Properties

Label 1638.2.bj.c.127.1
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.c.1135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.866025 - 0.500000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{10} +(-0.633975 + 0.366025i) q^{11} +(2.59808 + 2.50000i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.86603 - 4.96410i) q^{17} +(-1.26795 - 0.732051i) q^{19} +(0.866025 + 0.500000i) q^{20} +(0.366025 - 0.633975i) q^{22} +(-0.633975 - 1.09808i) q^{23} +4.00000 q^{25} +(-3.50000 - 0.866025i) q^{26} +(-0.866025 + 0.500000i) q^{28} +(-1.50000 - 2.59808i) q^{29} +5.26795i q^{31} +(0.866025 + 0.500000i) q^{32} +5.73205i q^{34} +(0.500000 - 0.866025i) q^{35} +(4.50000 - 2.59808i) q^{37} +1.46410 q^{38} -1.00000 q^{40} +(2.13397 - 1.23205i) q^{41} +(-6.09808 + 10.5622i) q^{43} +0.732051i q^{44} +(1.09808 + 0.633975i) q^{46} +2.92820i q^{47} +(0.500000 + 0.866025i) q^{49} +(-3.46410 + 2.00000i) q^{50} +(3.46410 - 1.00000i) q^{52} -1.53590 q^{53} +(-0.366025 - 0.633975i) q^{55} +(0.500000 - 0.866025i) q^{56} +(2.59808 + 1.50000i) q^{58} +(9.29423 + 5.36603i) q^{59} +(5.86603 - 10.1603i) q^{61} +(-2.63397 - 4.56218i) q^{62} -1.00000 q^{64} +(-2.50000 + 2.59808i) q^{65} +(10.0981 - 5.83013i) q^{67} +(-2.86603 - 4.96410i) q^{68} +1.00000i q^{70} +(12.0000 + 6.92820i) q^{71} +11.3923i q^{73} +(-2.59808 + 4.50000i) q^{74} +(-1.26795 + 0.732051i) q^{76} +0.732051 q^{77} -3.80385 q^{79} +(0.866025 - 0.500000i) q^{80} +(-1.23205 + 2.13397i) q^{82} +3.80385i q^{83} +(4.96410 + 2.86603i) q^{85} -12.1962i q^{86} +(-0.366025 - 0.633975i) q^{88} +(-2.19615 + 1.26795i) q^{89} +(-1.00000 - 3.46410i) q^{91} -1.26795 q^{92} +(-1.46410 - 2.53590i) q^{94} +(0.732051 - 1.26795i) q^{95} +(-4.73205 - 2.73205i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{10} - 6 q^{11} + 4 q^{14} - 2 q^{16} + 8 q^{17} - 12 q^{19} - 2 q^{22} - 6 q^{23} + 16 q^{25} - 14 q^{26} - 6 q^{29} + 2 q^{35} + 18 q^{37} - 8 q^{38} - 4 q^{40} + 12 q^{41} - 14 q^{43} - 6 q^{46} + 2 q^{49} - 20 q^{53} + 2 q^{55} + 2 q^{56} + 6 q^{59} + 20 q^{61} - 14 q^{62} - 4 q^{64} - 10 q^{65} + 30 q^{67} - 8 q^{68} + 48 q^{71} - 12 q^{76} - 4 q^{77} - 36 q^{79} + 2 q^{82} + 6 q^{85} + 2 q^{88} + 12 q^{89} - 4 q^{91} - 12 q^{92} + 8 q^{94} - 4 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) −0.633975 + 0.366025i −0.191151 + 0.110361i −0.592521 0.805555i \(-0.701867\pi\)
0.401371 + 0.915916i \(0.368534\pi\)
\(12\) 0 0
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.86603 4.96410i 0.695113 1.20397i −0.275029 0.961436i \(-0.588688\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −1.26795 0.732051i −0.290887 0.167944i 0.347455 0.937697i \(-0.387046\pi\)
−0.638342 + 0.769753i \(0.720379\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) 0.366025 0.633975i 0.0780369 0.135164i
\(23\) −0.633975 1.09808i −0.132193 0.228965i 0.792329 0.610094i \(-0.208868\pi\)
−0.924522 + 0.381130i \(0.875535\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −3.50000 0.866025i −0.686406 0.169842i
\(27\) 0 0
\(28\) −0.866025 + 0.500000i −0.163663 + 0.0944911i
