Properties

Label 1638.2.bj.f.127.2
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.195105024.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 4x^{5} - 20x^{4} + 12x^{3} + 45x^{2} - 108x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.2
Root \(-1.58726 + 0.693255i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.f.1135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.78801i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.78801i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-0.894007 - 1.54846i) q^{10} +(-2.74922 + 1.58726i) q^{11} +(1.47952 + 3.28801i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-2.78052 + 4.81599i) q^{17} +(-5.36028 - 3.09476i) q^{19} +(1.54846 + 0.894007i) q^{20} +(1.58726 - 2.74922i) q^{22} +(-3.06678 - 5.31181i) q^{23} +1.80301 q^{25} +(-2.92531 - 2.10774i) q^{26} +(0.866025 - 0.500000i) q^{28} +(1.03880 + 1.79925i) q^{29} -5.63862i q^{31} +(0.866025 + 0.500000i) q^{32} -5.56103i q^{34} +(-0.894007 + 1.54846i) q^{35} +(-2.68202 + 1.54846i) q^{37} +6.18952 q^{38} -1.78801 q^{40} +(1.29768 - 0.749217i) q^{41} +(-4.81931 + 8.34729i) q^{43} +3.17452i q^{44} +(5.31181 + 3.06678i) q^{46} -10.5086i q^{47} +(0.500000 + 0.866025i) q^{49} +(-1.56145 + 0.901504i) q^{50} +(3.58726 + 0.362708i) q^{52} -3.60200 q^{53} +(-2.83804 - 4.91564i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(-1.79925 - 1.03880i) q^{58} +(2.40874 + 1.39069i) q^{59} +(-0.844395 + 1.46254i) q^{61} +(2.81931 + 4.88319i) q^{62} -1.00000 q^{64} +(-5.87901 + 2.64539i) q^{65} +(-10.0064 + 5.77720i) q^{67} +(2.78052 + 4.81599i) q^{68} -1.78801i q^{70} +(0.518313 + 0.299248i) q^{71} -0.423973i q^{73} +(1.54846 - 2.68202i) q^{74} +(-5.36028 + 3.09476i) q^{76} -3.17452 q^{77} +6.96254 q^{79} +(1.54846 - 0.894007i) q^{80} +(-0.749217 + 1.29768i) q^{82} -4.30228i q^{83} +(-8.61106 - 4.97160i) q^{85} -9.63862i q^{86} +(-1.58726 - 2.74922i) q^{88} +(14.1102 - 8.14654i) q^{89} +(-0.362708 + 3.58726i) q^{91} -6.13356 q^{92} +(5.25429 + 9.10069i) q^{94} +(5.53347 - 9.58425i) q^{95} +(-15.1461 - 8.74462i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{4} + 6 q^{10} - 6 q^{11} + 12 q^{13} - 8 q^{14} - 4 q^{16} - 2 q^{17} - 12 q^{19} + 6 q^{20} - 4 q^{22} - 8 q^{23} - 24 q^{25} - 6 q^{26} - 2 q^{29} + 6 q^{35} + 18 q^{37} + 4 q^{38} + 12 q^{40} - 12 q^{41} - 8 q^{43} + 18 q^{46} + 4 q^{49} - 12 q^{50} + 12 q^{52} + 12 q^{53} - 22 q^{55} - 4 q^{56} - 24 q^{58} - 18 q^{59} - 8 q^{61} - 8 q^{62} - 8 q^{64} - 46 q^{65} + 18 q^{67} + 2 q^{68} - 6 q^{71} + 6 q^{74} - 12 q^{76} + 8 q^{77} - 4 q^{79} + 6 q^{80} + 10 q^{82} - 54 q^{85} + 4 q^{88} + 18 q^{89} + 6 q^{91} - 16 q^{92} - 2 q^{94} + 50 q^{95} - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.78801i 0.799624i 0.916597 + 0.399812i \(0.130925\pi\)
−0.916597 + 0.399812i \(0.869075\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.894007 1.54846i −0.282710 0.489668i
\(11\) −2.74922 + 1.58726i −0.828920 + 0.478577i −0.853483 0.521121i \(-0.825514\pi\)
0.0245627 + 0.999698i \(0.492181\pi\)
\(12\) 0 0
\(13\) 1.47952 + 3.28801i 0.410344 + 0.911931i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.78052 + 4.81599i −0.674374 + 1.16805i 0.302277 + 0.953220i \(0.402253\pi\)
−0.976651 + 0.214830i \(0.931080\pi\)
\(18\) 0 0
\(19\) −5.36028 3.09476i −1.22973 0.709986i −0.262758 0.964862i \(-0.584632\pi\)
−0.966974 + 0.254875i \(0.917966\pi\)
\(20\) 1.54846 + 0.894007i 0.346247 + 0.199906i
\(21\) 0 0
\(22\) 1.58726 2.74922i 0.338405 0.586135i
\(23\) −3.06678 5.31181i −0.639467 1.10759i −0.985550 0.169386i \(-0.945822\pi\)
0.346083 0.938204i \(-0.387512\pi\)
\(24\) 0 0
\(25\) 1.80301 0.360602
\(26\) −2.92531 2.10774i −0.573700 0.413363i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) 1.03880 + 1.79925i 0.192900 + 0.334112i 0.946210 0.323553i \(-0.104877\pi\)
−0.753310 + 0.657665i \(0.771544\pi\)
\(30\) 0 0
\(31\) 5.63862i 1.01273i −0.862320 0.506363i \(-0.830989\pi\)
0.862320 0.506363i \(-0.169011\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.56103i 0.953709i
\(35\) −0.894007 + 1.54846i −0.151115 + 0.261738i
\(36\) 0 0
\(37\) −2.68202 + 1.54846i −0.440921 + 0.254566i −0.703988 0.710211i \(-0.748599\pi\)
0.263067 + 0.964778i \(0.415266\pi\)
\(38\) 6.18952 1.00407
\(39\) 0 0
\(40\) −1.78801 −0.282710
\(41\) 1.29768 0.749217i 0.202664 0.117008i −0.395234 0.918581i \(-0.629336\pi\)
0.597897 + 0.801573i \(0.296003\pi\)
\(42\) 0 0
\(43\) −4.81931 + 8.34729i −0.734938 + 1.27295i 0.219812 + 0.975542i \(0.429456\pi\)
−0.954750 + 0.297408i \(0.903878\pi\)
\(44\) 3.17452i 0.478577i
\(45\) 0 0
\(46\) 5.31181 + 3.06678i 0.783184 + 0.452172i
