Properties

Label 1638.2.bj.d.127.2
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.d.1135.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +0.732051i q^{5} +(0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +0.732051i q^{5} +(0.866025 + 0.500000i) q^{7} -1.00000i q^{8} +(0.366025 + 0.633975i) q^{10} +(3.23205 - 1.86603i) q^{11} +(-0.866025 + 3.50000i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.133975 + 0.232051i) q^{17} +(3.86603 + 2.23205i) q^{19} +(0.633975 + 0.366025i) q^{20} +(1.86603 - 3.23205i) q^{22} +(-1.73205 - 3.00000i) q^{23} +4.46410 q^{25} +(1.00000 + 3.46410i) q^{26} +(0.866025 - 0.500000i) q^{28} +(-1.50000 - 2.59808i) q^{29} +7.66025i q^{31} +(-0.866025 - 0.500000i) q^{32} +0.267949i q^{34} +(-0.366025 + 0.633975i) q^{35} +(1.09808 - 0.633975i) q^{37} +4.46410 q^{38} +0.732051 q^{40} +(6.06218 - 3.50000i) q^{41} +(0.366025 - 0.633975i) q^{43} -3.73205i q^{44} +(-3.00000 - 1.73205i) q^{46} +4.46410i q^{47} +(0.500000 + 0.866025i) q^{49} +(3.86603 - 2.23205i) q^{50} +(2.59808 + 2.50000i) q^{52} +10.4641 q^{53} +(1.36603 + 2.36603i) q^{55} +(0.500000 - 0.866025i) q^{56} +(-2.59808 - 1.50000i) q^{58} +(-0.803848 - 0.464102i) q^{59} +(5.86603 - 10.1603i) q^{61} +(3.83013 + 6.63397i) q^{62} -1.00000 q^{64} +(-2.56218 - 0.633975i) q^{65} +(-11.1962 + 6.46410i) q^{67} +(0.133975 + 0.232051i) q^{68} +0.732051i q^{70} +(-1.90192 - 1.09808i) q^{71} -6.53590i q^{73} +(0.633975 - 1.09808i) q^{74} +(3.86603 - 2.23205i) q^{76} +3.73205 q^{77} +10.8564 q^{79} +(0.633975 - 0.366025i) q^{80} +(3.50000 - 6.06218i) q^{82} -5.66025i q^{83} +(-0.169873 - 0.0980762i) q^{85} -0.732051i q^{86} +(-1.86603 - 3.23205i) q^{88} +(-5.59808 + 3.23205i) q^{89} +(-2.50000 + 2.59808i) q^{91} -3.46410 q^{92} +(2.23205 + 3.86603i) q^{94} +(-1.63397 + 2.83013i) q^{95} +(0.633975 + 0.366025i) q^{97} +(0.866025 + 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{10} + 6 q^{11} + 4 q^{14} - 2 q^{16} - 4 q^{17} + 12 q^{19} + 6 q^{20} + 4 q^{22} + 4 q^{25} + 4 q^{26} - 6 q^{29} + 2 q^{35} - 6 q^{37} + 4 q^{38} - 4 q^{40} - 2 q^{43} - 12 q^{46} + 2 q^{49} + 12 q^{50} + 28 q^{53} + 2 q^{55} + 2 q^{56} - 24 q^{59} + 20 q^{61} - 2 q^{62} - 4 q^{64} + 14 q^{65} - 24 q^{67} + 4 q^{68} - 18 q^{71} + 6 q^{74} + 12 q^{76} + 8 q^{77} - 12 q^{79} + 6 q^{80} + 14 q^{82} - 18 q^{85} - 4 q^{88} - 12 q^{89} - 10 q^{91} + 2 q^{94} - 10 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.732051i 0.327383i 0.986512 + 0.163692i \(0.0523402\pi\)
−0.986512 + 0.163692i \(0.947660\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.366025 + 0.633975i 0.115747 + 0.200480i
\(11\) 3.23205 1.86603i 0.974500 0.562628i 0.0738948 0.997266i \(-0.476457\pi\)
0.900605 + 0.434638i \(0.143124\pi\)
\(12\) 0 0
\(13\) −0.866025 + 3.50000i −0.240192 + 0.970725i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.133975 + 0.232051i −0.0324936 + 0.0562806i −0.881815 0.471596i \(-0.843678\pi\)
0.849321 + 0.527876i \(0.177012\pi\)
\(18\) 0 0
\(19\) 3.86603 + 2.23205i 0.886927 + 0.512068i 0.872936 0.487835i \(-0.162213\pi\)
0.0139909 + 0.999902i \(0.495546\pi\)
\(20\) 0.633975 + 0.366025i 0.141761 + 0.0818458i
\(21\) 0 0
\(22\) 1.86603 3.23205i 0.397838 0.689076i
\(23\) −1.73205 3.00000i −0.361158 0.625543i 0.626994 0.779024i \(-0.284285\pi\)
−0.988152 + 0.153481i \(0.950952\pi\)
\(24\) 0 0
\(25\) 4.46410 0.892820
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) 7.66025i 1.37582i 0.725795 + 0.687911i \(0.241472\pi\)
−0.725795 + 0.687911i \(0.758528\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 0.267949i 0.0459529i
\(35\) −0.366025 + 0.633975i −0.0618696 + 0.107161i
\(36\) 0 0
\(37\) 1.09808 0.633975i 0.180523 0.104225i −0.407016 0.913421i \(-0.633431\pi\)
0.587538 + 0.809196i \(0.300097\pi\)
\(38\) 4.46410 0.724173
\(39\) 0 0
\(40\) 0.732051 0.115747
\(41\) 6.06218 3.50000i 0.946753 0.546608i 0.0546823 0.998504i \(-0.482585\pi\)
0.892071 + 0.451896i \(0.149252\pi\)
\(42\) 0 0
\(43\) 0.366025 0.633975i 0.0558184 0.0966802i −0.836766 0.547561i \(-0.815557\pi\)
0.892584 + 0.450880i \(0.148890\pi\)
\(44\) 3.73205i 0.562628i
\(45\) 0 0
\(46\) −3.00000 1.73205i −0.442326 0.255377i
\(47\) 4.46410i 0.651156i 0.945515 + 0.325578i \(0.105559\pi\)
−0.945515 + 0.325578i \(0.894441\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 3.86603 2.23205i 0.546739 0.315660i
\(51\) 0 0
\(52\) 2.59808 + 2.50000i 0.360288 + 0.346688i
\(53\) 10.4641 1.43735 0.718677 0.695344i \(-0.244748\pi\)
0.718677 + 0.695344i \(0.244748\pi\)
\(54\) 0 0
