0.309913i 0.206990 0.978343i \(-0.433633\pi\)
−0.743775 + 0.668430i \(0.766967\pi\)
\(398\) 2.55543i 0.128092i
\(399\) 0 0
\(400\) 3.24394 + 5.61866i 0.162197 + 0.280933i
\(401\) −28.1366 + 16.2447i −1.40508 + 0.811221i −0.994908 0.100788i \(-0.967864\pi\)
−0.410169 + 0.912010i \(0.634530\pi\)
\(402\) 0 0
\(403\) −9.99689 11.7882i −0.497981 0.587213i
\(404\) 8.23976 0.409943
\(405\) 0 0
\(406\) 3.43406 + 5.94797i 0.170430 + 0.295193i
\(407\) 3.98648 6.90479i 0.197603 0.342258i
\(408\) 0 0
\(409\) 3.26348 + 1.88417i 0.161369 + 0.0931662i 0.578510 0.815676i \(-0.303635\pi\)
−0.417141 + 0.908842i \(0.636968\pi\)
\(410\) 0.262344 + 0.151464i 0.0129563 + 0.00748029i
\(411\) 0 0
\(412\) −6.66156 + 11.5382i −0.328191 + 0.568444i
\(413\) −0.870585 1.50790i −0.0428387 0.0741988i
\(414\) 0 0
\(415\) 10.9664 0.538321
\(416\) −3.54746 + 0.644638i −0.173928 + 0.0316060i
\(417\) 0 0
\(418\) −4.20820 + 2.42961i −0.205830 + 0.118836i
\(419\) −5.26504 9.11931i −0.257214 0.445508i 0.708281 0.705931i \(-0.249471\pi\)
−0.965495 + 0.260423i \(0.916138\pi\)
\(420\) 0 0
\(421\) 24.9973i 1.21830i −0.793057 0.609148i \(-0.791512\pi\)
0.793057 0.609148i \(-0.208488\pi\)
\(422\) −7.47942 4.31824i −0.364092 0.210209i
\(423\) 0 0
\(424\) 7.01530i 0.340693i
\(425\) 14.8614 25.7408i 0.720885 1.24861i
\(426\) 0 0
\(427\) −2.06066 + 1.18972i −0.0997225 + 0.0575748i
\(428\) −9.02649 −0.436312
\(429\) 0 0
\(430\) 24.9246 1.20197
\(431\) −10.3736 + 5.98919i −0.499678 + 0.288489i −0.728581 0.684960i \(-0.759820\pi\)
0.228902 + 0.973449i \(0.426486\pi\)
\(432\) 0 0
\(433\) 3.98475 6.90179i 0.191495 0.331679i −0.754251 0.656586i \(-0.772000\pi\)
0.945746 + 0.324907i \(0.105333\pi\)
\(434\) 4.28683i 0.205775i
\(435\) 0 0
\(436\) 0.343978 + 0.198596i 0.0164736 + 0.00951101i
\(437\) 36.2083i 1.73208i
\(438\) 0 0
\(439\) 2.17827 + 3.77288i 0.103963 + 0.180070i 0.913314 0.407256i \(-0.133514\pi\)
−0.809351 + 0.587325i \(0.800181\pi\)
\(440\) −2.41495 + 1.39427i −0.115128 + 0.0664693i
\(441\) 0 0
\(442\) 10.6836 + 12.5980i 0.508166 + 0.599224i
\(443\) 11.4823 0.545542 0.272771 0.962079i \(-0.412060\pi\)
0.272771 + 0.962079i \(0.412060\pi\)
\(444\) 0 0
\(445\) 13.6298 + 23.6075i 0.646114 + 1.11910i
\(446\) 9.96384 17.2579i 0.471801 0.817184i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) 25.5692 + 14.7624i 1.20669 + 0.696680i 0.962034 0.272931i \(-0.0879930\pi\)