\(47\) 10.5086i 1.53283i −0.642344 0.766416i \(-0.722038\pi\)
0.642344 0.766416i \(-0.277962\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −1.56145 + 0.901504i −0.220823 + 0.127492i
\(51\) 0 0
\(52\) 3.58726 + 0.362708i 0.497464 + 0.0502985i
\(53\) −3.60200 −0.494773 −0.247386 0.968917i \(-0.579572\pi\)
−0.247386 + 0.968917i \(0.579572\pi\)
\(54\) 0 0
\(55\) −2.83804 4.91564i −0.382682 0.662824i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) −1.79925 1.03880i −0.236253 0.136401i
\(59\) 2.40874 + 1.39069i 0.313592 + 0.181052i 0.648533 0.761187i \(-0.275383\pi\)
−0.334941 + 0.942239i \(0.608716\pi\)
\(60\) 0 0
\(61\) −0.844395 + 1.46254i −0.108114 + 0.187259i −0.915006 0.403440i \(-0.867814\pi\)
0.806892 + 0.590699i \(0.201148\pi\)
\(62\) 2.81931 + 4.88319i 0.358053 + 0.620166i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −5.87901 + 2.64539i −0.729202 + 0.328121i
\(66\) 0 0
\(67\) −10.0064 + 5.77720i −1.22248 + 0.705797i −0.965445 0.260606i \(-0.916078\pi\)
−0.257031 + 0.966403i \(0.582744\pi\)
\(68\) 2.78052 + 4.81599i 0.337187 + 0.584025i
\(69\) 0 0
\(70\) 1.78801i 0.213708i
\(71\) 0.518313 + 0.299248i 0.0615124 + 0.0355142i 0.530441 0.847722i \(-0.322026\pi\)
−0.468928 + 0.883236i \(0.655360\pi\)
\(72\) 0 0
\(73\) 0.423973i 0.0496223i −0.999692 0.0248112i \(-0.992102\pi\)
0.999692 0.0248112i \(-0.00789845\pi\)
\(74\) 1.54846 2.68202i 0.180005 0.311778i
\(75\) 0 0
\(76\) −5.36028 + 3.09476i −0.614866 + 0.354993i
\(77\) −3.17452 −0.361770
\(78\) 0 0
\(79\) 6.96254 0.783346 0.391673 0.920104i \(-0.371896\pi\)
0.391673 + 0.920104i \(0.371896\pi\)
\(80\) 1.54846 0.894007i 0.173124 0.0999530i
\(81\) 0 0
\(82\) −0.749217 + 1.29768i −0.0827372 + 0.143305i
\(83\) 4.30228i 0.472237i −0.971724 0.236118i \(-0.924125\pi\)
0.971724 0.236118i \(-0.0758753\pi\)
\(84\) 0 0
\(85\) −8.61106 4.97160i −0.934001 0.539246i
\(86\) 9.63862i 1.03936i
\(87\) 0 0
\(88\) −1.58726 2.74922i −0.169203 0.293068i
\(89\) 14.1102 8.14654i 1.49568 0.863532i 0.495693 0.868498i \(-0.334914\pi\)
0.999988 + 0.00496618i \(0.00158079\pi\)
\(90\) 0 0
\(91\) −0.362708 + 3.58726i −0.0380221 + 0.376047i
\(92\) −6.13356 −0.639467
\(93\) 0 0
\(94\) 5.25429 + 9.10069i 0.541938 + 0.938665i
\(95\) 5.53347 9.58425i 0.567722 0.983323i
\(96\) 0 0
\(97\) −15.1461 8.74462i −1.53786 0.887881i −0.998964 0.0455062i \(-0.985510\pi\)
−0.538892 0.842375i \(-0.681157\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) 0.901504 1.56145i 0.0901504 0.156145i
\(101\) 2.03433 + 3.52357i 0.202424 + 0.350608i 0.949309 0.314345i \(-0.101785\pi\)
−0.746885 + 0.664953i \(0.768452\pi\)
\(102\) 0 0
\(103\) −18.0768 −1.78116 −0.890578 0.454831i \(-0.849700\pi\)
−0.890578 + 0.454831i \(0.849700\pi\)
\(104\) −3.28801 + 1.47952i −0.322416 + 0.145079i
\(105\) 0 0
\(106\) 3.11942 1.80100i 0.302985 0.174929i
\(107\) −0.770847 1.33515i −0.0745206 0.129073i 0.826357 0.563146i \(-0.190409\pi\)
−0.900878 + 0.434073i \(0.857076\pi\)
\(108\) 0 0
\(109\) 7.37731i 0.706618i −0.935507 0.353309i \(-0.885056\pi\)
0.935507 0.353309i \(-0.114944\pi\)
\(110\) 4.91564 + 2.83804i 0.468688 + 0.270597i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) −4.95660 + 8.58509i −0.466278 + 0.807617i −0.999258 0.0385104i \(-0.987739\pi\)
0.532980 + 0.846128i \(0.321072\pi\)
\(114\) 0 0
\(115\) 9.49759 5.48344i 0.885655 0.511333i
\(116\) 2.07759 0.192900
\(117\) 0 0
\(118\) −2.78138 −0.256047
\(119\) −4.81599 + 2.78052i −0.441481 + 0.254889i
\(120\) 0 0
\(121\) −0.461204 + 0.798828i −0.0419276 + 0.0726208i
\(122\) 1.68879i 0.152896i
\(123\) 0 0
\(124\) −4.88319 2.81931i −0.438524 0.253182i
\(125\) 12.1639i 1.08797i
\(126\) 0 0
\(127\) 9.17452 + 15.8907i 0.814107 + 1.41008i 0.909967 + 0.414680i \(0.136107\pi\)
−0.0958600 + 0.995395i \(0.530560\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 3.76868 5.23048i 0.330535 0.458744i
\(131\) −5.91928 −0.517170 −0.258585 0.965989i \(-0.583256\pi\)
−0.258585 + 0.965989i \(0.583256\pi\)
\(132\) 0 0
\(133\) −3.09476 5.36028i −0.268350 0.464795i
\(134\) 5.77720 10.0064i 0.499074 0.864421i
\(135\) 0 0
\(136\) −4.81599 2.78052i −0.412968 0.238427i
\(137\) −7.62363 4.40150i −0.651331 0.376046i 0.137635 0.990483i \(-0.456050\pi\)
−0.788966 + 0.614437i \(0.789383\pi\)
\(138\) 0 0
\(139\) −9.48720 + 16.4323i −0.804694 + 1.39377i 0.111804 + 0.993730i \(0.464337\pi\)
−0.916498 + 0.400040i \(0.868996\pi\)
\(140\) 0.894007 + 1.54846i 0.0755574 + 0.130869i
\(141\) 0 0
\(142\) −0.598496 −0.0502247
\(143\) −9.28645 6.69108i −0.776572 0.559537i
\(144\) 0 0
\(145\) −3.21708 + 1.85738i −0.267164 + 0.154247i
\(146\) 0.211987 + 0.367172i 0.0175441 + 0.0303873i