\(55\) 1.36603 + 2.36603i 0.184195 + 0.319035i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 0 0
\(58\) −2.59808 1.50000i −0.341144 0.196960i
\(59\) −0.803848 0.464102i −0.104652 0.0604209i 0.446760 0.894654i \(-0.352578\pi\)
−0.551413 + 0.834233i \(0.685911\pi\)
\(60\) 0 0
\(61\) 5.86603 10.1603i 0.751068 1.30089i −0.196238 0.980556i \(-0.562873\pi\)
0.947306 0.320331i \(-0.103794\pi\)
\(62\) 3.83013 + 6.63397i 0.486427 + 0.842516i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.56218 0.633975i −0.317799 0.0786349i
\(66\) 0 0
\(67\) −11.1962 + 6.46410i −1.36783 + 0.789716i −0.990650 0.136425i \(-0.956439\pi\)
−0.377177 + 0.926141i \(0.623105\pi\)
\(68\) 0.133975 + 0.232051i 0.0162468 + 0.0281403i
\(69\) 0 0
\(70\) 0.732051i 0.0874968i
\(71\) −1.90192 1.09808i −0.225717 0.130318i 0.382878 0.923799i \(-0.374933\pi\)
−0.608595 + 0.793481i \(0.708266\pi\)
\(72\) 0 0
\(73\) 6.53590i 0.764969i −0.923962 0.382485i \(-0.875069\pi\)
0.923962 0.382485i \(-0.124931\pi\)
\(74\) 0.633975 1.09808i 0.0736980 0.127649i
\(75\) 0 0
\(76\) 3.86603 2.23205i 0.443464 0.256034i
\(77\) 3.73205 0.425307
\(78\) 0 0
\(79\) 10.8564 1.22144 0.610721 0.791846i \(-0.290880\pi\)
0.610721 + 0.791846i \(0.290880\pi\)
\(80\) 0.633975 0.366025i 0.0708805 0.0409229i
\(81\) 0 0
\(82\) 3.50000 6.06218i 0.386510 0.669456i
\(83\) 5.66025i 0.621294i −0.950525 0.310647i \(-0.899454\pi\)
0.950525 0.310647i \(-0.100546\pi\)
\(84\) 0 0
\(85\) −0.169873 0.0980762i −0.0184253 0.0106379i
\(86\) 0.732051i 0.0789391i
\(87\) 0 0
\(88\) −1.86603 3.23205i −0.198919 0.344538i
\(89\) −5.59808 + 3.23205i −0.593395 + 0.342597i −0.766439 0.642317i \(-0.777973\pi\)
0.173044 + 0.984914i \(0.444640\pi\)
\(90\) 0 0
\(91\) −2.50000 + 2.59808i −0.262071 + 0.272352i
\(92\) −3.46410 −0.361158
\(93\) 0 0
\(94\) 2.23205 + 3.86603i 0.230218 + 0.398750i
\(95\) −1.63397 + 2.83013i −0.167642 + 0.290365i
\(96\) 0 0
\(97\) 0.633975 + 0.366025i 0.0643704 + 0.0371642i 0.531840 0.846845i \(-0.321501\pi\)
−0.467469 + 0.884009i \(0.654834\pi\)
\(98\) 0.866025 + 0.500000i 0.0874818 + 0.0505076i
\(99\) 0 0
\(100\) 2.23205 3.86603i 0.223205 0.386603i
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) 12.1962 1.20172 0.600861 0.799353i \(-0.294824\pi\)
0.600861 + 0.799353i \(0.294824\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) 0 0
\(106\) 9.06218 5.23205i 0.880197 0.508182i
\(107\) −0.767949 1.33013i −0.0742405 0.128588i 0.826515 0.562914i \(-0.190320\pi\)
−0.900756 + 0.434326i \(0.856987\pi\)
\(108\) 0 0
\(109\) 3.66025i 0.350589i 0.984516 + 0.175294i \(0.0560877\pi\)
−0.984516 + 0.175294i \(0.943912\pi\)
\(110\) 2.36603 + 1.36603i 0.225592 + 0.130245i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) −5.09808 + 8.83013i −0.479587 + 0.830668i −0.999726 0.0234130i \(-0.992547\pi\)
0.520139 + 0.854081i \(0.325880\pi\)
\(114\) 0 0
\(115\) 2.19615 1.26795i 0.204792 0.118237i
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) −0.928203 −0.0854480
\(119\) −0.232051 + 0.133975i −0.0212721 + 0.0122814i
\(120\) 0 0
\(121\) 1.46410 2.53590i 0.133100 0.230536i
\(122\) 11.7321i 1.06217i
\(123\) 0 0
\(124\) 6.63397 + 3.83013i 0.595749 + 0.343956i
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) −6.26795 10.8564i −0.556191 0.963350i −0.997810 0.0661478i \(-0.978929\pi\)
0.441619 0.897203i \(-0.354404\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.53590 + 0.732051i −0.222413 + 0.0642051i
\(131\) −18.9282 −1.65376 −0.826882 0.562375i \(-0.809888\pi\)
−0.826882 + 0.562375i \(0.809888\pi\)
\(132\) 0 0
\(133\) 2.23205 + 3.86603i 0.193543 + 0.335227i
\(134\) −6.46410 + 11.1962i −0.558413 + 0.967200i
\(135\) 0 0
\(136\) 0.232051 + 0.133975i 0.0198982 + 0.0114882i
\(137\) −13.3923 7.73205i −1.14418 0.660594i −0.196719 0.980460i \(-0.563029\pi\)
−0.947463 + 0.319866i \(0.896362\pi\)
\(138\) 0 0
\(139\) 9.06218 15.6962i 0.768644 1.33133i −0.169655 0.985504i \(-0.554265\pi\)
0.938298 0.345827i \(-0.112401\pi\)
\(140\) 0.366025 + 0.633975i 0.0309348 + 0.0535806i
\(141\) 0 0
\(142\) −2.19615 −0.184297
\(143\) 3.73205 + 12.9282i 0.312090 + 1.08111i
\(144\) 0 0
\(145\) 1.90192 1.09808i 0.157946 0.0911903i
\(146\) −3.26795 5.66025i −0.270457 0.468446i
\(147\) 0 0
\(148\) 1.26795i 0.104225i
\(149\) 16.3923 + 9.46410i 1.34291 + 0.775329i 0.987233 0.159280i \(-0.0509172\pi\)
0.355676 + 0.934609i \(0.384251\pi\)
\(150\) 0 0
\(151\) 13.1962i 1.07389i −0.843618 0.536944i \(-0.819579\pi\)
0.843618 0.536944i \(-0.180421\pi\)
\(152\) 2.23205 3.86603i 0.181043 0.313576i
\(153\) 0 0
\(154\) 3.23205 1.86603i 0.260446 0.150369i
\(155\) −5.60770 −0.450421
\(156\) 0 0