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) 5.26795i 0.946152i 0.881022 + 0.473076i \(0.156856\pi\)
−0.881022 + 0.473076i \(0.843144\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.73205i 0.983039i
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) 0 0
\(37\) 4.50000 2.59808i 0.739795 0.427121i −0.0821995 0.996616i \(-0.526194\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 1.46410 0.237509
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 2.13397 1.23205i 0.333271 0.192414i −0.324021 0.946050i \(-0.605035\pi\)
0.657292 + 0.753636i \(0.271702\pi\)
\(42\) 0 0
\(43\) −6.09808 + 10.5622i −0.929948 + 1.61072i −0.146544 + 0.989204i \(0.546815\pi\)
−0.783404 + 0.621513i \(0.786518\pi\)
\(44\) 0.732051i 0.110361i
\(45\) 0 0
\(46\) 1.09808 + 0.633975i 0.161903 + 0.0934745i
\(47\) 2.92820i 0.427122i 0.976930 + 0.213561i \(0.0685063\pi\)
−0.976930 + 0.213561i \(0.931494\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −3.46410 + 2.00000i −0.489898 + 0.282843i
\(51\) 0 0
\(52\) 3.46410 1.00000i 0.480384 0.138675i
\(53\) −1.53590 −0.210972 −0.105486 0.994421i \(-0.533640\pi\)
−0.105486 + 0.994421i \(0.533640\pi\)
\(54\) 0 0
\(55\) −0.366025 0.633975i −0.0493549 0.0854851i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 0 0
\(58\) 2.59808 + 1.50000i 0.341144 + 0.196960i
\(59\) 9.29423 + 5.36603i 1.21001 + 0.698597i 0.962760 0.270356i \(-0.0871414\pi\)
0.247245 + 0.968953i \(0.420475\pi\)
\(60\) 0 0
\(61\) 5.86603 10.1603i 0.751068 1.30089i −0.196238 0.980556i \(-0.562873\pi\)
0.947306 0.320331i \(-0.103794\pi\)
\(62\) −2.63397 4.56218i −0.334515 0.579397i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.50000 + 2.59808i −0.310087 + 0.322252i
\(66\) 0 0
\(67\) 10.0981 5.83013i 1.23368 0.712263i 0.265882 0.964006i \(-0.414337\pi\)
0.967794 + 0.251742i \(0.0810035\pi\)
\(68\) −2.86603 4.96410i −0.347557 0.601986i
\(69\) 0 0
\(70\) 1.00000i 0.119523i
\(71\) 12.0000 + 6.92820i 1.42414 + 0.822226i 0.996649 0.0817942i \(-0.0260650\pi\)
0.427489 + 0.904021i \(0.359398\pi\)
\(72\) 0 0
\(73\) 11.3923i 1.33337i 0.745340 + 0.666684i \(0.232287\pi\)
−0.745340 + 0.666684i \(0.767713\pi\)
\(74\) −2.59808 + 4.50000i −0.302020 + 0.523114i
\(75\) 0 0
\(76\) −1.26795 + 0.732051i −0.145444 + 0.0839720i
\(77\) 0.732051 0.0834249
\(78\) 0 0
\(79\) −3.80385 −0.427966 −0.213983 0.976837i \(-0.568644\pi\)
−0.213983 + 0.976837i \(0.568644\pi\)
\(80\) 0.866025 0.500000i 0.0968246 0.0559017i
\(81\) 0 0
\(82\) −1.23205 + 2.13397i −0.136057 + 0.235658i
\(83\) 3.80385i 0.417527i 0.977966 + 0.208763i \(0.0669438\pi\)
−0.977966 + 0.208763i \(0.933056\pi\)
\(84\) 0 0
\(85\) 4.96410 + 2.86603i 0.538432 + 0.310864i
\(86\) 12.1962i 1.31514i
\(87\) 0 0
\(88\) −0.366025 0.633975i −0.0390184 0.0675819i
\(89\) −2.19615 + 1.26795i −0.232792 + 0.134402i −0.611859 0.790967i \(-0.709578\pi\)
0.379068 + 0.925369i \(0.376245\pi\)
\(90\) 0 0
\(91\) −1.00000 3.46410i −0.104828 0.363137i
\(92\) −1.26795 −0.132193
\(93\) 0 0
\(94\) −1.46410 2.53590i −0.151011 0.261558i
\(95\) 0.732051 1.26795i 0.0751068 0.130089i
\(96\) 0 0
\(97\) −4.73205 2.73205i −0.480467 0.277398i 0.240144 0.970737i \(-0.422805\pi\)