\(147\) 0 0
\(148\) 3.09693i 0.254566i
\(149\) −12.0919 6.98127i −0.990608 0.571928i −0.0851520 0.996368i \(-0.527138\pi\)
−0.905456 + 0.424440i \(0.860471\pi\)
\(150\) 0 0
\(151\) 17.8426i 1.45201i −0.687688 0.726006i \(-0.741374\pi\)
0.687688 0.726006i \(-0.258626\pi\)
\(152\) 3.09476 5.36028i 0.251018 0.434776i
\(153\) 0 0
\(154\) 2.74922 1.58726i 0.221538 0.127905i
\(155\) 10.0819 0.809800
\(156\) 0 0
\(157\) 4.57916 0.365457 0.182728 0.983163i \(-0.441507\pi\)
0.182728 + 0.983163i \(0.441507\pi\)
\(158\) −6.02973 + 3.48127i −0.479700 + 0.276955i
\(159\) 0 0
\(160\) −0.894007 + 1.54846i −0.0706774 + 0.122417i
\(161\) 6.13356i 0.483392i
\(162\) 0 0
\(163\) 10.6267 + 6.13531i 0.832344 + 0.480554i 0.854655 0.519197i \(-0.173769\pi\)
−0.0223103 + 0.999751i \(0.507102\pi\)
\(164\) 1.49843i 0.117008i
\(165\) 0 0
\(166\) 2.15114 + 3.72589i 0.166961 + 0.289185i
\(167\) −14.4610 + 8.34904i −1.11902 + 0.646068i −0.941151 0.337985i \(-0.890255\pi\)
−0.177872 + 0.984054i \(0.556921\pi\)
\(168\) 0 0
\(169\) −8.62206 + 9.72934i −0.663236 + 0.748411i
\(170\) 9.94320 0.762609
\(171\) 0 0
\(172\) 4.81931 + 8.34729i 0.367469 + 0.636475i
\(173\) −3.68865 + 6.38894i −0.280443 + 0.485742i −0.971494 0.237064i \(-0.923815\pi\)
0.691051 + 0.722806i \(0.257148\pi\)
\(174\) 0 0
\(175\) 1.56145 + 0.901504i 0.118035 + 0.0681473i
\(176\) 2.74922 + 1.58726i 0.207230 + 0.119644i
\(177\) 0 0
\(178\) −8.14654 + 14.1102i −0.610609 + 1.05761i
\(179\) −9.91008 17.1648i −0.740714 1.28295i −0.952171 0.305567i \(-0.901154\pi\)
0.211457 0.977387i \(-0.432179\pi\)
\(180\) 0 0
\(181\) −18.3266 −1.36220 −0.681102 0.732189i \(-0.738499\pi\)
−0.681102 + 0.732189i \(0.738499\pi\)
\(182\) −1.47952 3.28801i −0.109669 0.243724i
\(183\) 0 0
\(184\) 5.31181 3.06678i 0.391592 0.226086i
\(185\) −2.76868 4.79549i −0.203557 0.352571i
\(186\) 0 0
\(187\) 17.6536i 1.29096i
\(188\) −9.10069 5.25429i −0.663736 0.383208i
\(189\) 0 0
\(190\) 11.0669i 0.802880i
\(191\) −7.51518 + 13.0167i −0.543779 + 0.941854i 0.454903 + 0.890541i \(0.349674\pi\)
−0.998683 + 0.0513127i \(0.983659\pi\)
\(192\) 0 0
\(193\) −4.72408 + 2.72745i −0.340047 + 0.196326i −0.660293 0.751008i \(-0.729568\pi\)
0.320246 + 0.947334i \(0.396234\pi\)
\(194\) 17.4892 1.25565
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 6.60751 3.81485i 0.470766 0.271797i −0.245795 0.969322i \(-0.579049\pi\)
0.716560 + 0.697525i \(0.245716\pi\)
\(198\) 0 0
\(199\) 2.99512 5.18769i 0.212318 0.367746i −0.740121 0.672473i \(-0.765232\pi\)
0.952440 + 0.304727i \(0.0985653\pi\)
\(200\) 1.80301i 0.127492i
\(201\) 0 0
\(202\) −3.52357 2.03433i −0.247917 0.143135i
\(203\) 2.07759i 0.145818i
\(204\) 0 0
\(205\) 1.33961 + 2.32027i 0.0935624 + 0.162055i
\(206\) 15.6549 9.03838i 1.09073 0.629734i
\(207\) 0 0
\(208\) 2.10774 2.92531i 0.146146 0.202833i
\(209\) 19.6488 1.35913
\(210\) 0 0
\(211\) 1.38651 + 2.40150i 0.0954512 + 0.165326i 0.909797 0.415054i \(-0.136237\pi\)
−0.814346 + 0.580380i \(0.802904\pi\)
\(212\) −1.80100 + 3.11942i −0.123693 + 0.214243i
\(213\) 0 0
\(214\) 1.33515 + 0.770847i 0.0912687 + 0.0526940i
\(215\) −14.9251 8.61699i −1.01788 0.587674i
\(216\) 0 0
\(217\) 2.81931 4.88319i 0.191387 0.331493i
\(218\) 3.68865 + 6.38894i 0.249827 + 0.432713i
\(219\) 0 0
\(220\) −5.67609 −0.382682
\(221\) −19.9489 2.01703i −1.34191 0.135680i
\(222\) 0 0
\(223\) 19.5163 11.2677i 1.30691 0.754542i 0.325327 0.945602i \(-0.394526\pi\)
0.981578 + 0.191060i \(0.0611924\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 9.91321i 0.659417i
\(227\) 1.58616 + 0.915773i 0.105277 + 0.0607820i 0.551714 0.834033i \(-0.313974\pi\)
−0.446437 + 0.894815i \(0.647307\pi\)
\(228\) 0 0
\(229\) 22.6060i 1.49385i −0.664910 0.746924i \(-0.731530\pi\)
0.664910 0.746924i \(-0.268470\pi\)
\(230\) −5.48344 + 9.49759i −0.361567 + 0.626253i
\(231\) 0 0
\(232\) −1.79925 + 1.03880i −0.118126 + 0.0682003i
\(233\) 9.43897 0.618367 0.309184 0.951002i \(-0.399944\pi\)
0.309184 + 0.951002i \(0.399944\pi\)
\(234\) 0 0
\(235\) 18.7895 1.22569
\(236\) 2.40874 1.39069i 0.156796 0.0905262i
\(237\) 0 0
\(238\) 2.78052 4.81599i 0.180234 0.312175i
\(239\) 15.8757i 1.02692i 0.858115 + 0.513458i \(0.171636\pi\)
−0.858115 + 0.513458i \(0.828364\pi\)
\(240\) 0 0
\(241\) 20.7197 + 11.9625i 1.33467 + 0.770575i 0.986012 0.166674i \(-0.0533027\pi\)
0.348662 + 0.937248i \(0.386636\pi\)
\(242\) 0.922407i 0.0592946i
\(243\) 0 0
\(244\) 0.844395 + 1.46254i 0.0540569 + 0.0936293i
\(245\) −1.54846 + 0.894007i −0.0989278 + 0.0571160i
\(246\) 0 0
\(247\) 2.24499 22.2034i 0.142845 1.41277i
\(248\) 5.63862 0.358053
\(249\) 0 0