\(157\) −15.4641 −1.23417 −0.617085 0.786897i \(-0.711686\pi\)
−0.617085 + 0.786897i \(0.711686\pi\)
\(158\) 9.40192 5.42820i 0.747977 0.431845i
\(159\) 0 0
\(160\) 0.366025 0.633975i 0.0289368 0.0501201i
\(161\) 3.46410i 0.273009i
\(162\) 0 0
\(163\) −6.75833 3.90192i −0.529353 0.305622i 0.211400 0.977400i \(-0.432198\pi\)
−0.740753 + 0.671777i \(0.765531\pi\)
\(164\) 7.00000i 0.546608i
\(165\) 0 0
\(166\) −2.83013 4.90192i −0.219660 0.380463i
\(167\) −5.07180 + 2.92820i −0.392467 + 0.226591i −0.683229 0.730204i \(-0.739425\pi\)
0.290761 + 0.956796i \(0.406091\pi\)
\(168\) 0 0
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) −0.196152 −0.0150442
\(171\) 0 0
\(172\) −0.366025 0.633975i −0.0279092 0.0483401i
\(173\) −10.3660 + 17.9545i −0.788114 + 1.36505i 0.139007 + 0.990291i \(0.455609\pi\)
−0.927121 + 0.374763i \(0.877724\pi\)
\(174\) 0 0
\(175\) 3.86603 + 2.23205i 0.292244 + 0.168727i
\(176\) −3.23205 1.86603i −0.243625 0.140657i
\(177\) 0 0
\(178\) −3.23205 + 5.59808i −0.242252 + 0.419594i
\(179\) −11.1962 19.3923i −0.836840 1.44945i −0.892524 0.451000i \(-0.851067\pi\)
0.0556840 0.998448i \(-0.482266\pi\)
\(180\) 0 0
\(181\) −1.19615 −0.0889093 −0.0444547 0.999011i \(-0.514155\pi\)
−0.0444547 + 0.999011i \(0.514155\pi\)
\(182\) −0.866025 + 3.50000i −0.0641941 + 0.259437i
\(183\) 0 0
\(184\) −3.00000 + 1.73205i −0.221163 + 0.127688i
\(185\) 0.464102 + 0.803848i 0.0341214 + 0.0591000i
\(186\) 0 0
\(187\) 1.00000i 0.0731272i
\(188\) 3.86603 + 2.23205i 0.281959 + 0.162789i
\(189\) 0 0
\(190\) 3.26795i 0.237082i
\(191\) −2.09808 + 3.63397i −0.151811 + 0.262945i −0.931893 0.362732i \(-0.881844\pi\)
0.780082 + 0.625677i \(0.215177\pi\)
\(192\) 0 0
\(193\) −14.8923 + 8.59808i −1.07197 + 0.618903i −0.928719 0.370783i \(-0.879089\pi\)
−0.143252 + 0.989686i \(0.545756\pi\)
\(194\) 0.732051 0.0525582
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −1.96410 + 1.13397i −0.139936 + 0.0807923i −0.568334 0.822798i \(-0.692412\pi\)
0.428397 + 0.903591i \(0.359078\pi\)
\(198\) 0 0
\(199\) −2.09808 + 3.63397i −0.148729 + 0.257606i −0.930758 0.365636i \(-0.880851\pi\)
0.782029 + 0.623242i \(0.214185\pi\)
\(200\) 4.46410i 0.315660i
\(201\) 0 0
\(202\) 8.66025 + 5.00000i 0.609333 + 0.351799i
\(203\) 3.00000i 0.210559i
\(204\) 0 0
\(205\) 2.56218 + 4.43782i 0.178950 + 0.309951i
\(206\) 10.5622 6.09808i 0.735902 0.424873i
\(207\) 0 0
\(208\) 3.46410 1.00000i 0.240192 0.0693375i
\(209\) 16.6603 1.15241
\(210\) 0 0
\(211\) 7.92820 + 13.7321i 0.545800 + 0.945353i 0.998556 + 0.0537189i \(0.0171075\pi\)
−0.452756 + 0.891634i \(0.649559\pi\)
\(212\) 5.23205 9.06218i 0.359339 0.622393i
\(213\) 0 0
\(214\) −1.33013 0.767949i −0.0909256 0.0524959i
\(215\) 0.464102 + 0.267949i 0.0316515 + 0.0182740i
\(216\) 0 0
\(217\) −3.83013 + 6.63397i −0.260006 + 0.450344i
\(218\) 1.83013 + 3.16987i 0.123952 + 0.214691i
\(219\) 0 0
\(220\) 2.73205 0.184195
\(221\) −0.696152 0.669873i −0.0468283 0.0450605i
\(222\) 0 0
\(223\) 7.26795 4.19615i 0.486698 0.280995i −0.236506 0.971630i \(-0.576002\pi\)
0.723204 + 0.690635i \(0.242669\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 0 0
\(226\) 10.1962i 0.678238i
\(227\) −7.39230 4.26795i −0.490645 0.283274i 0.234197 0.972189i \(-0.424754\pi\)
−0.724842 + 0.688915i \(0.758087\pi\)
\(228\) 0 0
\(229\) 10.3205i 0.681998i 0.940064 + 0.340999i \(0.110765\pi\)
−0.940064 + 0.340999i \(0.889235\pi\)
\(230\) 1.26795 2.19615i 0.0836061 0.144810i
\(231\) 0 0
\(232\) −2.59808 + 1.50000i −0.170572 + 0.0984798i
\(233\) 2.19615 0.143875 0.0719374 0.997409i \(-0.477082\pi\)
0.0719374 + 0.997409i \(0.477082\pi\)
\(234\) 0 0
\(235\) −3.26795 −0.213177
\(236\) −0.803848 + 0.464102i −0.0523260 + 0.0302104i
\(237\) 0 0
\(238\) −0.133975 + 0.232051i −0.00868428 + 0.0150416i
\(239\) 13.8038i 0.892897i −0.894809 0.446448i \(-0.852689\pi\)
0.894809 0.446448i \(-0.147311\pi\)
\(240\) 0 0
\(241\) −11.0718 6.39230i −0.713197 0.411765i 0.0990466 0.995083i \(-0.468421\pi\)
−0.812244 + 0.583318i \(0.801754\pi\)
\(242\) 2.92820i 0.188232i
\(243\) 0 0
\(244\) −5.86603 10.1603i −0.375534 0.650444i
\(245\) −0.633975 + 0.366025i −0.0405032 + 0.0233845i
\(246\) 0 0
\(247\) −11.1603 + 11.5981i −0.710110 + 0.737968i
\(248\) 7.66025 0.486427
\(249\) 0 0
\(250\) 3.46410 + 6.00000i 0.219089 + 0.379473i
\(251\) −9.09808 + 15.7583i −0.574265 + 0.994657i 0.421856 + 0.906663i \(0.361379\pi\)
−0.996121 + 0.0879939i \(0.971954\pi\)
\(252\) 0 0
\(253\) −11.1962 6.46410i −0.703896 0.406395i
\(254\) −10.8564 6.26795i −0.681192 0.393286i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.52628 9.57180i −0.344720 0.597072i 0.640583 0.767889i \(-0.278693\pi\)