−0.720611 + 0.693340i \(0.756139\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) −0.598076 1.03590i −0.0595108 0.103076i 0.834735 0.550652i \(-0.185621\pi\)
−0.894246 + 0.447576i \(0.852287\pi\)
\(102\) 0 0
\(103\) 8.39230 0.826918 0.413459 0.910523i \(-0.364320\pi\)
0.413459 + 0.910523i \(0.364320\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 0 0
\(106\) 1.33013 0.767949i 0.129193 0.0745898i
\(107\) 5.46410 + 9.46410i 0.528235 + 0.914929i 0.999458 + 0.0329154i \(0.0104792\pi\)
−0.471224 + 0.882014i \(0.656187\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0.633975 + 0.366025i 0.0604471 + 0.0348992i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 5.69615 9.86603i 0.535849 0.928118i −0.463273 0.886216i \(-0.653325\pi\)
0.999122 0.0419019i \(-0.0133417\pi\)
\(114\) 0 0
\(115\) 1.09808 0.633975i 0.102396 0.0591184i
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) −10.7321 −0.987965
\(119\) −4.96410 + 2.86603i −0.455058 + 0.262728i
\(120\) 0 0
\(121\) −5.23205 + 9.06218i −0.475641 + 0.823834i
\(122\) 11.7321i 1.06217i
\(123\) 0 0
\(124\) 4.56218 + 2.63397i 0.409696 + 0.236538i
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) 4.92820 + 8.53590i 0.437307 + 0.757438i 0.997481 0.0709368i \(-0.0225989\pi\)
−0.560173 + 0.828375i \(0.689266\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0.866025 3.50000i 0.0759555 0.306970i
\(131\) 5.07180 0.443125 0.221562 0.975146i \(-0.428884\pi\)
0.221562 + 0.975146i \(0.428884\pi\)
\(132\) 0 0
\(133\) 0.732051 + 1.26795i 0.0634769 + 0.109945i
\(134\) −5.83013 + 10.0981i −0.503646 + 0.872341i
\(135\) 0 0
\(136\) 4.96410 + 2.86603i 0.425668 + 0.245760i
\(137\) 5.30385 + 3.06218i 0.453138 + 0.261620i 0.709155 0.705053i \(-0.249077\pi\)
−0.256016 + 0.966672i \(0.582410\pi\)
\(138\) 0 0
\(139\) 0.169873 0.294229i 0.0144084 0.0249561i −0.858731 0.512426i \(-0.828747\pi\)
0.873140 + 0.487470i \(0.162080\pi\)
\(140\) −0.500000 0.866025i −0.0422577 0.0731925i
\(141\) 0 0
\(142\) −13.8564 −1.16280
\(143\) −2.56218 0.633975i −0.214260 0.0530156i
\(144\) 0 0
\(145\) 2.59808 1.50000i 0.215758 0.124568i
\(146\) −5.69615 9.86603i −0.471417 0.816518i
\(147\) 0 0
\(148\) 5.19615i 0.427121i
\(149\) 14.8923 + 8.59808i 1.22003 + 0.704382i 0.964923 0.262532i \(-0.0845576\pi\)
0.255102 + 0.966914i \(0.417891\pi\)
\(150\) 0 0
\(151\) 12.3923i 1.00847i 0.863566 + 0.504236i \(0.168226\pi\)
−0.863566 + 0.504236i \(0.831774\pi\)
\(152\) 0.732051 1.26795i 0.0593772 0.102844i
\(153\) 0 0
\(154\) −0.633975 + 0.366025i −0.0510871 + 0.0294952i
\(155\) −5.26795 −0.423132
\(156\) 0 0
\(157\) 13.7321 1.09594 0.547968 0.836499i \(-0.315401\pi\)
0.547968 + 0.836499i \(0.315401\pi\)
\(158\) 3.29423 1.90192i 0.262075 0.151309i
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 1.26795i 0.0999284i
\(162\) 0 0
\(163\) −0.633975 0.366025i −0.0496567 0.0286693i 0.474966 0.880004i \(-0.342460\pi\)
−0.524623 + 0.851335i \(0.675794\pi\)
\(164\) 2.46410i 0.192414i
\(165\) 0 0
\(166\) −1.90192 3.29423i −0.147618 0.255682i
\(167\) 4.56218 2.63397i 0.353032 0.203823i −0.312988 0.949757i \(-0.601330\pi\)