0.244652 + 0.969611i \(0.421326\pi\)
\(450\) 0 0
\(451\) −0.0367662 + 0.0636809i −0.00173125 + 0.00299861i
\(452\) −2.23661 3.87392i −0.105201 0.182214i
\(453\) 0 0
\(454\) 0.352624 0.0165495
\(455\) 2.18492 + 12.0237i 0.102431 + 0.563678i
\(456\) 0 0
\(457\) −14.3744 + 8.29907i −0.672407 + 0.388214i −0.796988 0.603995i \(-0.793575\pi\)
0.124581 + 0.992209i \(0.460241\pi\)
\(458\) −4.15659 7.19942i −0.194224 0.336407i
\(459\) 0 0
\(460\) 20.7787i 0.968813i
\(461\) −22.8996 13.2211i −1.06654 0.615769i −0.139308 0.990249i \(-0.544488\pi\)
−0.927235 + 0.374481i \(0.877821\pi\)
\(462\) 0 0
\(463\) 10.4717i 0.486663i −0.969943 0.243331i \(-0.921760\pi\)
0.969943 0.243331i \(-0.0782403\pi\)
\(464\) −3.43406 + 5.94797i −0.159422 + 0.276128i
\(465\) 0 0
\(466\) −13.3193 + 7.68988i −0.617003 + 0.356227i
\(467\) −27.9010 −1.29110 −0.645551 0.763717i \(-0.723372\pi\)
−0.645551 + 0.763717i \(0.723372\pi\)
\(468\) 0 0
\(469\) 0.291719 0.0134703
\(470\) −32.8046 + 18.9397i −1.51316 + 0.873625i
\(471\) 0 0
\(472\) 0.870585 1.50790i 0.0400719 0.0694066i
\(473\) 6.05015i 0.278186i
\(474\) 0 0
\(475\) 33.1850 + 19.1594i 1.52263 + 0.879091i
\(476\) 4.58130i 0.209983i
\(477\) 0 0
\(478\) −1.44303 2.49940i −0.0660026 0.114320i
\(479\) 5.95941 3.44067i 0.272292 0.157208i −0.357637 0.933861i \(-0.616417\pi\)
0.629929 + 0.776653i \(0.283084\pi\)
\(480\) 0 0
\(481\) 11.7788 32.8957i 0.537067 1.49991i
\(482\) 6.26744 0.285474
\(483\) 0 0
\(484\) 5.16156 + 8.94008i 0.234616 + 0.406367i
\(485\) 25.0371 43.3655i 1.13688 1.96913i
\(486\) 0 0
\(487\) −35.3392 20.4031i −1.60137 0.924553i −0.991213 0.132275i \(-0.957772\pi\)
−0.610160 0.792278i \(-0.708895\pi\)
\(488\) −2.06066 1.18972i −0.0932818 0.0538563i
\(489\) 0 0
\(490\) −1.69469 + 2.93529i −0.0765582 + 0.132603i
\(491\) −3.36353 5.82581i −0.151794 0.262915i 0.780093 0.625664i \(-0.215172\pi\)
−0.931887 + 0.362749i \(0.881838\pi\)
\(492\) 0 0
\(493\) 31.4649 1.41711
\(494\) −16.2413 + 13.7733i −0.730730 + 0.619689i
\(495\) 0 0
\(496\) 3.71251 2.14342i 0.166696 0.0962422i
\(497\) −5.47419 9.48158i −0.245551 0.425307i
\(498\) 0 0
\(499\) 1.16200i 0.0520184i −0.999662 0.0260092i \(-0.991720\pi\)
0.999662 0.0260092i \(-0.00827993\pi\)
\(500\) 4.36733 + 2.52148i 0.195313 + 0.112764i
\(501\) 0 0
\(502\) 17.2665i 0.770641i
\(503\) 4.97527 8.61741i 0.221836 0.384231i −0.733529 0.679658i \(-0.762128\pi\)