\(250\) −6.08193 10.5342i −0.384655 0.666243i
\(251\) 10.2618 17.7739i 0.647718 1.12188i −0.335949 0.941880i \(-0.609057\pi\)
0.983667 0.180000i \(-0.0576098\pi\)
\(252\) 0 0
\(253\) 16.8625 + 9.73555i 1.06013 + 0.612069i
\(254\) −15.8907 9.17452i −0.997074 0.575661i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.413344 + 0.715933i 0.0257837 + 0.0446587i 0.878629 0.477504i \(-0.158459\pi\)
−0.852846 + 0.522163i \(0.825125\pi\)
\(258\) 0 0
\(259\) −3.09693 −0.192434
\(260\) −0.648527 + 6.41407i −0.0402199 + 0.397784i
\(261\) 0 0
\(262\) 5.12624 2.95964i 0.316700 0.182847i
\(263\) 10.1805 + 17.6331i 0.627754 + 1.08730i 0.988001 + 0.154445i \(0.0493588\pi\)
−0.360248 + 0.932857i \(0.617308\pi\)
\(264\) 0 0
\(265\) 6.44042i 0.395632i
\(266\) 5.36028 + 3.09476i 0.328660 + 0.189752i
\(267\) 0 0
\(268\) 11.5544i 0.705797i
\(269\) −10.2587 + 17.7687i −0.625487 + 1.08338i 0.362959 + 0.931805i \(0.381766\pi\)
−0.988446 + 0.151570i \(0.951567\pi\)
\(270\) 0 0
\(271\) −10.5495 + 6.09076i −0.640837 + 0.369988i −0.784937 0.619576i \(-0.787305\pi\)
0.144100 + 0.989563i \(0.453971\pi\)
\(272\) 5.56103 0.337187
\(273\) 0 0
\(274\) 8.80301 0.531809
\(275\) −4.95686 + 2.86185i −0.298910 + 0.172576i
\(276\) 0 0
\(277\) 4.31242 7.46933i 0.259108 0.448789i −0.706895 0.707318i \(-0.749905\pi\)
0.966003 + 0.258530i \(0.0832380\pi\)
\(278\) 18.9744i 1.13801i
\(279\) 0 0
\(280\) −1.54846 0.894007i −0.0925385 0.0534271i
\(281\) 24.2922i 1.44915i 0.689194 + 0.724577i \(0.257965\pi\)
−0.689194 + 0.724577i \(0.742035\pi\)
\(282\) 0 0
\(283\) 5.36054 + 9.28472i 0.318651 + 0.551919i 0.980207 0.197976i \(-0.0634369\pi\)
−0.661556 + 0.749896i \(0.730104\pi\)
\(284\) 0.518313 0.299248i 0.0307562 0.0177571i
\(285\) 0 0
\(286\) 11.3878 + 1.15142i 0.673377 + 0.0680852i
\(287\) 1.49843 0.0884498
\(288\) 0 0
\(289\) −6.96254 12.0595i −0.409561 0.709380i
\(290\) 1.85738 3.21708i 0.109069 0.188913i
\(291\) 0 0
\(292\) −0.367172 0.211987i −0.0214871 0.0124056i
\(293\) 18.5571 + 10.7139i 1.08412 + 0.625914i 0.932004 0.362449i \(-0.118059\pi\)
0.152112 + 0.988363i \(0.451393\pi\)
\(294\) 0 0
\(295\) −2.48657 + 4.30687i −0.144774 + 0.250755i
\(296\) −1.54846 2.68202i −0.0900027 0.155889i
\(297\) 0 0
\(298\) 13.9625 0.808828
\(299\) 12.9280 17.9425i 0.747644 1.03764i
\(300\) 0 0
\(301\) −8.34729 + 4.81931i −0.481130 + 0.277781i
\(302\) 8.92131 + 15.4522i 0.513364 + 0.889172i
\(303\) 0 0
\(304\) 6.18952i 0.354993i
\(305\) −2.61503 1.50979i −0.149736 0.0864503i
\(306\) 0 0
\(307\) 7.59364i 0.433392i 0.976239 + 0.216696i \(0.0695280\pi\)
−0.976239 + 0.216696i \(0.930472\pi\)
\(308\) −1.58726 + 2.74922i −0.0904426 + 0.156651i
\(309\) 0 0
\(310\) −8.73121 + 5.04097i −0.495899 + 0.286308i
\(311\) −25.6355 −1.45366 −0.726828 0.686820i \(-0.759006\pi\)
−0.726828 + 0.686820i \(0.759006\pi\)
\(312\) 0 0
\(313\) −1.71308 −0.0968293 −0.0484146 0.998827i \(-0.515417\pi\)
−0.0484146 + 0.998827i \(0.515417\pi\)
\(314\) −3.96567 + 2.28958i −0.223796 + 0.129208i
\(315\) 0 0
\(316\) 3.48127 6.02973i 0.195837 0.339199i
\(317\) 33.2098i 1.86525i 0.360850 + 0.932624i \(0.382487\pi\)
−0.360850 + 0.932624i \(0.617513\pi\)
\(318\) 0 0
\(319\) −5.71175 3.29768i −0.319797 0.184635i
\(320\) 1.78801i 0.0999530i
\(321\) 0 0
\(322\) 3.06678 + 5.31181i 0.170905 + 0.296016i
\(323\) 29.8087 17.2101i 1.65860 0.957593i
\(324\) 0 0
\(325\) 2.66758 + 5.92832i 0.147971 + 0.328844i
\(326\) −12.2706 −0.679606
\(327\) 0 0
\(328\) 0.749217 + 1.29768i 0.0413686 + 0.0716525i
\(329\) 5.25429 9.10069i 0.289678 0.501737i
\(330\) 0 0
\(331\) 4.29537 + 2.47994i 0.236095 + 0.136310i 0.613381 0.789787i \(-0.289809\pi\)
−0.377286 + 0.926097i \(0.623142\pi\)
\(332\) −3.72589 2.15114i −0.204485 0.118059i
\(333\) 0 0
\(334\) 8.34904 14.4610i 0.456839 0.791269i
\(335\) −10.3297 17.8916i −0.564372 0.977521i
\(336\) 0 0
\(337\) 23.6174 1.28652 0.643260 0.765648i \(-0.277581\pi\)
0.643260 + 0.765648i \(0.277581\pi\)
\(338\) 2.60226 12.7369i 0.141544 0.692795i
\(339\) 0 0
\(340\) −8.61106 + 4.97160i −0.467000 + 0.269623i
\(341\) 8.94997 + 15.5018i 0.484668 + 0.839470i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −8.34729 4.81931i −0.450056 0.259840i
\(345\) 0 0
\(346\) 7.37731i 0.396607i
\(347\) −3.58483 + 6.20911i −0.192444 + 0.333323i −0.946060 0.323993i \(-0.894975\pi\)
0.753616 + 0.657315i \(0.228308\pi\)
\(348\) 0 0
\(349\) 10.7155 6.18662i 0.573590 0.331162i −0.184992 0.982740i \(-0.559226\pi\)
0.758582 + 0.651578i \(0.225893\pi\)
\(350\) −1.80301 −0.0963749
\(351\) 0 0
\(352\) −3.17452 −0.169203
\(353\) −22.7018 + 13.1069i −1.20830 + 0.697610i −0.962387 0.271683i \(-0.912420\pi\)
−0.245909 + 0.969293i \(0.579087\pi\)
