Properties

Label 1638.2.bj.f
Level $1638$
Weight $2$
Character orbit 1638.bj
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.195105024.2
Defining polynomial: \(x^{8} - 4 x^{7} + 5 x^{6} + 4 x^{5} - 20 x^{4} + 12 x^{3} + 45 x^{2} - 108 x + 81\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} -\beta_{4} q^{4} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{5} -\beta_{6} q^{7} + ( -\beta_{2} - \beta_{6} ) q^{8} +O(q^{10})\) \( q -\beta_{2} q^{2} -\beta_{4} q^{4} + ( 1 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{5} -\beta_{6} q^{7} + ( -\beta_{2} - \beta_{6} ) q^{8} + ( 2 - \beta_{3} + 2 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{10} + ( -1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{11} + ( 3 - \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{5} + \beta_{6} + \beta_{7} ) q^{13} - q^{14} + ( -1 - \beta_{4} ) q^{16} + ( 1 - \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{7} ) q^{17} + ( -2 + 2 \beta_{1} + 3 \beta_{2} + \beta_{3} - \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{19} + ( 1 - \beta_{1} - \beta_{2} + \beta_{6} - \beta_{7} ) q^{20} + ( \beta_{2} + \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{22} + ( -1 - \beta_{1} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{23} + ( -1 - 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} - 4 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{25} + ( 1 - \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{6} + 2 \beta_{7} ) q^{26} + \beta_{2} q^{28} + ( -1 + \beta_{1} - \beta_{2} + \beta_{3} - 4 \beta_{6} ) q^{29} + ( -2 - 2 \beta_{2} - 4 \beta_{4} + \beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{31} -\beta_{6} q^{32} + ( 1 - \beta_{1} - \beta_{3} + \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{34} + ( -1 + \beta_{1} - \beta_{2} - 2 \beta_{4} - \beta_{6} - \beta_{7} ) q^{35} + ( 2 \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{37} + ( 2 - 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 3 \beta_{5} + \beta_{6} + \beta_{7} ) q^{38} + ( 1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{5} ) q^{40} + ( -1 - \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{41} + ( -5 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{43} + ( \beta_{2} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{44} + ( 3 - \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - 3 \beta_{6} - \beta_{7} ) q^{46} + ( 3 - 3 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{5} + \beta_{6} + 5 \beta_{7} ) q^{47} + ( 1 + \beta_{4} ) q^{49} + ( 2 - 2 \beta_{1} + 5 \beta_{2} - 2 \beta_{3} - 4 \beta_{5} + 4 \beta_{6} + 4 \beta_{7} ) q^{50} + ( 2 - 2 \beta_{1} - \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} ) q^{52} + ( 3 + \beta_{1} + 4 \beta_{2} - \beta_{3} - 3 \beta_{5} + 3 \beta_{6} + 4 \beta_{7} ) q^{53} + ( -6 + 2 \beta_{2} + \beta_{3} - 6 \beta_{4} - \beta_{5} + 