0.666020 + 0.745934i \(0.267997\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) −5.73205 −0.439628
\(171\) 0 0
\(172\) 6.09808 + 10.5622i 0.464974 + 0.805359i
\(173\) 10.4641 18.1244i 0.795571 1.37797i −0.126905 0.991915i \(-0.540504\pi\)
0.922476 0.386054i \(-0.126162\pi\)
\(174\) 0 0
\(175\) −3.46410 2.00000i −0.261861 0.151186i
\(176\) 0.633975 + 0.366025i 0.0477876 + 0.0275902i
\(177\) 0 0
\(178\) 1.26795 2.19615i 0.0950368 0.164609i
\(179\) −8.19615 14.1962i −0.612609 1.06107i −0.990799 0.135342i \(-0.956787\pi\)
0.378190 0.925728i \(-0.376547\pi\)
\(180\) 0 0
\(181\) 3.19615 0.237568 0.118784 0.992920i \(-0.462100\pi\)
0.118784 + 0.992920i \(0.462100\pi\)
\(182\) 2.59808 + 2.50000i 0.192582 + 0.185312i
\(183\) 0 0
\(184\) 1.09808 0.633975i 0.0809513 0.0467372i
\(185\) 2.59808 + 4.50000i 0.191014 + 0.330847i
\(186\) 0 0
\(187\) 4.19615i 0.306853i
\(188\) 2.53590 + 1.46410i 0.184949 + 0.106781i
\(189\) 0 0
\(190\) 1.46410i 0.106217i
\(191\) 3.56218 6.16987i 0.257750 0.446436i −0.707889 0.706324i \(-0.750352\pi\)
0.965639 + 0.259888i \(0.0836855\pi\)
\(192\) 0 0
\(193\) −20.0885 + 11.5981i −1.44600 + 0.834848i −0.998240 0.0593065i \(-0.981111\pi\)
−0.447759 + 0.894154i \(0.647778\pi\)
\(194\) 5.46410 0.392300
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.12436 + 3.53590i −0.436342 + 0.251922i −0.702045 0.712133i \(-0.747729\pi\)
0.265703 + 0.964055i \(0.414396\pi\)
\(198\) 0 0
\(199\) −2.73205 + 4.73205i −0.193670 + 0.335446i −0.946464 0.322810i \(-0.895372\pi\)
0.752794 + 0.658256i \(0.228706\pi\)
\(200\) 4.00000i 0.282843i
\(201\) 0 0
\(202\) 1.03590 + 0.598076i 0.0728856 + 0.0420805i
\(203\) 3.00000i 0.210559i
\(204\) 0 0
\(205\) 1.23205 + 2.13397i 0.0860502 + 0.149043i
\(206\) −7.26795 + 4.19615i −0.506382 + 0.292360i
\(207\) 0 0
\(208\) 0.866025 3.50000i 0.0600481 0.242681i
\(209\) 1.07180 0.0741377
\(210\) 0 0
\(211\) 10.6340 + 18.4186i 0.732073 + 1.26799i 0.955996 + 0.293381i \(0.0947804\pi\)
−0.223923 + 0.974607i \(0.571886\pi\)
\(212\) −0.767949 + 1.33013i −0.0527430 + 0.0913535i
\(213\) 0 0
\(214\) −9.46410 5.46410i −0.646953 0.373518i
\(215\) −10.5622 6.09808i −0.720335 0.415885i
\(216\) 0 0
\(217\) 2.63397 4.56218i 0.178806 0.309701i
\(218\) 5.00000 + 8.66025i 0.338643 + 0.586546i
\(219\) 0 0
\(220\) −0.732051 −0.0493549
\(221\) 19.8564 5.73205i 1.33569 0.385579i
\(222\) 0 0
\(223\) 10.7321 6.19615i 0.718671 0.414925i −0.0955922 0.995421i \(-0.530474\pi\)
0.814263 + 0.580496i \(0.197141\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 0 0
\(226\) 11.3923i 0.757805i
\(227\) −1.09808 0.633975i −0.0728819 0.0420784i 0.463116 0.886298i \(-0.346731\pi\)
−0.535998 + 0.844219i \(0.680065\pi\)
\(228\) 0 0
\(229\) 24.3923i 1.61189i −0.591991 0.805944i \(-0.701658\pi\)
0.591991 0.805944i \(-0.298342\pi\)
\(230\) −0.633975 + 1.09808i −0.0418030 + 0.0724050i
\(231\) 0 0
\(232\) 2.59808 1.50000i 0.170572 0.0984798i
\(233\) −4.39230 −0.287749 −0.143875 0.989596i \(-0.545956\pi\)
−0.143875 + 0.989596i \(0.545956\pi\)
\(234\) 0 0
\(235\) −2.92820 −0.191015
\(236\) 9.29423 5.36603i 0.605003 0.349299i
\(237\) 0 0