0.955366 + 0.295426i \(0.0954617\pi\)
\(504\) 0 0
\(505\) 24.1861 13.9638i 1.07627 0.621382i
\(506\) 5.04379 0.224224
\(507\) 0 0
\(508\) −0.540127 −0.0239642
\(509\) 0.0452068 0.0261002i 0.00200376 0.00115687i −0.498998 0.866603i \(-0.666298\pi\)
0.501002 + 0.865446i \(0.332965\pi\)
\(510\) 0 0
\(511\) −6.35934 + 11.0147i −0.281321 + 0.487262i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −9.69351 5.59655i −0.427562 0.246853i
\(515\) 45.1570i 1.98986i
\(516\) 0 0
\(517\) −4.59739 7.96292i −0.202193 0.350209i
\(518\) 8.39253 4.84543i 0.368747 0.212896i
\(519\) 0 0
\(520\) −9.32034 + 7.90403i −0.408724 + 0.346615i
\(521\) −26.0984 −1.14339 −0.571695 0.820466i \(-0.693714\pi\)
−0.571695 + 0.820466i \(0.693714\pi\)
\(522\) 0 0
\(523\) 9.76606 + 16.9153i 0.427040 + 0.739655i 0.996609 0.0822887i \(-0.0262229\pi\)
−0.569568 + 0.821944i \(0.692890\pi\)
\(524\) 3.86307 6.69104i 0.168759 0.292299i
\(525\) 0 0
\(526\) 24.7533 + 14.2913i 1.07929 + 0.623131i
\(527\) −17.0081 9.81962i −0.740884 0.427750i
\(528\) 0 0
\(529\) −7.29180 + 12.6298i −0.317035 + 0.549120i
\(530\) 11.8887 + 20.5919i 0.516414 + 0.894455i
\(531\) 0 0
\(532\) −5.90621 −0.256067
\(533\) −0.108633 + 0.303387i −0.00470540 + 0.0131412i
\(534\) 0 0
\(535\) −26.4953 + 15.2971i −1.14549 + 0.661351i
\(536\) 0.145859 + 0.252636i 0.00630016 + 0.0109122i
\(537\) 0 0
\(538\) 18.3754i 0.792219i
\(539\) −0.712505 0.411365i −0.0306898 0.0177188i
\(540\) 0 0
\(541\) 32.8802i 1.41363i 0.707399 + 0.706814i \(0.249868\pi\)
−0.707399 + 0.706814i \(0.750132\pi\)
\(542\) −10.1913 + 17.6518i −0.437752 + 0.758209i
\(543\) 0 0
\(544\) −3.96752 + 2.29065i −0.170106 + 0.0982107i
\(545\) 1.34623 0.0576662
\(546\) 0 0
\(547\) −39.0180 −1.66829 −0.834144 0.551546i \(-0.814038\pi\)
−0.834144 + 0.551546i \(0.814038\pi\)
\(548\) −10.8600 + 6.27005i −0.463918 + 0.267843i
\(549\) 0 0
\(550\) −2.66888 + 4.62264i −0.113802 + 0.197110i
\(551\) 40.5646i 1.72811i
\(552\) 0 0
\(553\) 8.62217 + 4.97801i 0.366652 + 0.211687i
\(554\) 7.23219i 0.307266i
\(555\) 0 0
\(556\) 6.04868 + 10.4766i 0.256521 + 0.444308i
\(557\) 25.5903 14.7746i 1.08430 0.626020i 0.152245 0.988343i \(-0.451350\pi\)
0.932053 + 0.362323i \(0.118016\pi\)
\(558\) 0 0
\(559\) 4.74050 + 26.0871i 0.200502 + 1.10337i
\(560\) −3.38938 −0.143227
\(561\) 0 0
\(562\) −6.22927 10.7894i −0.262766 0.455124i
\(563\) 13.5662 23.4973i 0.571745 0.990292i −0.424642 0.905362i \(-0.639600\pi\)