3 \beta_{6} - \beta_{7} ) q^{55} + \beta_{4} q^{56} + ( -4 + \beta_{2} + \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{58} + ( -3 - 3 \beta_{1} - 4 \beta_{2} - \beta_{3} - 3 \beta_{4} + \beta_{5} - \beta_{6} - 3 \beta_{7} ) q^{59} + ( 8 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} + 5 \beta_{6} ) q^{61} + ( -2 - \beta_{1} - 3 \beta_{2} - 3 \beta_{4} - \beta_{5} - 5 \beta_{6} - \beta_{7} ) q^{62} - q^{64} + ( -9 + \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 6 \beta_{4} - 4 \beta_{5} + \beta_{6} - \beta_{7} ) q^{65} + ( 2 + \beta_{1} - 5 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{67} + ( 1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} ) q^{68} + ( -1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - 2 \beta_{6} ) q^{70} + ( -1 + \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{71} + ( 2 - 2 \beta_{1} + 6 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} + 8 \beta_{6} ) q^{73} + ( -1 + \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} - 3 \beta_{6} - \beta_{7} ) q^{74} + ( 1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - 3 \beta_{5} + 3 \beta_{6} + 3 \beta_{7} ) q^{76} + ( 1 + \beta_{1} - \beta_{3} + \beta_{6} + \beta_{7} ) q^{77} + ( -2 \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{5} - \beta_{6} - \beta_{7} ) q^{79} + ( -2 \beta_{2} + \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{80} + ( -1 + \beta_{1} + 2 \beta_{2} - \beta_{3} - 4 \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{82} + ( 4 + \beta_{1} + 6 \beta_{2} + \beta_{3} + 10 \beta_{4} + 2 \beta_{5} + 5 \beta_{6} + \beta_{7} ) q^{83} + ( -9 + \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{85} + ( -2 + 2 \beta_{2} - 4 \beta_{4} + \beta_{5} + 2 \beta_{6} + \beta_{7} ) q^{86} + ( 1 + \beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{88} + ( 3 - 2 \beta_{1} + 10 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} ) q^{89} + ( \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{5} - 3 \beta_{6} - \beta_{7} ) q^{91} + ( -3 + \beta_{1} - 3 \beta_{2} - \beta_{3} + 2 \beta_{5} - \beta_{7} ) q^{92} + ( 1 - 5 \beta_{1} - 5 \beta_{2} - 3 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{94} + ( -7 + 7 \beta_{1} - 5 \beta_{2} + 6 \beta_{3} - 10 \beta_{4} + 6 \beta_{5} - 9 \beta_{6} - 7 \beta_{7} ) q^{95} + ( -9 + \beta_{1} - \beta_{2} - 2 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} + 5 \beta_{6} + \beta_{7} ) q^{97} + \beta_{6} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{4} + O(q^{10}) \) \( 8q + 4q^{4} + 6q^{10} - 6q^{11} + 12q^{13} - 8q^{14} - 4q^{16} - 2q^{17} - 12q^{19} + 6q^{20} - 4q^{22} - 8q^{23} - 24q^{25} - 6q^{26} - 2q^{29} + 6q^{35} + 18q^{37} + 4q^{38} + 12q^{40} - 12q^{41} - 8q^{43} + 18q^{46} + 4q^{49} - 12q^{50} + 12q^{52} + 12q^{53} - 22q^{55} - 4q^{56} - 24q^{58} - 18q^{59} - 8q^{61} - 8q^{62} - 8q^{64} - 46q^{65} + 