\(238\) 2.86603 4.96410i 0.185777 0.321775i
\(239\) 29.5167i 1.90927i 0.297772 + 0.954637i \(0.403756\pi\)
−0.297772 + 0.954637i \(0.596244\pi\)
\(240\) 0 0
\(241\) −13.3301 7.69615i −0.858669 0.495753i 0.00489737 0.999988i \(-0.498441\pi\)
−0.863566 + 0.504235i \(0.831774\pi\)
\(242\) 10.4641i 0.672658i
\(243\) 0 0
\(244\) −5.86603 10.1603i −0.375534 0.650444i
\(245\) −0.866025 + 0.500000i −0.0553283 + 0.0319438i
\(246\) 0 0
\(247\) −1.46410 5.07180i −0.0931586 0.322711i
\(248\) −5.26795 −0.334515
\(249\) 0 0
\(250\) −4.50000 7.79423i −0.284605 0.492950i
\(251\) −11.4641 + 19.8564i −0.723608 + 1.25333i 0.235937 + 0.971768i \(0.424184\pi\)
−0.959545 + 0.281557i \(0.909149\pi\)
\(252\) 0 0
\(253\) 0.803848 + 0.464102i 0.0505375 + 0.0291778i
\(254\) −8.53590 4.92820i −0.535590 0.309223i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.669873 1.16025i −0.0417855 0.0723747i 0.844376 0.535751i \(-0.179971\pi\)
−0.886162 + 0.463376i \(0.846638\pi\)
\(258\) 0 0
\(259\) −5.19615 −0.322873
\(260\) 1.00000 + 3.46410i 0.0620174 + 0.214834i
\(261\) 0 0
\(262\) −4.39230 + 2.53590i −0.271357 + 0.156668i
\(263\) −10.2942 17.8301i −0.634769 1.09945i −0.986564 0.163376i \(-0.947762\pi\)
0.351795 0.936077i \(-0.385572\pi\)
\(264\) 0 0
\(265\) 1.53590i 0.0943495i
\(266\) −1.26795 0.732051i −0.0777430 0.0448849i
\(267\) 0 0
\(268\) 11.6603i 0.712263i
\(269\) −14.3923 + 24.9282i −0.877514 + 1.51990i −0.0234543 + 0.999725i \(0.507466\pi\)
−0.854060 + 0.520174i \(0.825867\pi\)
\(270\) 0 0
\(271\) 6.16987 3.56218i 0.374793 0.216387i −0.300757 0.953701i \(-0.597239\pi\)
0.675550 + 0.737314i \(0.263906\pi\)
\(272\) −5.73205 −0.347557
\(273\) 0 0
\(274\) −6.12436 −0.369986
\(275\) −2.53590 + 1.46410i −0.152920 + 0.0882886i
\(276\) 0 0
\(277\) 4.69615 8.13397i 0.282164 0.488723i −0.689753 0.724045i \(-0.742281\pi\)
0.971918 + 0.235321i \(0.0756143\pi\)
\(278\) 0.339746i 0.0203766i
\(279\) 0 0
\(280\) 0.866025 + 0.500000i 0.0517549 + 0.0298807i
\(281\) 16.6603i 0.993867i 0.867789 + 0.496934i \(0.165541\pi\)
−0.867789 + 0.496934i \(0.834459\pi\)
\(282\) 0 0
\(283\) −5.29423 9.16987i −0.314709 0.545092i 0.664666 0.747140i \(-0.268574\pi\)
−0.979376 + 0.202048i \(0.935240\pi\)
\(284\) 12.0000 6.92820i 0.712069 0.411113i
\(285\) 0 0
\(286\) 2.53590 0.732051i 0.149951 0.0432871i
\(287\) −2.46410 −0.145451
\(288\) 0 0
\(289\) −7.92820 13.7321i −0.466365 0.807768i
\(290\) −1.50000 + 2.59808i −0.0880830 + 0.152564i
\(291\) 0 0
\(292\) 9.86603 + 5.69615i 0.577365 + 0.333342i
\(293\) −15.0622 8.69615i −0.879942 0.508035i −0.00930260 0.999957i \(-0.502961\pi\)
−0.870639 + 0.491922i \(0.836294\pi\)
\(294\) 0 0
\(295\) −5.36603 + 9.29423i −0.312422 + 0.541131i
\(296\) 2.59808 + 4.50000i 0.151010 + 0.261557i
\(297\) 0 0
\(298\) −17.1962 −0.996146
\(299\) 1.09808 4.43782i 0.0635034 0.256646i
\(300\) 0 0
\(301\) 10.5622 6.09808i 0.608794 0.351487i
\(302\) −6.19615 10.7321i −0.356549 0.617560i
\(303\) 0 0
\(304\) 1.46410i 0.0839720i
\(305\) 10.1603 + 5.86603i 0.581774 + 0.335888i
\(306\) 0 0
\(307\) 23.5167i 1.34217i −0.741382 0.671083i \(-0.765829\pi\)
0.741382 0.671083i \(-0.234171\pi\)