0.996387 0.0849304i \(-0.0270668\pi\)
\(564\) 0 0
\(565\) −13.1302 7.58071i −0.552390 0.318923i
\(566\) −11.3109 6.53035i −0.475433 0.274491i
\(567\) 0 0
\(568\) 5.47419 9.48158i 0.229692 0.397838i
\(569\) −21.2297 36.7709i −0.889996 1.54152i −0.839879 0.542774i \(-0.817374\pi\)
−0.0501168 0.998743i \(-0.515959\pi\)
\(570\) 0 0
\(571\) −11.2678 −0.471543 −0.235771 0.971809i \(-0.575762\pi\)
−0.235771 + 0.971809i \(0.575762\pi\)
\(572\) −1.91861 2.26240i −0.0802210 0.0945957i
\(573\) 0 0
\(574\) −0.0774019 + 0.0446880i −0.00323069 + 0.00186524i
\(575\) −19.8871 34.4455i −0.829349 1.43647i
\(576\) 0 0
\(577\) 22.8987i 0.953286i −0.879097 0.476643i \(-0.841853\pi\)
0.879097 0.476643i \(-0.158147\pi\)
\(578\) 3.45395 + 1.99414i 0.143665 + 0.0829452i
\(579\) 0 0
\(580\) 23.2787i 0.966594i
\(581\) −1.61777 + 2.80205i −0.0671163 + 0.116249i
\(582\) 0 0
\(583\) −4.99844 + 2.88585i −0.207014 + 0.119520i
\(584\) −12.7187 −0.526303
\(585\) 0 0
\(586\) −14.5582 −0.601393
\(587\) −31.0054 + 17.9010i −1.27973 + 0.738852i −0.976798 0.214161i \(-0.931298\pi\)
−0.302931 + 0.953013i \(0.597965\pi\)
\(588\) 0 0
\(589\) 12.6595 21.9268i 0.521624 0.903479i
\(590\) 5.90148i 0.242960i
\(591\) 0 0
\(592\) 8.39253 + 4.84543i 0.344931 + 0.199146i
\(593\) 14.6093i 0.599931i 0.953950 + 0.299965i \(0.0969752\pi\)
−0.953950 + 0.299965i \(0.903025\pi\)
\(594\) 0 0
\(595\) 7.76387 + 13.4474i 0.318288 + 0.551290i
\(596\) −14.7292 + 8.50389i −0.603331 + 0.348333i
\(597\) 0 0
\(598\) 21.7478 3.95198i 0.889335 0.161609i
\(599\) 37.5729 1.53519 0.767594 0.640936i \(-0.221454\pi\)
0.767594 + 0.640936i \(0.221454\pi\)
\(600\) 0 0
\(601\) 2.72579 + 4.72121i 0.111187 + 0.192582i 0.916249 0.400609i \(-0.131201\pi\)
−0.805062 + 0.593191i \(0.797868\pi\)
\(602\) −3.67687 + 6.36853i −0.149858 + 0.259562i
\(603\) 0 0
\(604\) −4.80269 2.77283i −0.195419 0.112825i
\(605\) 30.3013 + 17.4945i 1.23192 + 0.711251i
\(606\) 0 0
\(607\) 19.9693 34.5879i 0.810531 1.40388i −0.101962 0.994788i \(-0.532512\pi\)
0.912493 0.409092i \(-0.134155\pi\)
\(608\) −2.95310 5.11492i −0.119764 0.207438i
\(609\) 0 0
\(610\) −8.06485 −0.326536
\(611\) −26.0623 30.7324i −1.05437 1.24330i
\(612\) 0 0
\(613\) 14.4238 8.32758i 0.582572 0.336348i −0.179583 0.983743i \(-0.557475\pi\)
0.762155 + 0.647395i \(0.224142\pi\)
\(614\) −1.62134 2.80824i −0.0654318 0.113331i
\(615\) 0 0