\(354\) 0 0
\(355\) −0.535059 + 0.926750i −0.0283980 + 0.0491868i
\(356\) 16.2931i 0.863532i
\(357\) 0 0
\(358\) 17.1648 + 9.91008i 0.907186 + 0.523764i
\(359\) 3.61956i 0.191033i −0.995428 0.0955165i \(-0.969550\pi\)
0.995428 0.0955165i \(-0.0304503\pi\)
\(360\) 0 0
\(361\) 9.65506 + 16.7231i 0.508161 + 0.880161i
\(362\) 15.8713 9.16329i 0.834176 0.481612i
\(363\) 0 0
\(364\) 2.92531 + 2.10774i 0.153328 + 0.110476i
\(365\) 0.758070 0.0396792
\(366\) 0 0
\(367\) 4.03245 + 6.98440i 0.210492 + 0.364583i 0.951869 0.306506i \(-0.0991601\pi\)
−0.741377 + 0.671089i \(0.765827\pi\)
\(368\) −3.06678 + 5.31181i −0.159867 + 0.276897i
\(369\) 0 0
\(370\) 4.79549 + 2.76868i 0.249306 + 0.143937i
\(371\) −3.11942 1.80100i −0.161952 0.0935032i
\(372\) 0 0
\(373\) −14.5851 + 25.2621i −0.755187 + 1.30802i 0.190094 + 0.981766i \(0.439121\pi\)
−0.945281 + 0.326257i \(0.894213\pi\)
\(374\) 8.82681 + 15.2885i 0.456423 + 0.790549i
\(375\) 0 0
\(376\) 10.5086 0.541938
\(377\) −4.37904 + 6.07759i −0.225532 + 0.313012i
\(378\) 0 0
\(379\) −23.3797 + 13.4983i −1.20094 + 0.693361i −0.960763 0.277369i \(-0.910538\pi\)
−0.240173 + 0.970730i \(0.577204\pi\)
\(380\) −5.53347 9.58425i −0.283861 0.491662i
\(381\) 0 0
\(382\) 15.0304i 0.769020i
\(383\) −22.6159 13.0573i −1.15562 0.667197i −0.205368 0.978685i \(-0.565839\pi\)
−0.950250 + 0.311488i \(0.899173\pi\)
\(384\) 0 0
\(385\) 5.67609i 0.289280i
\(386\) 2.72745 4.72408i 0.138824 0.240450i
\(387\) 0 0
\(388\) −15.1461 + 8.74462i −0.768928 + 0.443941i
\(389\) 32.7110 1.65852 0.829258 0.558866i \(-0.188764\pi\)
0.829258 + 0.558866i \(0.188764\pi\)
\(390\) 0 0
\(391\) 34.1089 1.72496
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) −3.81485 + 6.60751i −0.192189 + 0.332882i
\(395\) 12.4491i 0.626383i
\(396\) 0 0
\(397\) −0.524826 0.303008i −0.0263403 0.0152076i 0.486772 0.873529i \(-0.338174\pi\)
−0.513112 + 0.858321i \(0.671508\pi\)
\(398\) 5.99023i 0.300263i
\(399\) 0 0
\(400\) −0.901504 1.56145i −0.0450752 0.0780726i
\(401\) −8.83963 + 5.10356i −0.441430 + 0.254860i −0.704204 0.709998i \(-0.748696\pi\)
0.262774 + 0.964857i \(0.415363\pi\)
\(402\) 0 0
\(403\) 18.5399 8.34244i 0.923537 0.415566i
\(404\) 4.06866 0.202424
\(405\) 0 0
\(406\) −1.03880 1.79925i −0.0515546 0.0892952i
\(407\) 4.91564 8.51413i 0.243659 0.422030i
\(408\) 0 0
\(409\) 8.01863 + 4.62956i 0.396496 + 0.228917i 0.684971 0.728570i \(-0.259815\pi\)
−0.288475 + 0.957487i \(0.593148\pi\)
\(410\) −2.32027 1.33961i −0.114590 0.0661586i
\(411\) 0 0
\(412\) −9.03838 + 15.6549i −0.445289 + 0.771263i
\(413\) 1.39069 + 2.40874i 0.0684313 + 0.118527i
\(414\) 0 0
\(415\) 7.69254 0.377612
\(416\) −0.362708 + 3.58726i −0.0177832 + 0.175880i
\(417\) 0 0
\(418\) −17.0163 + 9.82438i −0.832296 + 0.480526i
\(419\) 6.42444 + 11.1275i 0.313855 + 0.543612i 0.979193 0.202930i \(-0.0650462\pi\)
−0.665339 + 0.746542i \(0.731713\pi\)
\(420\) 0 0
\(421\) 7.21371i 0.351575i 0.984428 + 0.175787i \(0.0562471\pi\)
−0.984428 + 0.175787i \(0.943753\pi\)
\(422\) −2.40150 1.38651i −0.116903 0.0674942i
\(423\) 0 0
\(424\) 3.60200i 0.174929i
\(425\) −5.01329 + 8.68328i −0.243180 + 0.421201i
\(426\) 0 0
\(427\) −1.46254 + 0.844395i −0.0707771 + 0.0408632i
\(428\) −1.54169 −0.0745206
\(429\) 0 0
\(430\) 17.2340 0.831097
\(431\) 5.17941 2.99033i 0.249483 0.144039i −0.370044 0.929014i \(-0.620658\pi\)
0.619528 + 0.784975i \(0.287324\pi\)
\(432\) 0 0
\(433\) 6.30144 10.9144i 0.302828 0.524513i −0.673947 0.738779i \(-0.735403\pi\)
0.976775 + 0.214266i \(0.0687359\pi\)
\(434\) 5.63862i 0.270663i
\(435\) 0 0
\(436\) −6.38894 3.68865i −0.305975 0.176655i
\(437\) 37.9637i 1.81605i
\(438\) 0 0
\(439\) 9.77965 + 16.9389i 0.466757 + 0.808447i 0.999279 0.0379690i \(-0.0120888\pi\)
−0.532522 + 0.846416i \(0.678755\pi\)
\(440\) 4.91564 2.83804i 0.234344 0.135298i
\(441\) 0 0
\(442\) 18.2847 8.22764i 0.869717 0.391349i
\(443\) 40.2601 1.91281 0.956407 0.292038i \(-0.0943335\pi\)
0.956407 + 0.292038i \(0.0943335\pi\)
\(444\) 0 0
\(445\) 14.5661 + 25.2293i 0.690500 + 1.19598i
\(446\) −11.2677 + 19.5163i −0.533542 + 0.924121i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) 24.7821 + 14.3079i 1.16954 + 0.675234i 0.953571 0.301167i \(-0.0973762\pi\)
0.215967 + 0.976401i \(0.430710\pi\)
\(450\) 0 0
\(451\) −2.37841 + 4.11952i −0.111995 + 0.193981i
\(452\) 4.95660 + 8.58509i 0.233139 + 0.403809i
\(453\) 0 0
\(454\) −1.83155 −0.0859587
\(455\) −6.41407 0.648527i −0.300696 0.0304034i
\(456\) 0 0
\(457\) 5.49961 3.17520i 0.257261 0.148530i −0.365824 0.930684i \(-0.619213\pi\)
0.623084 + 0.782155i \(0.285879\pi\)
\(458\) 11.3030 + 19.5774i 0.528155 + 0.914791i