\(308\) 0.366025 0.633975i 0.0208562 0.0361241i
\(309\) 0 0
\(310\) 4.56218 2.63397i 0.259114 0.149600i
\(311\) −10.1962 −0.578171 −0.289085 0.957303i \(-0.593351\pi\)
−0.289085 + 0.957303i \(0.593351\pi\)
\(312\) 0 0
\(313\) −32.0000 −1.80875 −0.904373 0.426742i \(-0.859661\pi\)
−0.904373 + 0.426742i \(0.859661\pi\)
\(314\) −11.8923 + 6.86603i −0.671122 + 0.387472i
\(315\) 0 0
\(316\) −1.90192 + 3.29423i −0.106992 + 0.185315i
\(317\) 7.05256i 0.396111i −0.980191 0.198056i \(-0.936537\pi\)
0.980191 0.198056i \(-0.0634627\pi\)
\(318\) 0 0
\(319\) 1.90192 + 1.09808i 0.106487 + 0.0614805i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −0.633975 1.09808i −0.0353300 0.0611934i
\(323\) −7.26795 + 4.19615i −0.404400 + 0.233480i
\(324\) 0 0
\(325\) 10.3923 + 10.0000i 0.576461 + 0.554700i
\(326\) 0.732051 0.0405445
\(327\) 0 0
\(328\) 1.23205 + 2.13397i 0.0680286 + 0.117829i
\(329\) 1.46410 2.53590i 0.0807185 0.139809i
\(330\) 0 0
\(331\) 3.75833 + 2.16987i 0.206577 + 0.119267i 0.599719 0.800210i \(-0.295279\pi\)
−0.393143 + 0.919477i \(0.628612\pi\)
\(332\) 3.29423 + 1.90192i 0.180794 + 0.104382i
\(333\) 0 0
\(334\) −2.63397 + 4.56218i −0.144125 + 0.249631i
\(335\) 5.83013 + 10.0981i 0.318534 + 0.551717i
\(336\) 0 0
\(337\) −6.32051 −0.344300 −0.172150 0.985071i \(-0.555071\pi\)
−0.172150 + 0.985071i \(0.555071\pi\)
\(338\) −6.92820 11.0000i −0.376845 0.598321i
\(339\) 0 0
\(340\) 4.96410 2.86603i 0.269216 0.155432i
\(341\) −1.92820 3.33975i −0.104418 0.180857i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −10.5622 6.09808i −0.569474 0.328786i
\(345\) 0 0
\(346\) 20.9282i 1.12511i
\(347\) 14.4904 25.0981i 0.777884 1.34734i −0.155275 0.987871i \(-0.549626\pi\)
0.933159 0.359464i \(-0.117040\pi\)
\(348\) 0 0
\(349\) −1.73205 + 1.00000i −0.0927146 + 0.0535288i −0.545640 0.838019i \(-0.683714\pi\)
0.452926 + 0.891548i \(0.350380\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) −0.732051 −0.0390184
\(353\) 31.3301 18.0885i 1.66753 0.962751i 0.698573 0.715539i \(-0.253819\pi\)
0.968961 0.247213i \(-0.0795147\pi\)
\(354\) 0 0
\(355\) −6.92820 + 12.0000i −0.367711 + 0.636894i
\(356\) 2.53590i 0.134402i
\(357\) 0 0
\(358\) 14.1962 + 8.19615i 0.750290 + 0.433180i
\(359\) 16.3923i 0.865153i −0.901597 0.432576i \(-0.857605\pi\)
0.901597 0.432576i \(-0.142395\pi\)
\(360\) 0 0
\(361\) −8.42820 14.5981i −0.443590 0.768320i
\(362\) −2.76795 + 1.59808i −0.145480 + 0.0839930i
\(363\) 0 0
\(364\) −3.50000 0.866025i −0.183450 0.0453921i
\(365\) −11.3923 −0.596300
\(366\) 0 0
\(367\) −16.9545 29.3660i −0.885017 1.53289i −0.845694 0.533667i \(-0.820813\pi\)
−0.0393224 0.999227i \(-0.512520\pi\)
\(368\) −0.633975 + 1.09808i −0.0330482 + 0.0572412i
\(369\) 0 0
\(370\) −4.50000 2.59808i −0.233944 0.135068i
\(371\) 1.33013 + 0.767949i 0.0690568 + 0.0398699i
\(372\) 0 0
\(373\) 16.2321 28.1147i 0.840464 1.45573i −0.0490394 0.998797i \(-0.515616\pi\)
0.889503 0.456929i \(-0.151051\pi\)
\(374\) −2.09808 3.63397i −0.108489 0.187908i
\(375\) 0 0
\(376\) −2.92820 −0.151011
\(377\) 2.59808 10.5000i 0.133808 0.540778i
\(378\) 0 0