\(616\) 0.822730i 0.0331487i
\(617\) 23.3525 + 13.4826i 0.940137 + 0.542788i 0.890003 0.455954i \(-0.150702\pi\)
0.0501339 + 0.998743i \(0.484035\pi\)
\(618\) 0 0
\(619\) 12.7533i 0.512597i −0.966598 0.256298i \(-0.917497\pi\)
0.966598 0.256298i \(-0.0825029\pi\)
\(620\) 7.26484 12.5831i 0.291763 0.505349i
\(621\) 0 0
\(622\) −8.89484 + 5.13544i −0.356651 + 0.205912i
\(623\) −8.04265 −0.322222
\(624\) 0 0
\(625\) −15.3469 −0.613875
\(626\) 5.31204 3.06691i 0.212312 0.122578i
\(627\) 0 0
\(628\) 1.14676 1.98625i 0.0457609 0.0792602i
\(629\) 44.3967i 1.77021i
\(630\) 0 0
\(631\) 32.5218 + 18.7764i 1.29467 + 0.747479i 0.979478 0.201549i \(-0.0645976\pi\)
0.315193 + 0.949028i \(0.397931\pi\)
\(632\) 9.95602i 0.396029i
\(633\) 0 0
\(634\) −2.52244 4.36899i −0.100179 0.173515i
\(635\) −1.58543 + 0.915346i −0.0629157 + 0.0363244i
\(636\) 0 0
\(637\) −3.39451 1.21546i −0.134495 0.0481581i
\(638\) −5.65062 −0.223710
\(639\) 0 0
\(640\) −1.69469 2.93529i −0.0669884 0.116027i
\(641\) −0.988115 + 1.71147i −0.0390282 + 0.0675988i −0.884880 0.465820i \(-0.845760\pi\)
0.845851 + 0.533418i \(0.179093\pi\)
\(642\) 0 0
\(643\) −33.8360 19.5352i −1.33436 0.770394i −0.348397 0.937347i \(-0.613274\pi\)
−0.985965 + 0.166953i \(0.946607\pi\)
\(644\) 5.30921 + 3.06527i 0.209212 + 0.120789i
\(645\) 0 0
\(646\) −13.5290 + 23.4330i −0.532293 + 0.921959i
\(647\) −6.05254 10.4833i −0.237950 0.412141i 0.722176 0.691709i \(-0.243142\pi\)
−0.960126 + 0.279568i \(0.909809\pi\)
\(648\) 0 0
\(649\) 1.43251 0.0562311
\(650\) −7.88572 + 22.0231i −0.309303 + 0.863818i
\(651\) 0 0
\(652\) −20.2269 + 11.6780i −0.792145 + 0.457345i
\(653\) 20.1232 + 34.8544i 0.787481 + 1.36396i 0.927505 + 0.373810i \(0.121949\pi\)
−0.140024 + 0.990148i \(0.544718\pi\)
\(654\) 0 0
\(655\) 26.1868i 1.02320i
\(656\) −0.0774019 0.0446880i −0.00302204 0.00174477i
\(657\) 0 0
\(658\) 11.1759i 0.435684i
\(659\) −1.81164 + 3.13785i −0.0705714 + 0.122233i −0.899152 0.437637i \(-0.855816\pi\)
0.828580 + 0.559870i \(0.189149\pi\)
\(660\) 0 0
\(661\) −20.4698 + 11.8182i −0.796182 + 0.459676i −0.842135 0.539268i \(-0.818701\pi\)
0.0459521 + 0.998944i \(0.485368\pi\)
\(662\) 23.0874 0.897317
\(663\) 0 0
\(664\) −3.23553 −0.125563
\(665\) −17.3364 + 10.0092i −0.672277 + 0.388139i
\(666\) 0 0
\(667\) 21.0527 36.4643i 0.815163 1.41190i
\(668\) 21.7780i 0.842614i
\(669\) 0 0