−0.985303 + 0.170817i \(0.945359\pi\)
\(258\) 0 0
\(259\) 1.26795 0.0787865
\(260\) −1.83013 + 1.90192i −0.113500 + 0.117952i
\(261\) 0 0
\(262\) −16.3923 + 9.46410i −1.01272 + 0.584694i
\(263\) −9.36603 16.2224i −0.577534 1.00032i −0.995761 0.0919756i \(-0.970682\pi\)
0.418227 0.908342i \(-0.362652\pi\)
\(264\) 0 0
\(265\) 7.66025i 0.470566i
\(266\) 3.86603 + 2.23205i 0.237041 + 0.136856i
\(267\) 0 0
\(268\) 12.9282i 0.789716i
\(269\) −11.8564 + 20.5359i −0.722898 + 1.25210i 0.236936 + 0.971525i \(0.423857\pi\)
−0.959833 + 0.280570i \(0.909476\pi\)
\(270\) 0 0
\(271\) 18.6340 10.7583i 1.13193 0.653522i 0.187513 0.982262i \(-0.439957\pi\)
0.944420 + 0.328740i \(0.106624\pi\)
\(272\) 0.267949 0.0162468
\(273\) 0 0
\(274\) −15.4641 −0.934221
\(275\) 14.4282 8.33013i 0.870053 0.502326i
\(276\) 0 0
\(277\) −13.1962 + 22.8564i −0.792880 + 1.37331i 0.131297 + 0.991343i \(0.458086\pi\)
−0.924177 + 0.381965i \(0.875247\pi\)
\(278\) 18.1244i 1.08703i
\(279\) 0 0
\(280\) 0.633975 + 0.366025i 0.0378872 + 0.0218742i
\(281\) 18.1962i 1.08549i 0.839897 + 0.542746i \(0.182615\pi\)
−0.839897 + 0.542746i \(0.817385\pi\)
\(282\) 0 0
\(283\) −11.4641 19.8564i −0.681470 1.18034i −0.974532 0.224247i \(-0.928008\pi\)
0.293062 0.956093i \(-0.405326\pi\)
\(284\) −1.90192 + 1.09808i −0.112858 + 0.0651588i
\(285\) 0 0
\(286\) 9.69615 + 9.33013i 0.573346 + 0.551702i
\(287\) 7.00000 0.413197
\(288\) 0 0
\(289\) 8.46410 + 14.6603i 0.497888 + 0.862368i
\(290\) 1.09808 1.90192i 0.0644813 0.111685i
\(291\) 0 0
\(292\) −5.66025 3.26795i −0.331241 0.191242i
\(293\) 11.0718 + 6.39230i 0.646821 + 0.373442i 0.787237 0.616650i \(-0.211511\pi\)
−0.140416 + 0.990093i \(0.544844\pi\)
\(294\) 0 0
\(295\) 0.339746 0.588457i 0.0197808 0.0342613i
\(296\) −0.633975 1.09808i −0.0368490 0.0638244i
\(297\) 0 0
\(298\) 18.9282 1.09648
\(299\) 12.0000 3.46410i 0.693978 0.200334i
\(300\) 0 0
\(301\) 0.633975 0.366025i 0.0365417 0.0210974i
\(302\) −6.59808 11.4282i −0.379677 0.657619i
\(303\) 0 0
\(304\) 4.46410i 0.256034i
\(305\) 7.43782 + 4.29423i 0.425888 + 0.245887i
\(306\) 0 0
\(307\) 33.7846i 1.92819i 0.265558 + 0.964095i \(0.414444\pi\)
−0.265558 + 0.964095i \(0.585556\pi\)
\(308\) 1.86603 3.23205i 0.106327 0.184163i
\(309\) 0 0
\(310\) −4.85641 + 2.80385i −0.275825 + 0.159248i
\(311\) −19.1962 −1.08851 −0.544257 0.838919i \(-0.683188\pi\)
−0.544257 + 0.838919i \(0.683188\pi\)
\(312\) 0 0
\(313\) 1.80385 0.101959 0.0509797 0.998700i \(-0.483766\pi\)
0.0509797 + 0.998700i \(0.483766\pi\)
\(314\) −13.3923 + 7.73205i −0.755771 + 0.436345i
\(315\) 0 0
\(316\) 5.42820 9.40192i 0.305360 0.528900i
\(317\) 18.0000i 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) −9.69615 5.59808i −0.542880 0.313432i
\(320\) 0.732051i 0.0409229i
\(321\) 0 0
\(322\) −1.73205 3.00000i −0.0965234 0.167183i
\(323\) −1.03590 + 0.598076i −0.0576389 + 0.0332779i
\(324\) 0 0
\(325\) −3.86603 + 15.6244i −0.214449 + 0.866683i
\(326\) −7.80385 −0.432215
\(327\) 0 0
\(328\) −3.50000 6.06218i −0.193255 0.334728i
\(329\) −2.23205 + 3.86603i −0.123057 + 0.213141i
\(330\) 0 0
\(331\) −14.6603 8.46410i −0.805800 0.465229i 0.0396949 0.999212i \(-0.487361\pi\)
−0.845495 + 0.533983i \(0.820695\pi\)
\(332\) −4.90192 2.83013i −0.269028 0.155323i
\(333\) 0 0
\(334\) −2.92820 + 5.07180i −0.160224 + 0.277516i
\(335\) −4.73205 8.19615i −0.258540 0.447804i
\(336\) 0 0
\(337\) −27.7846 −1.51352 −0.756762 0.653690i \(-0.773220\pi\)
−0.756762 + 0.653690i \(0.773220\pi\)
\(338\) −12.9904 + 0.500000i −0.706584 + 0.0271964i
\(339\) 0 0
\(340\) −0.169873 + 0.0980762i −0.00921266 + 0.00531893i
\(341\) 14.2942 + 24.7583i 0.774076 + 1.34074i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −0.633975 0.366025i −0.0341816 0.0197348i
\(345\) 0 0
\(346\) 20.7321i 1.11456i
\(347\) 11.4282 19.7942i 0.613498 1.06261i −0.377148 0.926153i \(-0.623095\pi\)
0.990646 0.136457i \(-0.0435715\pi\)
\(348\) 0 0
\(349\) 20.5359 11.8564i 1.09926 0.634659i 0.163235 0.986587i \(-0.447807\pi\)
0.936027 + 0.351928i \(0.114474\pi\)
\(350\) 4.46410 0.238616
\(351\) 0 0
\(352\) −3.73205 −0.198919
\(353\) 1.26795 0.732051i 0.0674861 0.0389631i −0.465877 0.884849i \(-0.654261\pi\)
0.533363 + 0.845886i \(0.320928\pi\)
\(354\) 0 0
\(355\) 0.803848 1.39230i 0.0426638 0.0738959i
\(356\) 6.46410i 0.342597i
\(357\) 0 0
\(358\) −19.3923 11.1962i −1.02492 0.591735i
\(359\) 15.8038i 0.834095i 0.908885 + 0.417048i \(0.136935\pi\)
−0.908885 + 0.417048i \(0.863065\pi\)
\(360\) 0 0