\(459\) 0 0
\(460\) 10.9669i 0.511333i
\(461\) −20.9785 12.1119i −0.977065 0.564109i −0.0756821 0.997132i \(-0.524113\pi\)
−0.901383 + 0.433023i \(0.857447\pi\)
\(462\) 0 0
\(463\) 17.3851i 0.807954i 0.914769 + 0.403977i \(0.132372\pi\)
−0.914769 + 0.403977i \(0.867628\pi\)
\(464\) 1.03880 1.79925i 0.0482249 0.0835280i
\(465\) 0 0
\(466\) −8.17439 + 4.71948i −0.378671 + 0.218626i
\(467\) 14.8537 0.687349 0.343675 0.939089i \(-0.388328\pi\)
0.343675 + 0.939089i \(0.388328\pi\)
\(468\) 0 0
\(469\) −11.5544 −0.533532
\(470\) −16.2722 + 9.39473i −0.750579 + 0.433347i
\(471\) 0 0
\(472\) −1.39069 + 2.40874i −0.0640117 + 0.110871i
\(473\) 30.5980i 1.40690i
\(474\) 0 0
\(475\) −9.66463 5.57988i −0.443444 0.256022i
\(476\) 5.56103i 0.254889i
\(477\) 0 0
\(478\) −7.93787 13.7488i −0.363070 0.628855i
\(479\) 33.5014 19.3420i 1.53072 0.883759i 0.531387 0.847129i \(-0.321671\pi\)
0.999329 0.0366302i \(-0.0116624\pi\)
\(480\) 0 0
\(481\) −9.05947 6.52754i −0.413076 0.297630i
\(482\) −23.9251 −1.08976
\(483\) 0 0
\(484\) 0.461204 + 0.798828i 0.0209638 + 0.0363104i
\(485\) 15.6355 27.0815i 0.709971 1.22971i
\(486\) 0 0
\(487\) 22.2780 + 12.8622i 1.00951 + 0.582843i 0.911049 0.412298i \(-0.135274\pi\)
0.0984640 + 0.995141i \(0.468607\pi\)
\(488\) −1.46254 0.844395i −0.0662059 0.0382240i
\(489\) 0 0
\(490\) 0.894007 1.54846i 0.0403871 0.0699525i
\(491\) 9.17452 + 15.8907i 0.414040 + 0.717139i 0.995327 0.0965597i \(-0.0307839\pi\)
−0.581287 + 0.813699i \(0.697451\pi\)
\(492\) 0 0
\(493\) −11.5536 −0.520346
\(494\) 9.15749 + 20.3512i 0.412015 + 0.915644i
\(495\) 0 0
\(496\) −4.88319 + 2.81931i −0.219262 + 0.126591i
\(497\) 0.299248 + 0.518313i 0.0134231 + 0.0232495i
\(498\) 0 0
\(499\) 17.8096i 0.797269i −0.917110 0.398635i \(-0.869484\pi\)
0.917110 0.398635i \(-0.130516\pi\)
\(500\) 10.5342 + 6.08193i 0.471105 + 0.271992i
\(501\) 0 0
\(502\) 20.5236i 0.916012i
\(503\) 15.4711 26.7967i 0.689823 1.19481i −0.282072 0.959393i \(-0.591022\pi\)
0.971895 0.235415i \(-0.0756448\pi\)
\(504\) 0 0
\(505\) −6.30019 + 3.63741i −0.280355 + 0.161863i
\(506\) −19.4711 −0.865596
\(507\) 0 0
\(508\) 18.3490 0.814107
\(509\) −11.9583 + 6.90414i −0.530044 + 0.306021i −0.741034 0.671467i \(-0.765664\pi\)
0.210991 + 0.977488i \(0.432331\pi\)
\(510\) 0 0
\(511\) 0.211987 0.367172i 0.00937774 0.0162427i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.715933 0.413344i −0.0315784 0.0182318i
\(515\) 32.3215i 1.42425i
\(516\) 0 0
\(517\) 16.6798 + 28.8903i 0.733579 + 1.27060i
\(518\) 2.68202 1.54846i 0.117841 0.0680356i
\(519\) 0 0
\(520\) −2.64539 5.87901i −0.116008 0.257812i
\(521\) 11.4549 0.501848 0.250924 0.968007i \(-0.419266\pi\)
0.250924 + 0.968007i \(0.419266\pi\)
\(522\) 0 0
\(523\) −0.465198 0.805747i −0.0203417 0.0352329i 0.855675 0.517513i \(-0.173142\pi\)
−0.876017 + 0.482280i \(0.839809\pi\)
\(524\) −2.95964 + 5.12624i −0.129292 + 0.223941i
\(525\) 0 0
\(526\) −17.6331 10.1805i −0.768838 0.443889i
\(527\) 27.1556 + 15.6783i 1.18292 + 0.682957i
\(528\) 0 0
\(529\) −7.31025 + 12.6617i −0.317837 + 0.550510i
\(530\) 3.22021 + 5.57757i 0.139877 + 0.242274i
\(531\) 0 0
\(532\) −6.18952 −0.268350
\(533\) 4.38338 + 3.15832i 0.189865 + 0.136802i
\(534\) 0 0
\(535\) 2.38726 1.37828i 0.103210 0.0595884i
\(536\) −5.77720 10.0064i −0.249537 0.432211i
\(537\) 0 0
\(538\) 20.5175i 0.884572i
\(539\) −2.74922 1.58726i −0.118417 0.0683682i
\(540\) 0 0
\(541\) 22.7965i 0.980097i −0.871695 0.490048i \(-0.836979\pi\)
0.871695 0.490048i \(-0.163021\pi\)
\(542\) 6.09076 10.5495i 0.261621 0.453140i
\(543\) 0 0
\(544\) −4.81599 + 2.78052i −0.206484 + 0.119214i
\(545\) 13.1907 0.565029
\(546\) 0 0
\(547\) 31.6698 1.35410 0.677052 0.735935i \(-0.263257\pi\)
0.677052 + 0.735935i \(0.263257\pi\)
\(548\) −7.62363 + 4.40150i −0.325665 + 0.188023i
\(549\) 0 0
\(550\) 2.86185 4.95686i 0.122029 0.211361i
\(551\) 12.8593i 0.547824i
\(552\) 0 0
\(553\) 6.02973 + 3.48127i 0.256410 + 0.148039i
\(554\) 8.62484i 0.366434i
\(555\) 0 0
\(556\) 9.48720 + 16.4323i 0.402347 + 0.696885i
\(557\) 9.38623 5.41914i 0.397707 0.229616i −0.287787 0.957694i \(-0.592920\pi\)
0.685494 + 0.728078i \(0.259586\pi\)
\(558\) 0 0
\(559\) −34.5763 3.49601i −1.46242 0.147865i
\(560\) 1.78801 0.0755574
\(561\) 0 0
\(562\) −12.1461 21.0377i −0.512353 0.887422i
\(563\) −7.73626 + 13.3996i −0.326044 + 0.564725i −0.981723 0.190315i \(-0.939049\pi\)
0.655679 + 0.755040i \(0.272383\pi\)
\(564\) 0 0
\(565\) −15.3503 8.86247i −0.645790 0.372847i
\(566\) −9.28472 5.36054i −0.390266 0.225320i
\(567\) 0 0
\(568\) −0.299248 + 0.518313i −0.0125562 + 0.0217479i