\(379\) 19.2224 11.0981i 0.987390 0.570070i 0.0828969 0.996558i \(-0.473583\pi\)
0.904493 + 0.426488i \(0.140249\pi\)
\(380\) −0.732051 1.26795i −0.0375534 0.0650444i
\(381\) 0 0
\(382\) 7.12436i 0.364514i
\(383\) −28.2224 16.2942i −1.44210 0.832596i −0.444109 0.895973i \(-0.646480\pi\)
−0.997990 + 0.0633765i \(0.979813\pi\)
\(384\) 0 0
\(385\) 0.732051i 0.0373088i
\(386\) 11.5981 20.0885i 0.590327 1.02248i
\(387\) 0 0
\(388\) −4.73205 + 2.73205i −0.240233 + 0.138699i
\(389\) 24.3205 1.23310 0.616549 0.787316i \(-0.288530\pi\)
0.616549 + 0.787316i \(0.288530\pi\)
\(390\) 0 0
\(391\) −7.26795 −0.367556
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 3.53590 6.12436i 0.178136 0.308541i
\(395\) 3.80385i 0.191392i
\(396\) 0 0
\(397\) −25.5167 14.7321i −1.28064 0.739380i −0.303678 0.952775i \(-0.598215\pi\)
−0.976966 + 0.213394i \(0.931548\pi\)
\(398\) 5.46410i 0.273891i
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) 28.6244 16.5263i 1.42943 0.825283i 0.432356 0.901703i \(-0.357682\pi\)
0.997076 + 0.0764198i \(0.0243489\pi\)
\(402\) 0 0
\(403\) −13.1699 + 13.6865i −0.656038 + 0.681775i
\(404\) −1.19615 −0.0595108
\(405\) 0 0
\(406\) −1.50000 2.59808i −0.0744438 0.128940i
\(407\) −1.90192 + 3.29423i −0.0942749 + 0.163289i
\(408\) 0 0
\(409\) 22.7942 + 13.1603i 1.12710 + 0.650733i 0.943204 0.332213i \(-0.107795\pi\)
0.183898 + 0.982945i \(0.441129\pi\)
\(410\) −2.13397 1.23205i −0.105389 0.0608467i
\(411\) 0 0
\(412\) 4.19615 7.26795i 0.206730 0.358066i
\(413\) −5.36603 9.29423i −0.264045 0.457339i
\(414\) 0 0
\(415\) −3.80385 −0.186724
\(416\) 1.00000 + 3.46410i 0.0490290 + 0.169842i
\(417\) 0 0
\(418\) −0.928203 + 0.535898i −0.0453999 + 0.0262116i
\(419\) 2.56218 + 4.43782i 0.125171 + 0.216802i 0.921800 0.387667i \(-0.126719\pi\)
−0.796629 + 0.604469i \(0.793386\pi\)
\(420\) 0 0
\(421\) 14.1244i 0.688379i 0.938900 + 0.344189i \(0.111846\pi\)
−0.938900 + 0.344189i \(0.888154\pi\)
\(422\) −18.4186 10.6340i −0.896603 0.517654i
\(423\) 0 0
\(424\) 1.53590i 0.0745898i
\(425\) 11.4641 19.8564i 0.556091 0.963177i
\(426\) 0 0
\(427\) −10.1603 + 5.86603i −0.491689 + 0.283877i
\(428\) 10.9282 0.528235
\(429\) 0 0
\(430\) 12.1962 0.588151
\(431\) −22.9808 + 13.2679i −1.10694 + 0.639095i −0.938036 0.346537i \(-0.887357\pi\)
−0.168908 + 0.985632i \(0.554024\pi\)
\(432\) 0 0
\(433\) 10.8660 18.8205i 0.522188 0.904456i −0.477479 0.878643i \(-0.658449\pi\)
0.999667 0.0258127i \(-0.00821735\pi\)
\(434\) 5.26795i 0.252870i
\(435\) 0 0
\(436\) −8.66025 5.00000i −0.414751 0.239457i
\(437\) 1.85641i 0.0888040i
\(438\) 0 0
\(439\) −9.63397 16.6865i −0.459805 0.796405i 0.539146 0.842212i \(-0.318747\pi\)
−0.998950 + 0.0458077i \(0.985414\pi\)
\(440\) 0.633975 0.366025i 0.0302236 0.0174496i
\(441\) 0 0
\(442\) −14.3301 + 14.8923i −0.681615 + 0.708355i
\(443\) −35.3205 −1.67813 −0.839064 0.544033i \(-0.816897\pi\)
−0.839064 + 0.544033i \(0.816897\pi\)
\(444\) 0 0
\(445\) −1.26795 2.19615i −0.0601066 0.104108i
\(446\) −6.19615 + 10.7321i −0.293396 + 0.508177i
\(447\) 0 0
\(448\) 0.866025 + 0.500000i 0.0409159 + 0.0236228i
\(449\) −15.5885 9.00000i −0.735665 0.424736i 0.0848262 0.996396i \(-0.472967\pi\)