18q^{67} + 2q^{68} - 6q^{71} + 6q^{74} - 12q^{76} + 8q^{77} - 4q^{79} + 6q^{80} + 10q^{82} - 54q^{85} + 4q^{88} + 18q^{89} + 6q^{91} - 16q^{92} - 2q^{94} + 50q^{95} - 54q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{7} + 5 x^{6} + 4 x^{5} - 20 x^{4} + 12 x^{3} + 45 x^{2} - 108 x + 81\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{7} - \nu^{6} + 2 \nu^{5} + 10 \nu^{4} + 10 \nu^{3} + 42 \nu^{2} - 45 \nu - 27 \)\()/216\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{7} + \nu^{6} - 2 \nu^{5} - 10 \nu^{4} - 10 \nu^{3} + 30 \nu^{2} - 27 \nu + 27 \)\()/72\)
\(\beta_{4}\)\(=\)\((\)\( -5 \nu^{7} + 8 \nu^{6} - 4 \nu^{5} - 26 \nu^{4} + 52 \nu^{3} + 18 \nu^{2} - 153 \nu + 162 \)\()/108\)
\(\beta_{5}\)\(=\)\((\)\( -7 \nu^{7} + 13 \nu^{6} - 2 \nu^{5} - 22 \nu^{4} + 26 \nu^{3} + 54 \nu^{2} - 225 \nu + 243 \)\()/108\)
\(\beta_{6}\)\(=\)\((\)\( 19 \nu^{7} - 49 \nu^{6} + 14 \nu^{5} + 130 \nu^{4} - 218 \nu^{3} - 150 \nu^{2} + 801 \nu - 891 \)\()/216\)
\(\beta_{7}\)\(=\)\((\)\( -5 \nu^{7} + 14 \nu^{6} - 10 \nu^{5} - 32 \nu^{4} + 58 \nu^{3} + 24 \nu^{2} - 207 \nu + 270 \)\()/36\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 3 \beta_{2} + \beta_{1}\)
\(\nu^{3}\)\(=\)\(-\beta_{5} + 2 \beta_{4} - \beta_{3} + 3 \beta_{2} + \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{7} + 3 \beta_{6} + 3 \beta_{5} - 3 \beta_{3} + 6 \beta_{2} + \beta_{1}\)
\(\nu^{5}\)\(=\)\(-5 \beta_{7} - 9 \beta_{6} + 2 \beta_{5} - 4 \beta_{4} - 5 \beta_{3} - 6 \beta_{2} + 3\)
\(\nu^{6}\)\(=\)\(2 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} - 24 \beta_{4} - 8 \beta_{3} - 6 \beta_{2} + 8 \beta_{1} - 15\)
\(\nu^{7}\)\(=\)\(2 \beta_{7} - 18 \beta_{6} - 18 \beta_{5} - 36 \beta_{4} + 6 \beta_{2} - 9 \beta_{1} + 6\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-\beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
1.72124 0.193255i
−1.58726 + 0.693255i
1.30512 + 1.13871i
0.560908 1.63871i
−1.58726 0.693255i
1.72124 + 0.193255i
0.560908 + 1.63871i
1.30512 1.13871i
−0.866025 + 0.500000i 0 0.500000 0.866025i 3.05596i 0 0.866025 + 0.500000i 1.00000i 0 1.52798 + 2.64654i
127.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 1.78801i 0 0.866025 + 0.500000i 1.00000i 0 −0.894007 1.54846i
127.3 0.866025 0.500000i 0 0.500000 0.866025i 0.332808i 0 −0.866025 0.500000i 1.00000i 0 0.166404 + 0.288220i
127.4 0.866025 0.500000i 0 0.500000 0.866025i 4.39924i 0 −0.866025 0.500000i 1.00000i 0 2.19962 + 3.80986i
1135.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.78801i 0 0.866025 0.500000i 1.00000i 0 −0.894007 + 1.54846i
1135.2 −0.866025 0.500000i 0 0.500000 + 0.866025i 3.05596i 0 0.866025 0.500000i 1.00000i 0 1.52798 2.64654i
1135.3 0.866025 + 0.500000i 0 0.500000 + 0.866025i 4.39924i 0 −0.866025 + 0.500000i 1.00000i 0 2.19962 3.80986i