\(569\) −16.8667 29.2139i −0.707088 1.22471i −0.965933 0.258793i \(-0.916675\pi\)
0.258845 0.965919i \(-0.416658\pi\)
\(570\) 0 0
\(571\) −43.6140 −1.82519 −0.912594 0.408868i \(-0.865924\pi\)
−0.912594 + 0.408868i \(0.865924\pi\)
\(572\) −10.4379 + 4.69676i −0.436429 + 0.196381i
\(573\) 0 0
\(574\) −1.29768 + 0.749217i −0.0541642 + 0.0312717i
\(575\) −5.52943 9.57725i −0.230593 0.399399i
\(576\) 0 0
\(577\) 10.8368i 0.451143i 0.974227 + 0.225571i \(0.0724249\pi\)
−0.974227 + 0.225571i \(0.927575\pi\)
\(578\) 12.0595 + 6.96254i 0.501608 + 0.289603i
\(579\) 0 0
\(580\) 3.71476i 0.154247i
\(581\) 2.15114 3.72589i 0.0892444 0.154576i
\(582\) 0 0
\(583\) 9.90268 5.71731i 0.410127 0.236787i
\(584\) 0.423973 0.0175441
\(585\) 0 0
\(586\) −21.4278 −0.885176
\(587\) −22.5632 + 13.0269i −0.931284 + 0.537677i −0.887217 0.461352i \(-0.847365\pi\)
−0.0440666 + 0.999029i \(0.514031\pi\)
\(588\) 0 0
\(589\) −17.4502 + 30.2246i −0.719022 + 1.24538i
\(590\) 4.97314i 0.204741i
\(591\) 0 0
\(592\) 2.68202 + 1.54846i 0.110230 + 0.0636415i
\(593\) 1.68393i 0.0691509i 0.999402 + 0.0345754i \(0.0110079\pi\)
−0.999402 + 0.0345754i \(0.988992\pi\)
\(594\) 0 0
\(595\) −4.97160 8.61106i −0.203816 0.353019i
\(596\) −12.0919 + 6.98127i −0.495304 + 0.285964i
\(597\) 0 0
\(598\) −2.22469 + 22.0027i −0.0909743 + 0.899756i
\(599\) 6.54081 0.267250 0.133625 0.991032i \(-0.457338\pi\)
0.133625 + 0.991032i \(0.457338\pi\)
\(600\) 0 0
\(601\) −19.2387 33.3224i −0.784763 1.35925i −0.929140 0.369727i \(-0.879451\pi\)
0.144377 0.989523i \(-0.453882\pi\)
\(602\) 4.81931 8.34729i 0.196420 0.340210i
\(603\) 0 0
\(604\) −15.4522 8.92131i −0.628740 0.363003i
\(605\) −1.42832 0.824638i −0.0580693 0.0335263i
\(606\) 0 0
\(607\) 4.71797 8.17176i 0.191496 0.331682i −0.754250 0.656587i \(-0.771999\pi\)
0.945746 + 0.324906i \(0.105333\pi\)
\(608\) −3.09476 5.36028i −0.125509 0.217388i
\(609\) 0 0
\(610\) 3.01958 0.122259
\(611\) 34.5523 15.5476i 1.39784 0.628989i
\(612\) 0 0
\(613\) −22.0191 + 12.7127i −0.889342 + 0.513462i −0.873727 0.486416i \(-0.838304\pi\)
−0.0156146 + 0.999878i \(0.504970\pi\)
\(614\) −3.79682 6.57628i −0.153227 0.265397i
\(615\) 0 0
\(616\) 3.17452i 0.127905i
\(617\) −24.8545 14.3497i −1.00060 0.577699i −0.0921772 0.995743i \(-0.529383\pi\)
−0.908427 + 0.418044i \(0.862716\pi\)
\(618\) 0 0
\(619\) 9.61494i 0.386457i −0.981154 0.193229i \(-0.938104\pi\)
0.981154 0.193229i \(-0.0618959\pi\)
\(620\) 5.04097 8.73121i 0.202450 0.350654i
\(621\) 0 0
\(622\) 22.2010 12.8177i 0.890178 0.513945i
\(623\) 16.2931 0.652769
\(624\) 0 0
\(625\) −12.7341 −0.509365
\(626\) 1.48357 0.856542i 0.0592956 0.0342343i
\(627\) 0 0
\(628\) 2.28958 3.96567i 0.0913642 0.158247i
\(629\) 17.2221i 0.686691i
\(630\) 0 0
\(631\) 29.9445 + 17.2885i 1.19207 + 0.688244i 0.958776 0.284162i \(-0.0917153\pi\)
0.233297 + 0.972406i \(0.425049\pi\)
\(632\) 6.96254i 0.276955i
\(633\) 0 0
\(634\) −16.6049 28.7605i −0.659465 1.14223i
\(635\) −28.4129 + 16.4042i −1.12753 + 0.650980i
\(636\) 0 0
\(637\) −2.10774 + 2.92531i −0.0835119 + 0.115905i
\(638\) 6.59536 0.261113
\(639\) 0 0
\(640\) 0.894007 + 1.54846i 0.0353387 + 0.0612085i
\(641\) −3.25646 + 5.64035i −0.128622 + 0.222780i −0.923143 0.384457i \(-0.874389\pi\)
0.794521 + 0.607237i \(0.207722\pi\)
\(642\) 0 0
\(643\) −21.8991 12.6435i −0.863617 0.498609i 0.00160504 0.999999i \(-0.499489\pi\)
−0.865222 + 0.501389i \(0.832822\pi\)
\(644\) −5.31181 3.06678i −0.209315 0.120848i
\(645\) 0 0
\(646\) −17.2101 + 29.8087i −0.677120 + 1.17281i
\(647\) −5.95794 10.3194i −0.234231 0.405699i 0.724818 0.688940i \(-0.241924\pi\)
−0.959049 + 0.283241i \(0.908590\pi\)
\(648\) 0 0
\(649\) −8.82955 −0.346590
\(650\) −5.27435 3.80028i −0.206877 0.149059i
\(651\) 0 0
\(652\) 10.6267 6.13531i 0.416172 0.240277i
\(653\) 20.7508 + 35.9415i 0.812043 + 1.40650i 0.911432 + 0.411451i \(0.134978\pi\)
−0.0993891 + 0.995049i \(0.531689\pi\)
\(654\) 0 0
\(655\) 10.5837i 0.413541i
\(656\) −1.29768 0.749217i −0.0506660 0.0292520i
\(657\) 0 0
\(658\) 10.5086i 0.409667i
\(659\) 7.86778 13.6274i 0.306485 0.530848i −0.671106 0.741362i \(-0.734180\pi\)
0.977591 + 0.210514i \(0.0675137\pi\)
\(660\) 0 0
\(661\) −22.6071 + 13.0522i −0.879315 + 0.507673i −0.870432 0.492288i \(-0.836161\pi\)
−0.00888248 + 0.999961i \(0.502827\pi\)
\(662\) −4.95987 −0.192771
\(663\) 0 0
\(664\) 4.30228 0.166961
\(665\) 9.58425 5.53347i 0.371661 0.214579i
\(666\) 0 0
\(667\) 6.37151 11.0358i 0.246706 0.427307i
\(668\) 16.6981i 0.646068i
\(669\) 0 0
\(670\) 17.8916 + 10.3297i 0.691212 + 0.399071i
\(671\) 5.36110i 0.206963i
\(672\) 0 0
\(673\) 0.620853 + 1.07535i 0.0239321 + 0.0414516i 0.877743 0.479131i \(-0.159048\pi\)