\(670\) 0.856278 + 0.494372i 0.0330809 + 0.0190993i
\(671\) 1.95764i 0.0755740i
\(672\) 0 0
\(673\) 23.4355 + 40.5914i 0.903372 + 1.56469i 0.823088 + 0.567913i \(0.192249\pi\)
0.0802832 + 0.996772i \(0.474418\pi\)
\(674\) −25.2385 + 14.5714i −0.972150 + 0.561271i
\(675\) 0 0
\(676\) −10.0453 8.25174i −0.386359 0.317375i
\(677\) 13.7304 0.527704 0.263852 0.964563i \(-0.415007\pi\)
0.263852 + 0.964563i \(0.415007\pi\)
\(678\) 0 0
\(679\) 7.38693 + 12.7945i 0.283484 + 0.491009i
\(680\) −7.76387 + 13.4474i −0.297731 + 0.515685i
\(681\) 0 0
\(682\) 3.05439 + 1.76345i 0.116959 + 0.0675261i
\(683\) −3.03610 1.75289i −0.116173 0.0670725i 0.440788 0.897611i \(-0.354699\pi\)
−0.556961 + 0.830539i \(0.688033\pi\)
\(684\) 0 0
\(685\) −21.2516 + 36.8088i −0.811981 + 1.40639i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 0 0
\(688\) −7.35374 −0.280359
\(689\) −19.2911 + 16.3597i −0.734934 + 0.623254i
\(690\) 0 0
\(691\) −27.5196 + 15.8885i −1.04690 + 0.604426i −0.921779 0.387716i \(-0.873264\pi\)
−0.125117 + 0.992142i \(0.539931\pi\)
\(692\) 4.04866 + 7.01249i 0.153907 + 0.266575i
\(693\) 0 0
\(694\) 29.1082i 1.10493i
\(695\) 35.5092 + 20.5012i 1.34694 + 0.777656i
\(696\) 0 0
\(697\) 0.409458i 0.0155093i
\(698\) −12.8901 + 22.3263i −0.487898 + 0.845064i
\(699\) 0 0
\(700\) −5.61866 + 3.24394i −0.212365 + 0.122609i
\(701\) 31.6828 1.19664 0.598322 0.801256i \(-0.295834\pi\)
0.598322 + 0.801256i \(0.295834\pi\)
\(702\) 0 0
\(703\) 57.2362 2.15870
\(704\) 0.712505 0.411365i 0.0268536 0.0155039i
\(705\) 0 0
\(706\) −4.95890 + 8.58906i −0.186630 + 0.323253i
\(707\) 8.23976i 0.309888i
\(708\) 0 0
\(709\) −30.5835 17.6574i −1.14859 0.663137i −0.200044 0.979787i \(-0.564108\pi\)
−0.948542 + 0.316650i \(0.897442\pi\)
\(710\) 37.1082i 1.39265i
\(711\) 0 0
\(712\) −4.02133 6.96514i −0.150706 0.261030i
\(713\) −22.7597 + 13.1403i −0.852357 + 0.492108i
\(714\) 0 0
\(715\) −9.46572 3.38935i −0.353998 0.126754i
\(716\) −9.90883 −0.370310
\(717\) 0 0
\(718\) 12.6341 + 21.8829i 0.471501 + 0.816664i
\(719\) 0.609778 1.05617i 0.0227409 0.0393884i −0.854431 0.519565i \(-0.826094\pi\)
0.877172 + 0.480177i \(0.159427\pi\)
\(720\) 0 0
\(721\) −11.5382 6.66156i −0.429703 0.248089i
\(722\) −13.7553 7.94164i −0.511920 0.295557i
\(723\) 0 0
\(724\) 0.639508 1.10766i 0.0237671 0.0411659i
\(725\) 22.2798 + 38.5897i 0.827450 + 1.43318i
\(726\) 0 0
\(727\) 5.75380 0.213397 0.106698 0.994291i \(-0.465972\pi\)
