Properties

Label 1638.2.bj.e
Level $1638$
Weight $2$
Character orbit 1638.bj
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - 4 \zeta_{12}^{2} + 2) q^{5} + \zeta_{12} q^{7} - \zeta_{12}^{3} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - 4 \zeta_{12}^{2} + 2) q^{5} + \zeta_{12} q^{7} - \zeta_{12}^{3} q^{8} + ( - 2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{10} + ( - 4 \zeta_{12}^{3} + 4 \zeta_{12}) q^{11} + ( - \zeta_{12}^{3} - 3 \zeta_{12}) q^{13} + q^{14} - \zeta_{12}^{2} q^{16} + ( - 4 \zeta_{12}^{3} + 3 \zeta_{12}^{2} + 2 \zeta_{12} - 3) q^{17} + (2 \zeta_{12}^{2} - 4 \zeta_{12} + 2) q^{19} + ( - 2 \zeta_{12}^{2} - 2) q^{20} + ( - 4 \zeta_{12}^{2} + 4) q^{22} + (\zeta_{12}^{3} - 4 \zeta_{12}^{2} + \zeta_{12}) q^{23} - 7 q^{25} + ( - \zeta_{12}^{2} - 3) q^{26} + ( - \zeta_{12}^{3} + \zeta_{12}) q^{28} + 8 \zeta_{12}^{2} q^{29} + ( - 3 \zeta_{12}^{3} + 4 \zeta_{12}^{2} - 2) q^{31} - \zeta_{12} q^{32} + (3 \zeta_{12}^{3} - 4 \zeta_{12}^{2} + 2) q^{34} + ( - 4 \zeta_{12}^{3} + 2 \zeta_{12}) q^{35} + (2 \zeta_{12}^{3} + 4 \zeta_{12}^{2} - 2 \zeta_{12} - 8) q^{37} + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} - 4) q^{38} + (2 \zeta_{12}^{3} - 4 \zeta_{12}) q^{40} + ( - 4 \zeta_{12}^{2} + 8) q^{41} + (4 \zeta_{12}^{3} - \zeta_{12}^{2} - 2 \zeta_{12} + 1) q^{43} - 4 \zeta_{12}^{3} q^{44} + (\zeta_{12}^{2} - 4 \zeta_{12} + 1) q^{46} + ( - 4 \zeta_{12}^{3} - 4 \zeta_{12}^{2} + 2) q^{47} + \zeta_{12}^{2} q^{49} + (7 \zeta_{12}^{3} - 7 \zeta_{12}) q^{50} + (3 \zeta_{12}^{3} - 4 \zeta_{12}) q^{52} + ( - \zeta_{12}^{3} + 2 \zeta_{12} + 10) q^{53} + ( - 8 \zeta_{12}^{3} - 8 \zeta_{12}) q^{55} + ( - \zeta_{12}^{2} + 1) q^{56} + 8 \zeta_{12} q^{58} + ( - \zeta_{12}^{2} - 8 \zeta_{12} - 1) q^{59} + (6 \zeta_{12}^{3} - 3 \zeta_{12}) q^{61} + (2 \zeta_{12}^{3} - 3 \zeta_{12}^{2} + 2 \zeta_{12}) q^{62} - q^{64} + (14 \zeta_{12}^{3} - 10 \zeta_{12}) q^{65} + (2 \zeta_{12}^{3} - 3 \zeta_{12}^{2} - 2 \zeta_{12} + 6) q^{67} + ( - 2 \zeta_{12}^{3} + 3 \zeta_{12}^{2} - 2 \zeta_{12}) q^{68} + ( - 4 \zeta_{12}^{2} + 2) q^{70} + ( - 4 \zeta_{12}^{2} - 5 \zeta_{12} - 4) q^{71} + (4 \zeta_{12}^{3} - 8 \zeta_{12}^{2} + 4) q^{73} + (8 \zeta_{12}^{3} + 2 \zeta_{12}^{2} - 4 \zeta_{12} - 2) q^{74} + (4 \zeta_{12}^{3} - 2 \zeta_{12}^{2} - 4 \zeta_{12} + 4) q^{76} + 4 q^{77} + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} - 6) q^{79} + (2 \zeta_{12}^{2} - 4) q^{80} + ( - 8 \zeta_{12}^{3} + 4 \zeta_{12}) q^{82} + (2 \zeta_{12}^{2} - 1) q^{83} + (6 \zeta_{12}^{2} - 12 \zeta_{12} + 6) q^{85} + ( - \zeta_{12}^{3} + 4 \zeta_{12}^{2} - 2) q^{86} - 4 \zeta_{12}^{2} q^{88} + (10 \zeta_{12}^{3} - \zeta_{12}^{2} - 10 \zeta_{12} + 2) q^{89} + ( - 4 \zeta_{12}^{2} + 1) q^{91} + ( - \zeta_{12}^{3} + 2 \zeta_{12} - 4) q^{92} + ( - 2 \zeta_{12}^{3} - 4 \zeta_{12}^{2} - 2 \zeta_{12}) q^{94} + (16 \zeta_{12}^{3} - 12 \zeta_{12}^{2} - 8 \zeta_{12} + 12) q^{95} + (6 \zeta_{12}^{2} - 2 \zeta_{12} + 6) q^{97} + \zeta_{12} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} + 4 q^{14} - 2 q^{16} - 6 q^{17} + 12 q^{19} - 12 q^{20} + 8 q^{22} - 8 q^{23} - 28 q^{25} - 14 q^{26} + 16 q^{29} - 24 q^{37} - 16 q^{38} + 24 q^{41} + 2 q^{43} + 6 q^{46} + 2 q^{49} + 40 q^{53} + 2 q^{56} - 6 q^{59} - 6 q^{62} - 4 q^{64} + 18 q^{67} + 6 q^{68} - 24 q^{71} - 4 q^{74} + 12 q^{76} + 16 q^{77} - 24 q^{79} - 12 q^{80} + 36 q^{85} - 8 q^{88} + 6 q^{89} - 4 q^{91} - 16 q^{92} - 8 q^{94} + 24 q^{95} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 3.46410i 0 −0.866025 0.500000i 1.00000i 0 1.73205 + 3.00000i
127.2 0.866025 0.500000i 0 0.500000 0.866025i 3.46410i 0 0.866025 + 0.500000i 1.00000i 0 −1.73205 3.00000i
1135.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 3.46410i 0 −0.866025 + 0.500000i 1.00000i 0 1.73205 3.00000i
1135.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 3.46410i 0 0.866025 0.500000i 1.00000i 0 −1.73205 + 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.bj.e 4
3.b odd 2 1 546.2.s.c 4
13.e even 6 1 inner 1638.2.bj.e 4
39.h odd 6 1 546.2.s.c 4
39.k even 12 1 7098.2.a.bn 2
39.k even 12 1 7098.2.a.bz 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.s.c 4 3.b odd 2 1
546.2.s.c 4 39.h odd 6 1
1638.2.bj.e 4 1.a even 1 1 trivial
1638.2.bj.e 4 13.e even 6 1 inner
7098.2.a.bn 2 39.k even 12 1
7098.2.a.bz 2 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\):

\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{11}^{4} - 16T_{11}^{2} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + 39 T^{2} - 18 T + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 12 T^{3} + 44 T^{2} + 48 T + 16 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + 51 T^{2} + 104 T + 169 \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 42T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{4} + 24 T^{3} + 236 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 2 T^{3} + 15 T^{2} + 22 T + 121 \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} - 20 T + 97)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 6 T^{3} - 49 T^{2} + \cdots + 3721 \) Copy content Toggle raw display
$61$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$67$ \( T^{4} - 18 T^{3} + 131 T^{2} + \cdots + 529 \) Copy content Toggle raw display
$71$ \( T^{4} + 24 T^{3} + 215 T^{2} + \cdots + 529 \) Copy content Toggle raw display
$73$ \( T^{4} + 128T^{2} + 1024 \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} - 85 T^{2} + \cdots + 9409 \) Copy content Toggle raw display
$97$ \( T^{4} - 36 T^{3} + 536 T^{2} + \cdots + 10816 \) Copy content Toggle raw display
show more
show less