\(361\) 0.464102 + 0.803848i 0.0244264 + 0.0423078i
\(362\) −1.03590 + 0.598076i −0.0544456 + 0.0314342i
\(363\) 0 0
\(364\) 1.00000 + 3.46410i 0.0524142 + 0.181568i
\(365\) 4.78461 0.250438
\(366\) 0 0
\(367\) −8.12436 14.0718i −0.424088 0.734542i 0.572247 0.820081i \(-0.306072\pi\)
−0.996335 + 0.0855396i \(0.972739\pi\)
\(368\) −1.73205 + 3.00000i −0.0902894 + 0.156386i
\(369\) 0 0
\(370\) 0.803848 + 0.464102i 0.0417900 + 0.0241275i
\(371\) 9.06218 + 5.23205i 0.470485 + 0.271635i
\(372\) 0 0
\(373\) 10.2942 17.8301i 0.533015 0.923209i −0.466242 0.884657i \(-0.654392\pi\)
0.999257 0.0385516i \(-0.0122744\pi\)
\(374\) 0.500000 + 0.866025i 0.0258544 + 0.0447811i
\(375\) 0 0
\(376\) 4.46410 0.230218
\(377\) 10.3923 3.00000i 0.535231 0.154508i
\(378\) 0 0
\(379\) −12.6340 + 7.29423i −0.648964 + 0.374679i −0.788059 0.615600i \(-0.788914\pi\)
0.139095 + 0.990279i \(0.455581\pi\)
\(380\) 1.63397 + 2.83013i 0.0838211 + 0.145182i
\(381\) 0 0
\(382\) 4.19615i 0.214694i
\(383\) −12.6506 7.30385i −0.646417 0.373209i 0.140665 0.990057i \(-0.455076\pi\)
−0.787082 + 0.616848i \(0.788409\pi\)
\(384\) 0 0
\(385\) 2.73205i 0.139238i
\(386\) −8.59808 + 14.8923i −0.437631 + 0.757998i
\(387\) 0 0
\(388\) 0.633975 0.366025i 0.0321852 0.0185821i
\(389\) −33.1769 −1.68214 −0.841068 0.540929i \(-0.818073\pi\)
−0.841068 + 0.540929i \(0.818073\pi\)
\(390\) 0 0
\(391\) 0.928203 0.0469413
\(392\) 0.866025 0.500000i 0.0437409 0.0252538i
\(393\) 0 0
\(394\) −1.13397 + 1.96410i −0.0571288 + 0.0989500i
\(395\) 7.94744i 0.399879i
\(396\) 0 0
\(397\) −14.2583 8.23205i −0.715605 0.413155i 0.0975279 0.995233i \(-0.468906\pi\)
−0.813133 + 0.582078i \(0.802240\pi\)
\(398\) 4.19615i 0.210334i
\(399\) 0 0
\(400\) −2.23205 3.86603i −0.111603 0.193301i
\(401\) 8.66025 5.00000i 0.432472 0.249688i −0.267927 0.963439i \(-0.586339\pi\)
0.700399 + 0.713751i \(0.253005\pi\)
\(402\) 0 0
\(403\) −26.8109 6.63397i −1.33555 0.330462i
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −1.50000 2.59808i −0.0744438 0.128940i
\(407\) 2.36603 4.09808i 0.117280 0.203134i
\(408\) 0 0
\(409\) 11.4904 + 6.63397i 0.568163 + 0.328029i 0.756415 0.654092i \(-0.226949\pi\)
−0.188252 + 0.982121i \(0.560282\pi\)
\(410\) 4.43782 + 2.56218i 0.219168 + 0.126537i
\(411\) 0 0
\(412\) 6.09808 10.5622i 0.300431 0.520361i
\(413\) −0.464102 0.803848i −0.0228369 0.0395548i
\(414\) 0 0
\(415\) 4.14359 0.203401
\(416\) 2.50000 2.59808i 0.122573 0.127381i
\(417\) 0 0
\(418\) 14.4282 8.33013i 0.705706 0.407440i
\(419\) −3.09808 5.36603i −0.151351 0.262147i 0.780373 0.625314i \(-0.215029\pi\)
−0.931724 + 0.363166i \(0.881696\pi\)
\(420\) 0 0
\(421\) 14.3923i 0.701438i 0.936481 + 0.350719i \(0.114063\pi\)
−0.936481 + 0.350719i \(0.885937\pi\)
\(422\) 13.7321 + 7.92820i 0.668466 + 0.385939i
\(423\) 0 0
\(424\) 10.4641i 0.508182i
\(425\) −0.598076 + 1.03590i −0.0290110 + 0.0502485i
\(426\) 0 0
\(427\) 10.1603 5.86603i 0.491689 0.283877i
\(428\) −1.53590 −0.0742405
\(429\) 0 0
\(430\) 0.535898 0.0258433
\(431\) −18.2942 + 10.5622i −0.881202 + 0.508762i −0.871055 0.491186i \(-0.836563\pi\)
−0.0101474 + 0.999949i \(0.503230\pi\)
\(432\) 0 0
\(433\) 4.46410 7.73205i 0.214531 0.371579i −0.738596 0.674148i \(-0.764511\pi\)
0.953127 + 0.302569i \(0.0978444\pi\)
\(434\) 7.66025i 0.367704i
\(435\) 0 0
\(436\) 3.16987 + 1.83013i 0.151809 + 0.0876472i
\(437\) 15.4641i 0.739748i
\(438\) 0 0
\(439\) −8.19615 14.1962i −0.391181 0.677545i 0.601425 0.798930i \(-0.294600\pi\)
−0.992606 + 0.121384i \(0.961267\pi\)
\(440\) 2.36603 1.36603i 0.112796 0.0651227i
\(441\) 0 0
\(442\) −0.937822 0.232051i −0.0446077 0.0110375i
\(443\) 31.3923 1.49149 0.745747 0.666230i \(-0.232093\pi\)
0.745747 + 0.666230i \(0.232093\pi\)
\(444\) 0 0
\(445\) −2.36603 4.09808i −0.112160 0.194267i
\(446\) 4.19615 7.26795i 0.198694 0.344147i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) 9.29423 + 5.36603i 0.438622 + 0.253238i 0.703013 0.711177i \(-0.251838\pi\)
−0.264391 + 0.964416i \(0.585171\pi\)
\(450\) 0 0
\(451\) 13.0622 22.6244i 0.615074 1.06534i
\(452\) 5.09808 + 8.83013i 0.239793 + 0.415334i
\(453\) 0 0
\(454\) −8.53590 −0.400610
\(455\) −1.90192 1.83013i −0.0891636 0.0857977i
\(456\) 0 0
\(457\) 5.87564 3.39230i 0.274851 0.158685i −0.356239 0.934395i \(-0.615941\pi\)
0.631090 + 0.775710i \(0.282608\pi\)
\(458\) 5.16025 + 8.93782i 0.241123 + 0.417637i
\(459\) 0 0
\(460\) 2.53590i 0.118237i
\(461\) 24.0000 + 13.8564i 1.11779 + 0.645357i 0.940836 0.338862i \(-0.110042\pi\)
0.176955 + 0.984219i \(0.443375\pi\)
\(462\) 0 0
\(463\) 1.19615i 0.0555899i 0.999614 + 0.0277950i \(0.00884855\pi\)