1135.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0.332808i 0 −0.866025 + 0.500000i 1.00000i 0 0.166404 0.288220i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1135.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.bj.f 8
3.b odd 2 1 546.2.s.e 8
13.e even 6 1 inner 1638.2.bj.f 8
39.h odd 6 1 546.2.s.e 8
39.k even 12 1 7098.2.a.cn 4
39.k even 12 1 7098.2.a.co 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.s.e 8 3.b odd 2 1
546.2.s.e 8 39.h odd 6 1
1638.2.bj.f 8 1.a even 1 1 trivial
1638.2.bj.f 8 13.e even 6 1 inner
7098.2.a.cn 4 39.k even 12 1
7098.2.a.co 4 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\):

\( T_{5}^{8} + 32 T_{5}^{6} + 276 T_{5}^{4} + 608 T_{5}^{2} + 64 \)
\(T_{11}^{8} + \cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
$3$ \( T^{8} \)
$5$ \( 64 + 608 T^{2} + 276 T^{4} + 32 T^{6} + T^{8} \)
$7$ \( ( 1 - T^{2} + T^{4} )^{2} \)
$11$ \( 1024 + 2304 T + 2016 T^{2} + 648 T^{3} - 31 T^{4} - 54 T^{5} + 3 T^{6} + 6 T^{7} + T^{8} \)
$13$ \( 28561 - 26364 T + 11154 T^{2} - 3120 T^{3} + 815 T^{4} - 240 T^{5} + 66 T^{6} - 12 T^{7} + T^{8} \)
$17$ \( 37249 - 4246 T + 6274 T^{2} - 112 T^{3} + 751 T^{4} - 16 T^{5} + 34 T^{6} + 2 T^{7} + T^{8} \)
$19$ \( 234256 - 191664 T + 30492 T^{2} + 17820 T^{3} - 43 T^{4} - 540 T^{5} + 3 T^{6} + 12 T^{7} + T^{8} \)
$23$ \( 183184 + 99296 T + 47404 T^{2} + 10328 T^{3} + 2509 T^{4} + 344 T^{5} + 79 T^{6} + 8 T^{7} + T^{8} \)
$29$ \( 4096 + 1024 T + 2240 T^{2} - 752 T^{3} + 865 T^{4} - 94 T^{5} + 35 T^{6} + 2 T^{7} + T^{8} \)
$31$ \( 47524 + 53616 T^{2} + 4253 T^{4} + 114 T^{6} + T^{8} \)
$37$ \( 5184 - 15552 T + 15120 T^{2} + 1296 T^{3} - 1188 T^{4} - 108 T^{5} + 114 T^{6} - 18 T^{7} + T^{8} \)
$41$ \( 256 + 384 T - 272 T^{2} - 696 T^{3} + 921 T^{4} - 348 T^{5} + 19 T^{6} + 12 T^{7} + T^{8} \)
$43$ \( 20164 - 10508 T + 9026 T^{2} - 422 T^{3} + 1075 T^{4} - 52 T^{5} + 89 T^{6} + 8 T^{7} + T^{8} \)
$47$ \( 59783824 + 2914872 T^{2} + 51041 T^{4} + 378 T^{6} + T^{8} \)
$53$ \( ( 2461 + 426 T - 106 T^{2} - 6 T^{3} + T^{4} )^{2} \)
$59$ \( 4477456 - 2336064 T + 234876 T^{2} + 89424 T^{3} - 2179 T^{4} - 1458 T^{5} + 27 T^{6} + 18 T^{7} + T^{8} \)
$61$ \( 2283121 + 1680232 T + 1058246 T^{2} + 155392 T^{3} + 24331 T^{4} + 1280 T^{5} + 182 T^{6} + 8 T^{7} + T^{8} \)
$67$ \( 11916304 - 8201952 T + 2258060 T^{2} - 258984 T^{3} + 1077 T^{4} + 1962 T^{5} - T^{6} - 18 T^{7} + T^{8} \)
$71$ \( 324 - 1620 T + 3402 T^{2} - 3510 T^{3} + 1719 T^{4} - 234 T^{5} - 27 T^{6} + 6 T^{7} + T^{8} \)
$73$ \( 65536 + 368640 T^{2} + 22592 T^{4} + 288 T^{6} + T^{8} \)
$79$ \( ( -104 - 148 T - 39 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$83$ \( 22146436 + 1924816 T^{2} + 46077 T^{4} + 382 T^{6} + T^{8} \)
$89$ \( 20584369 + 7268274 T + 84178 T^{2} - 272340 T^{3} + 14751 T^{4} + 3060 T^{5} - 62 T^{6} - 18 T^{7} + T^{8} \)
$97$ \( 1290496 - 1063296 T - 19232 T^{2} + 256464 T^{3} + 93060 T^{4} + 14796 T^{5} + 1246 T^{6} + 54 T^{7} + T^{8} \)
show more
show less