0.106698 + 0.994291i \(0.465972\pi\)
\(728\) −0.644638 3.54746i −0.0238919 0.131477i
\(729\) 0 0
\(730\) −37.3330 + 21.5542i −1.38175 + 0.797756i
\(731\) 16.8448 + 29.1761i 0.623029 + 1.07912i
\(732\) 0 0
\(733\) 35.2258i 1.30110i 0.759466 + 0.650548i \(0.225461\pi\)
−0.759466 + 0.650548i \(0.774539\pi\)
\(734\) 30.9897 + 17.8919i 1.14385 + 0.660402i
\(735\) 0 0
\(736\) 6.13055i 0.225975i
\(737\) −0.120003 + 0.207851i −0.00442036 + 0.00765629i
\(738\) 0 0
\(739\) −25.4199 + 14.6762i −0.935088 + 0.539873i −0.888417 0.459037i \(-0.848194\pi\)
−0.0466705 + 0.998910i \(0.514861\pi\)
\(740\) 32.8460 1.20744
\(741\) 0 0
\(742\) −7.01530 −0.257540
\(743\) 12.9763 7.49190i 0.476056 0.274851i −0.242715 0.970098i \(-0.578038\pi\)
0.718771 + 0.695246i \(0.244705\pi\)
\(744\) 0 0
\(745\) −28.8229 + 49.9227i −1.05599 + 1.82903i
\(746\) 23.3304i 0.854185i
\(747\) 0 0
\(748\) −3.26420 1.88459i −0.119351 0.0689073i
\(749\) 9.02649i 0.329821i
\(750\) 0 0
\(751\) 21.9195 + 37.9657i 0.799855 + 1.38539i 0.919710 + 0.392598i \(0.128424\pi\)
−0.119856 + 0.992791i \(0.538243\pi\)
\(752\) 9.67865 5.58797i 0.352944 0.203772i
\(753\) 0 0
\(754\) −24.3644 + 4.42745i −0.887298 + 0.161238i
\(755\) −18.7963 −0.684069
\(756\) 0 0
\(757\) 18.1798 + 31.4884i 0.660758 + 1.14447i 0.980417 + 0.196933i \(0.0630983\pi\)
−0.319659 + 0.947533i \(0.603568\pi\)
\(758\) −12.1533 + 21.0502i −0.441428 + 0.764576i
\(759\) 0 0
\(760\) −17.3364 10.0092i −0.628857 0.363071i
\(761\) 15.7906 + 9.11673i 0.572410 + 0.330481i 0.758111 0.652125i \(-0.226122\pi\)
−0.185701 + 0.982606i \(0.559456\pi\)
\(762\) 0 0
\(763\) −0.198596 + 0.343978i −0.00718965 + 0.0124528i
\(764\) 5.01710 + 8.68988i 0.181512 + 0.314389i
\(765\) 0 0
\(766\) 4.91150 0.177460
\(767\) 6.17672 1.12242i 0.223029 0.0405284i
\(768\) 0 0
\(769\) −5.66870 + 3.27283i −0.204419 + 0.118021i −0.598715 0.800962i \(-0.704322\pi\)
0.394296 + 0.918983i \(0.370988\pi\)
\(770\) −1.39427 2.41495i −0.0502460 0.0870287i
\(771\) 0 0
\(772\) 15.8582i 0.570750i
\(773\) −38.6651 22.3233i −1.39069 0.802913i −0.397295 0.917691i \(-0.630051\pi\)
−0.993391 + 0.114778i \(0.963384\pi\)
\(774\) 0 0
\(775\) 27.8124i 0.999051i
\(776\) −7.38693 + 12.7945i −0.265175 + 0.459297i
\(777\) 0 0
\(778\) −4.45589 + 2.57261i −0.159752 + 0.0922326i
\(779\) −0.527873 −0.0189130
\(780\) 0 0
\(781\) 9.00757 0.322316
\(782\) 24.3231