−0.999614 + 0.0277950i \(0.991151\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) 1.90192 1.09808i 0.0881049 0.0508674i
\(467\) −9.85641 −0.456100 −0.228050 0.973649i \(-0.573235\pi\)
−0.228050 + 0.973649i \(0.573235\pi\)
\(468\) 0 0
\(469\) −12.9282 −0.596969
\(470\) −2.83013 + 1.63397i −0.130544 + 0.0753696i
\(471\) 0 0
\(472\) −0.464102 + 0.803848i −0.0213620 + 0.0370001i
\(473\) 2.73205i 0.125620i
\(474\) 0 0
\(475\) 17.2583 + 9.96410i 0.791866 + 0.457184i
\(476\) 0.267949i 0.0122814i
\(477\) 0 0
\(478\) −6.90192 11.9545i −0.315687 0.546785i
\(479\) −27.1865 + 15.6962i −1.24218 + 0.717176i −0.969539 0.244939i \(-0.921232\pi\)
−0.272646 + 0.962114i \(0.587899\pi\)
\(480\) 0 0
\(481\) 1.26795 + 4.39230i 0.0578135 + 0.200272i
\(482\) −12.7846 −0.582323
\(483\) 0 0
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) −0.267949 + 0.464102i −0.0121669 + 0.0210738i
\(486\) 0 0
\(487\) 18.3564 + 10.5981i 0.831808 + 0.480245i 0.854471 0.519498i \(-0.173881\pi\)
−0.0226632 + 0.999743i \(0.507215\pi\)
\(488\) −10.1603 5.86603i −0.459933 0.265542i
\(489\) 0 0
\(490\) −0.366025 + 0.633975i −0.0165353 + 0.0286401i
\(491\) −18.1244 31.3923i −0.817941 1.41671i −0.907197 0.420706i \(-0.861782\pi\)
0.0892562 0.996009i \(-0.471551\pi\)
\(492\) 0 0
\(493\) 0.803848 0.0362035
\(494\) −3.86603 + 15.6244i −0.173941 + 0.702973i
\(495\) 0 0
\(496\) 6.63397 3.83013i 0.297874 0.171978i
\(497\) −1.09808 1.90192i −0.0492554 0.0853129i
\(498\) 0 0
\(499\) 12.9808i 0.581099i 0.956860 + 0.290549i \(0.0938380\pi\)
−0.956860 + 0.290549i \(0.906162\pi\)
\(500\) 6.00000 + 3.46410i 0.268328 + 0.154919i
\(501\) 0 0
\(502\) 18.1962i 0.812134i
\(503\) −11.8564 + 20.5359i −0.528651 + 0.915650i 0.470791 + 0.882245i \(0.343969\pi\)
−0.999442 + 0.0334056i \(0.989365\pi\)
\(504\) 0 0
\(505\) −6.33975 + 3.66025i −0.282115 + 0.162879i
\(506\) −12.9282 −0.574729
\(507\) 0 0
\(508\) −12.5359 −0.556191
\(509\) 22.5622 13.0263i 1.00005 0.577380i 0.0917876 0.995779i \(-0.470742\pi\)
0.908263 + 0.418399i \(0.137409\pi\)
\(510\) 0 0
\(511\) 3.26795 5.66025i 0.144566 0.250395i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −9.57180 5.52628i −0.422194 0.243754i
\(515\) 8.92820i 0.393424i
\(516\) 0 0
\(517\) 8.33013 + 14.4282i 0.366359 + 0.634552i
\(518\) 1.09808 0.633975i 0.0482467 0.0278552i
\(519\) 0 0
\(520\) −0.633975 + 2.56218i −0.0278016 + 0.112359i
\(521\) 2.26795 0.0993607 0.0496803 0.998765i \(-0.484180\pi\)
0.0496803 + 0.998765i \(0.484180\pi\)
\(522\) 0 0
\(523\) 9.40192 + 16.2846i 0.411117 + 0.712076i 0.995012 0.0997531i \(-0.0318053\pi\)
−0.583895 + 0.811829i \(0.698472\pi\)
\(524\) −9.46410 + 16.3923i −0.413441 + 0.716101i
\(525\) 0 0
\(526\) −16.2224 9.36603i −0.707332 0.408378i
\(527\) −1.77757 1.02628i −0.0774321 0.0447054i
\(528\) 0 0
\(529\) 5.50000 9.52628i 0.239130 0.414186i
\(530\) 3.83013 + 6.63397i 0.166370 + 0.288161i
\(531\) 0 0
\(532\) 4.46410 0.193543
\(533\) 7.00000 + 24.2487i 0.303204 + 1.05033i
\(534\) 0 0
\(535\) 0.973721 0.562178i 0.0420976 0.0243051i
\(536\) 6.46410 + 11.1962i 0.279207 + 0.483600i
\(537\) 0 0
\(538\) 23.7128i 1.02233i
\(539\) 3.23205 + 1.86603i 0.139214 + 0.0803754i
\(540\) 0 0
\(541\) 30.1962i 1.29823i −0.760689 0.649117i \(-0.775139\pi\)
0.760689 0.649117i \(-0.224861\pi\)
\(542\) 10.7583 18.6340i 0.462110 0.800398i
\(543\) 0 0
\(544\) 0.232051 0.133975i 0.00994910 0.00574411i
\(545\) −2.67949 −0.114777
\(546\) 0 0
\(547\) −12.8756 −0.550523 −0.275261 0.961369i \(-0.588764\pi\)
−0.275261 + 0.961369i \(0.588764\pi\)
\(548\) −13.3923 + 7.73205i −0.572091 + 0.330297i
\(549\) 0 0
\(550\) 8.33013 14.4282i 0.355198 0.615221i
\(551\) 13.3923i 0.570531i
\(552\) 0 0
\(553\) 9.40192 + 5.42820i 0.399810 + 0.230831i
\(554\) 26.3923i 1.12130i
\(555\) 0 0
\(556\) −9.06218 15.6962i −0.384322 0.665665i
\(557\) −31.7487 + 18.3301i −1.34524 + 0.776672i −0.987570 0.157177i \(-0.949761\pi\)
−0.357666 + 0.933850i \(0.616427\pi\)
\(558\) 0 0
\(559\) 1.90192 + 1.83013i 0.0804428 + 0.0774061i
\(560\) 0.732051 0.0309348
\(561\) 0 0
\(562\) 9.09808 + 15.7583i 0.383779 + 0.664725i
\(563\) 16.6340 28.8109i 0.701038 1.21423i −0.267064 0.963679i \(-0.586053\pi\)
0.968102 0.250555i \(-0.0806132\pi\)
\(564\) 0 0
\(565\) −6.46410 3.73205i −0.271947 0.157009i
\(566\) −19.8564 11.4641i −0.834627 0.481872i
\(567\) 0 0
\(568\) −1.09808 + 1.90192i −0.0460743 + 0.0798029i
\(569\) −11.3660 19.6865i −0.476489 0.825302i 0.523149 0.852242i \(-0.324757\pi\)
−0.999637 + 0.0269391i \(0.991424\pi\)
\(570\) 0 0
\(571\) −19.8038 −0.828765 −0.414383 0.910103i \(-0.636002\pi\)