−0.853811 + 0.520583i \(0.825715\pi\)
\(674\) −20.4532 + 11.8087i −0.787829 + 0.454853i
\(675\) 0 0
\(676\) 4.11482 + 12.3316i 0.158262 + 0.474292i
\(677\) −29.2845 −1.12550 −0.562748 0.826629i \(-0.690256\pi\)
−0.562748 + 0.826629i \(0.690256\pi\)
\(678\) 0 0
\(679\) −8.74462 15.1461i −0.335588 0.581255i
\(680\) 4.97160 8.61106i 0.190652 0.330219i
\(681\) 0 0
\(682\) −15.5018 8.94997i −0.593595 0.342712i
\(683\) 37.0486 + 21.3900i 1.41762 + 0.818466i 0.996090 0.0883461i \(-0.0281581\pi\)
0.421535 + 0.906812i \(0.361491\pi\)
\(684\) 0 0
\(685\) 7.86995 13.6311i 0.300695 0.520819i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 0 0
\(688\) 9.63862 0.367469
\(689\) −5.32922 11.8434i −0.203027 0.451198i
\(690\) 0 0
\(691\) −16.3649 + 9.44827i −0.622549 + 0.359429i −0.777861 0.628437i \(-0.783695\pi\)
0.155312 + 0.987866i \(0.450362\pi\)
\(692\) 3.68865 + 6.38894i 0.140222 + 0.242871i
\(693\) 0 0
\(694\) 7.16967i 0.272157i
\(695\) −29.3812 16.9632i −1.11449 0.643452i
\(696\) 0 0
\(697\) 8.33284i 0.315629i
\(698\) −6.18662 + 10.7155i −0.234167 + 0.405589i
\(699\) 0 0
\(700\) 1.56145 0.901504i 0.0590173 0.0340737i
\(701\) 3.35161 0.126589 0.0632943 0.997995i \(-0.479839\pi\)
0.0632943 + 0.997995i \(0.479839\pi\)
\(702\) 0 0
\(703\) 19.1685 0.722954
\(704\) 2.74922 1.58726i 0.103615 0.0598222i
\(705\) 0 0
\(706\) 13.1069 22.7018i 0.493285 0.854395i
\(707\) 4.06866i 0.153018i
\(708\) 0 0
\(709\) 31.8468 + 18.3867i 1.19603 + 0.690529i 0.959668 0.281136i \(-0.0907113\pi\)
0.236363 + 0.971665i \(0.424045\pi\)
\(710\) 1.07012i 0.0401608i
\(711\) 0 0
\(712\) 8.14654 + 14.1102i 0.305305 + 0.528803i
\(713\) −29.9513 + 17.2924i −1.12169 + 0.647606i
\(714\) 0 0
\(715\) 11.9637 16.6043i 0.447419 0.620965i
\(716\) −19.8202 −0.740714
\(717\) 0 0
\(718\) 1.80978 + 3.13463i 0.0675404 + 0.116983i
\(719\) −8.08486 + 14.0034i −0.301514 + 0.522238i −0.976479 0.215612i \(-0.930825\pi\)
0.674965 + 0.737850i \(0.264159\pi\)
\(720\) 0 0
\(721\) −15.6549 9.03838i −0.583020 0.336607i
\(722\) −16.7231 9.65506i −0.622368 0.359324i
\(723\) 0 0
\(724\) −9.16329 + 15.8713i −0.340551 + 0.589851i
\(725\) 1.87296 + 3.24406i 0.0695599 + 0.120481i
\(726\) 0 0
\(727\) 27.2522 1.01073 0.505363 0.862907i \(-0.331358\pi\)
0.505363 + 0.862907i \(0.331358\pi\)
\(728\) −3.58726 0.362708i −0.132953 0.0134429i
\(729\) 0 0
\(730\) −0.656508 + 0.379035i −0.0242984 + 0.0140287i
\(731\) −26.8003 46.4196i −0.991247 1.71689i
\(732\) 0 0
\(733\) 39.6734i 1.46537i −0.680567 0.732686i \(-0.738267\pi\)
0.680567 0.732686i \(-0.261733\pi\)
\(734\) −6.98440 4.03245i −0.257799 0.148840i
\(735\) 0 0
\(736\) 6.13356i 0.226086i
\(737\) 18.3398 31.7655i 0.675557 1.17010i
\(738\) 0 0
\(739\) −22.0125 + 12.7089i −0.809742 + 0.467505i −0.846866 0.531806i \(-0.821514\pi\)
0.0371244 + 0.999311i \(0.488180\pi\)
\(740\) −5.53735 −0.203557
\(741\) 0 0
\(742\) 3.60200 0.132234
\(743\) 21.5143 12.4213i 0.789285 0.455694i −0.0504260 0.998728i \(-0.516058\pi\)
0.839711 + 0.543034i \(0.182725\pi\)
\(744\) 0 0
\(745\) 12.4826 21.6205i 0.457327 0.792114i
\(746\) 29.1702i 1.06800i
\(747\) 0 0
\(748\) −15.2885 8.82681i −0.559002 0.322740i
\(749\) 1.54169i 0.0563323i
\(750\) 0 0
\(751\) −22.7211 39.3540i −0.829103 1.43605i −0.898743 0.438476i \(-0.855518\pi\)
0.0696398 0.997572i \(-0.477815\pi\)
\(752\) −9.10069 + 5.25429i −0.331868 + 0.191604i
\(753\) 0 0
\(754\) 0.753559 7.45287i 0.0274430 0.271417i
\(755\) 31.9028 1.16106
\(756\) 0 0
\(757\) −3.20643 5.55369i −0.116540 0.201852i 0.801855 0.597519i \(-0.203847\pi\)
−0.918394 + 0.395667i \(0.870514\pi\)
\(758\) 13.4983 23.3797i 0.490280 0.849190i
\(759\) 0 0
\(760\) 9.58425 + 5.53347i 0.347657 + 0.200720i
\(761\) −27.8313 16.0684i −1.00888 0.582479i −0.0980185 0.995185i \(-0.531250\pi\)
−0.910864 + 0.412706i \(0.864584\pi\)
\(762\) 0 0
\(763\) 3.68865 6.38894i 0.133538 0.231295i
\(764\) 7.51518 + 13.0167i 0.271890 + 0.470927i
\(765\) 0 0
\(766\) 26.1146 0.943558
\(767\) −1.00883 + 9.97753i −0.0364267 + 0.360268i
\(768\) 0 0
\(769\) −33.7551 + 19.4885i −1.21724 + 0.702774i −0.964327 0.264714i \(-0.914722\pi\)
−0.252914 + 0.967489i \(0.581389\pi\)
\(770\) 2.83804 + 4.91564i 0.102276 + 0.177147i
\(771\) 0 0
\(772\) 5.45490i 0.196326i
\(773\) −2.09922 1.21199i −0.0755038 0.0435921i 0.461773 0.886998i \(-0.347214\pi\)
−0.537277 + 0.843406i \(0.680547\pi\)
\(774\) 0 0
\(775\) 10.1665i 0.365191i
\(776\) 8.74462 15.1461i 0.313913 0.543714i
\(777\) 0 0
\(778\) −28.3286 + 16.3555i −1.01563 + 0.586374i
\(779\) −9.27458 −0.332296
\(780\) 0 0
\(781\) −1.89994 −0.0679851
\(782\) −29.5392 + 17.0544i −1.05632 + 0.609866i