−0.414383 + 0.910103i \(0.636002\pi\)
\(572\) 13.0622 + 3.23205i 0.546157 + 0.135139i
\(573\) 0 0
\(574\) 6.06218 3.50000i 0.253030 0.146087i
\(575\) −7.73205 13.3923i −0.322449 0.558498i
\(576\) 0 0
\(577\) 13.2679i 0.552352i 0.961107 + 0.276176i \(0.0890673\pi\)
−0.961107 + 0.276176i \(0.910933\pi\)
\(578\) 14.6603 + 8.46410i 0.609786 + 0.352060i
\(579\) 0 0
\(580\) 2.19615i 0.0911903i
\(581\) 2.83013 4.90192i 0.117413 0.203366i
\(582\) 0 0
\(583\) 33.8205 19.5263i 1.40070 0.808696i
\(584\) −6.53590 −0.270457
\(585\) 0 0
\(586\) 12.7846 0.528127
\(587\) 27.1699 15.6865i 1.12142 0.647453i 0.179657 0.983729i \(-0.442501\pi\)
0.941763 + 0.336277i \(0.109168\pi\)
\(588\) 0 0
\(589\) −17.0981 + 29.6147i −0.704514 + 1.22025i
\(590\) 0.679492i 0.0279742i
\(591\) 0 0
\(592\) −1.09808 0.633975i −0.0451307 0.0260562i
\(593\) 13.6795i 0.561749i 0.959744 + 0.280875i \(0.0906245\pi\)
−0.959744 + 0.280875i \(0.909375\pi\)
\(594\) 0 0
\(595\) −0.0980762 0.169873i −0.00402073 0.00696411i
\(596\) 16.3923 9.46410i 0.671455 0.387665i
\(597\) 0 0
\(598\) 8.66025 9.00000i 0.354144 0.368037i
\(599\) 21.7128 0.887161 0.443581 0.896234i \(-0.353708\pi\)
0.443581 + 0.896234i \(0.353708\pi\)
\(600\) 0 0
\(601\) 6.43782 + 11.1506i 0.262604 + 0.454844i 0.966933 0.255030i \(-0.0820853\pi\)
−0.704329 + 0.709874i \(0.748752\pi\)
\(602\) 0.366025 0.633975i 0.0149181 0.0258389i
\(603\) 0 0
\(604\) −11.4282 6.59808i −0.465007 0.268472i
\(605\) 1.85641 + 1.07180i 0.0754737 + 0.0435747i
\(606\) 0 0
\(607\) −19.9545 + 34.5622i −0.809927 + 1.40284i 0.102986 + 0.994683i \(0.467160\pi\)
−0.912914 + 0.408153i \(0.866173\pi\)
\(608\) −2.23205 3.86603i −0.0905216 0.156788i
\(609\) 0 0
\(610\) 8.58846 0.347736
\(611\) −15.6244 3.86603i −0.632094 0.156403i
\(612\) 0 0
\(613\) 36.2487 20.9282i 1.46407 0.845282i 0.464876 0.885376i \(-0.346099\pi\)
0.999196 + 0.0400938i \(0.0127657\pi\)
\(614\) 16.8923 + 29.2583i 0.681718 + 1.18077i
\(615\) 0 0
\(616\) 3.73205i 0.150369i
\(617\) −35.9545 20.7583i −1.44747 0.835699i −0.449143 0.893460i \(-0.648270\pi\)
−0.998330 + 0.0577612i \(0.981604\pi\)
\(618\) 0 0
\(619\) 2.32051i 0.0932691i −0.998912 0.0466345i \(-0.985150\pi\)
0.998912 0.0466345i \(-0.0148496\pi\)
\(620\) −2.80385 + 4.85641i −0.112605 + 0.195038i
\(621\) 0 0
\(622\) −16.6244 + 9.59808i −0.666576 + 0.384848i
\(623\) −6.46410 −0.258979
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 1.56218 0.901924i 0.0624372 0.0360481i
\(627\) 0 0
\(628\) −7.73205 + 13.3923i −0.308542 + 0.534411i
\(629\) 0.339746i 0.0135466i
\(630\) 0 0
\(631\) −13.8397 7.99038i −0.550952 0.318092i 0.198554 0.980090i \(-0.436375\pi\)
−0.749506 + 0.661998i \(0.769709\pi\)
\(632\) 10.8564i 0.431845i
\(633\) 0 0
\(634\) −9.00000 15.5885i −0.357436 0.619097i
\(635\) 7.94744 4.58846i 0.315385 0.182087i
\(636\) 0 0
\(637\) −3.46410 + 1.00000i −0.137253 + 0.0396214i
\(638\) −11.1962 −0.443260
\(639\) 0 0
\(640\) −0.366025 0.633975i −0.0144684 0.0250600i
\(641\) 8.12436 14.0718i 0.320893 0.555803i −0.659780 0.751459i \(-0.729350\pi\)
0.980672 + 0.195656i \(0.0626838\pi\)
\(642\) 0 0
\(643\) 1.45448 + 0.839746i 0.0573592 + 0.0331163i 0.528405 0.848992i \(-0.322790\pi\)
−0.471046 + 0.882109i \(0.656123\pi\)
\(644\) −3.00000 1.73205i −0.118217 0.0682524i
\(645\) 0 0
\(646\) −0.598076 + 1.03590i −0.0235310 + 0.0407569i
\(647\) −0.866025 1.50000i −0.0340470 0.0589711i 0.848500 0.529196i \(-0.177506\pi\)
−0.882547 + 0.470225i \(0.844173\pi\)
\(648\) 0 0
\(649\) −3.46410 −0.135978
\(650\) 4.46410 + 15.4641i 0.175096 + 0.606552i
\(651\) 0 0
\(652\) −6.75833 + 3.90192i −0.264677 + 0.152811i
\(653\) 5.83975 + 10.1147i 0.228527 + 0.395820i 0.957372 0.288859i \(-0.0932758\pi\)
−0.728845 + 0.684679i \(0.759942\pi\)
\(654\) 0 0
\(655\) 13.8564i 0.541415i
\(656\) −6.06218 3.50000i −0.236688 0.136652i
\(657\) 0 0
\(658\) 4.46410i 0.174029i
\(659\) 16.9641 29.3827i 0.660828 1.14459i −0.319571 0.947562i \(-0.603539\pi\)
0.980399 0.197025i \(-0.0631279\pi\)
\(660\) 0 0
\(661\) 23.9090 13.8038i 0.929951 0.536907i 0.0431549 0.999068i \(-0.486259\pi\)
0.886796 + 0.462161i \(0.152926\pi\)
\(662\) −16.9282 −0.657933
\(663\) 0 0
\(664\) −5.66025 −0.219660
\(665\) −2.83013 + 1.63397i −0.109748 + 0.0633628i
\(666\) 0 0
\(667\) −5.19615 + 9.00000i −0.201196 + 0.348481i
\(668\) 5.85641i 0.226591i
\(669\) 0 0
\(670\) −8.19615 4.73205i −0.316645 0.182815i
\(671\) 43.7846i 1.69029i
\(672\) 0 0
\(673\) −23.9641 41.5070i −0.923748 1.59998i −0.793562 0.608489i \(-0.791776\pi\)
−0.130186 0.991490i \(-0.541557\pi\)
\(674\) −24.0622 + 13.8923i −0.926840 + 0.535112i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 47.7654 1.83577 0.917886 0.396844i \(-0.129895\pi\)
0.917886 + 0.396844i \(0.129895\pi\)
\(678\) 0 0
\(679\) 0.366025 + 0.633975i 0.0140468 + 0.0243297i
\(680\) −0.0980762 + 0.169873i −0.00376105 + 0.00651433i
\(681\) 0 0
\(682\) 24.7583 + 14.2942i 0.948045 + 0.547354i
\(683\) 22.8564 + 13.1962i 0.874576 + 0.504937i 0.868866 0.495047i \(-0.164849\pi\)
0.00570987 + 0.999984i \(0.498182\pi\)
\(684\) 0 0
\(685\) 5.66025 9.80385i 0.216267 0.374586i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) −0.732051 −0.0279092
\(689\) −9.06218 + 36.6244i −0.345241 + 1.39528i
\(690\) 0 0
\(691\) 35.3205 20.3923i 1.34366 0.775760i 0.356314 0.934366i \(-0.384033\pi\)
0.987342 + 0.158607i \(0.0507002\pi\)
\(692\) 10.3660 + 17.9545i 0.394057 + 0.682527i
\(693\) 0 0
\(694\) 22.8564i 0.867617i
\(695\) 11.4904 + 6.63397i 0.435855 + 0.251641i
\(696\) 0 0
\(697\) 1.87564i 0.0710451i
\(698\) 11.8564 20.5359i 0.448772 0.777295i
\(699\) 0 0
\(700\) 3.86603 2.23205i 0.146122 0.0843636i
\(701\) 14.3205 0.540878 0.270439 0.962737i \(-0.412831\pi\)
0.270439 + 0.962737i \(0.412831\pi\)
\(702\) 0 0
\(703\) 5.66025 0.213481
\(704\) −3.23205 + 1.86603i −0.121812 + 0.0703285i
\(705\) 0 0
\(706\) 0.732051 1.26795i 0.0275511 0.0477199i
\(707\) 10.0000i 0.376089i
\(708\) 0 0
\(709\) 20.8301 + 12.0263i 0.782292 + 0.451656i 0.837242 0.546833i \(-0.184167\pi\)
−0.0549501 + 0.998489i \(0.517500\pi\)
\(710\) 1.60770i 0.0603357i
\(711\) 0 0
\(712\) 3.23205 + 5.59808i 0.121126 + 0.209797i
\(713\) 22.9808 13.2679i 0.860636 0.496889i
\(714\) 0 0
\(715\) −9.46410 + 2.73205i −0.353937 + 0.102173i
\(716\) −22.3923 −0.836840
\(717\) 0 0
\(718\) 7.90192 + 13.6865i 0.294897 + 0.510777i
\(719\) −1.52628 + 2.64359i −0.0569206 + 0.0985894i −0.893082 0.449895i \(-0.851462\pi\)
0.836161 + 0.548484i \(0.184795\pi\)
\(720\) 0 0
\(721\) 10.5622 + 6.09808i 0.393356 + 0.227104i
\(722\) 0.803848 + 0.464102i 0.0299161 + 0.0172721i
\(723\) 0 0
\(724\) −0.598076 + 1.03590i −0.0222273 + 0.0384989i
\(725\) −6.69615 11.5981i −0.248689 0.430742i
\(726\) 0 0
\(727\) −1.46410 −0.0543005 −0.0271503 0.999631i \(-0.508643\pi\)
−0.0271503 + 0.999631i \(0.508643\pi\)
\(728\) 2.59808 + 2.50000i 0.0962911 + 0.0926562i
\(729\) 0 0
\(730\) 4.14359 2.39230i 0.153361 0.0885432i
\(731\) 0.0980762 + 0.169873i 0.00362748 + 0.00628298i
\(732\) 0 0
\(733\) 6.85641i 0.253247i 0.991951 + 0.126624i \(0.0404140\pi\)
−0.991951 + 0.126624i \(0.959586\pi\)
\(734\) −14.0718 8.12436i −0.519399 0.299875i
\(735\) 0 0
\(736\) 3.46410i 0.127688i
\(737\) −24.1244 + 41.7846i −0.888632 + 1.53916i
\(738\) 0 0
\(739\) 5.53590 3.19615i 0.203641 0.117572i −0.394712 0.918805i \(-0.629155\pi\)
0.598353 + 0.801233i \(0.295822\pi\)
\(740\) 0.928203 0.0341214
\(741\) 0 0
\(742\) 10.4641 0.384149
\(743\) 16.9019 9.75833i 0.620071 0.357998i −0.156825 0.987626i \(-0.550126\pi\)
0.776897 + 0.629628i \(0.216793\pi\)
\(744\) 0 0
\(745\) −6.92820 + 12.0000i −0.253830 + 0.439646i
\(746\) 20.5885i 0.753797i
\(747\) 0 0
\(748\) 0.866025 + 0.500000i 0.0316650 + 0.0182818i
\(749\) 1.53590i 0.0561205i
\(750\) 0 0
\(751\) −3.42820 5.93782i −0.125097 0.216674i 0.796674 0.604409i \(-0.206591\pi\)
−0.921771 + 0.387735i \(0.873258\pi\)
\(752\) 3.86603 2.23205i 0.140979 0.0813945i
\(753\) 0 0
\(754\) 7.50000 7.79423i 0.273134 0.283849i
\(755\) 9.66025 0.351573
\(756\) 0 0
\(757\) 19.0263 + 32.9545i 0.691522 + 1.19775i 0.971339 + 0.237698i \(0.0763928\pi\)
−0.279817 + 0.960053i \(0.590274\pi\)
\(758\) −7.29423 + 12.6340i −0.264938 + 0.458887i
\(759\) 0 0
\(760\) 2.83013 + 1.63397i 0.102659 + 0.0592705i
\(761\) 0.588457 + 0.339746i 0.0213316 + 0.0123158i 0.510628 0.859802i \(-0.329413\pi\)
−0.489296 + 0.872118i \(0.662746\pi\)
\(762\) 0 0
\(763\) −1.83013 + 3.16987i −0.0662550 + 0.114757i
\(764\) 2.09808 + 3.63397i 0.0759057 + 0.131473i
\(765\) 0 0
\(766\) −14.6077 −0.527797
\(767\) 2.32051 2.41154i 0.0837887 0.0870758i
\(768\) 0 0
\(769\) 21.1699 12.2224i 0.763405 0.440752i −0.0671118 0.997745i \(-0.521378\pi\)
0.830517 + 0.556993i \(0.188045\pi\)
\(770\) 1.36603 + 2.36603i 0.0492281 + 0.0852656i
\(771\) 0 0
\(772\) 17.1962i 0.618903i
\(773\) −36.7128 21.1962i −1.32047 0.762373i −0.336665 0.941625i \(-0.609299\pi\)
−0.983803 + 0.179252i \(0.942632\pi\)
\(774\) 0 0
\(775\) 34.1962i 1.22836i
\(776\) 0.366025 0.633975i 0.0131395 0.0227584i
\(777\) 0 0
\(778\) −28.7321 + 16.5885i −1.03009 + 0.594725i
\(779\) 31.2487 1.11960
\(780\) 0 0
\(781\) −8.19615 −0.293281
\(782\) 0.803848 0.464102i 0.0287455 0.0165962i
\(783\) 0