−0.820491 + 0.571660i \(0.806300\pi\)
\(450\) 0 0
\(451\) −0.901924 + 1.56218i −0.0424699 + 0.0735601i
\(452\) −5.69615 9.86603i −0.267924 0.464059i
\(453\) 0 0
\(454\) 1.26795 0.0595078
\(455\) 3.46410 1.00000i 0.162400 0.0468807i
\(456\) 0 0
\(457\) −12.3564 + 7.13397i −0.578008 + 0.333713i −0.760341 0.649524i \(-0.774968\pi\)
0.182333 + 0.983237i \(0.441635\pi\)
\(458\) 12.1962 + 21.1244i 0.569889 + 0.987076i
\(459\) 0 0
\(460\) 1.26795i 0.0591184i
\(461\) −7.20577 4.16025i −0.335606 0.193762i 0.322721 0.946494i \(-0.395402\pi\)
−0.658327 + 0.752732i \(0.728736\pi\)
\(462\) 0 0
\(463\) 3.94744i 0.183453i −0.995784 0.0917266i \(-0.970761\pi\)
0.995784 0.0917266i \(-0.0292386\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) 3.80385 2.19615i 0.176210 0.101735i
\(467\) −24.7321 −1.14446 −0.572231 0.820092i \(-0.693922\pi\)
−0.572231 + 0.820092i \(0.693922\pi\)
\(468\) 0 0
\(469\) −11.6603 −0.538421
\(470\) 2.53590 1.46410i 0.116972 0.0675340i
\(471\) 0 0
\(472\) −5.36603 + 9.29423i −0.246991 + 0.427802i
\(473\) 8.92820i 0.410519i
\(474\) 0 0
\(475\) −5.07180 2.92820i −0.232710 0.134355i
\(476\) 5.73205i 0.262728i
\(477\) 0 0
\(478\) −14.7583 25.5622i −0.675030 1.16919i
\(479\) −27.8827 + 16.0981i −1.27399 + 0.735540i −0.975737 0.218946i \(-0.929738\pi\)
−0.298256 + 0.954486i \(0.596405\pi\)
\(480\) 0 0
\(481\) 18.1865 + 4.50000i 0.829235 + 0.205182i
\(482\) 15.3923 0.701100
\(483\) 0 0
\(484\) 5.23205 + 9.06218i 0.237820 + 0.411917i
\(485\) 2.73205 4.73205i 0.124056 0.214871i
\(486\) 0 0
\(487\) 27.1244 + 15.6603i 1.22912 + 0.709634i 0.966846 0.255359i \(-0.0821937\pi\)
0.262276 + 0.964993i \(0.415527\pi\)
\(488\) 10.1603 + 5.86603i 0.459933 + 0.265542i
\(489\) 0 0
\(490\) 0.500000 0.866025i 0.0225877 0.0391230i
\(491\) 13.8564 + 24.0000i 0.625331 + 1.08310i 0.988477 + 0.151373i \(0.0483693\pi\)
−0.363146 + 0.931732i \(0.618297\pi\)
\(492\) 0 0
\(493\) −17.1962 −0.774476
\(494\) 3.80385 + 3.66025i 0.171143 + 0.164683i
\(495\) 0 0
\(496\) 4.56218 2.63397i 0.204848 0.118269i
\(497\) −6.92820 12.0000i −0.310772 0.538274i
\(498\) 0 0
\(499\) 11.2679i 0.504423i 0.967672 + 0.252211i \(0.0811578\pi\)
−0.967672 + 0.252211i \(0.918842\pi\)
\(500\) 7.79423 + 4.50000i 0.348569 + 0.201246i
\(501\) 0 0
\(502\) 22.9282i 1.02334i
\(503\) 10.3660 17.9545i 0.462198 0.800551i −0.536872 0.843664i \(-0.680394\pi\)
0.999070 + 0.0431129i \(0.0137275\pi\)
\(504\) 0 0
\(505\) 1.03590 0.598076i 0.0460969 0.0266140i
\(506\) −0.928203 −0.0412637
\(507\) 0 0
\(508\) 9.85641 0.437307
\(509\) 23.7224 13.6962i 1.05148 0.607071i 0.128415 0.991720i \(-0.459011\pi\)
0.923063 + 0.384649i \(0.125678\pi\)
\(510\) 0 0
\(511\) 5.69615 9.86603i 0.251983 0.436447i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.16025 + 0.669873i 0.0511766 + 0.0295468i
\(515\) 8.39230i 0.369809i
\(516\) 0 0
\(517\) −1.07180 1.85641i −0.0471376 0.0816447i
\(518\) 4.50000 2.59808i 0.197719 0.114153i
\(519\) 0 0
\(520\) −2.59808 2.50000i −0.113933 0.109632i
\(521\) −44.3731 −1.94402 −0.972010 0.234941i \(-0.924510\pi\)
−0.972010 + 0.234941i \(0.924510\pi\)
\(522\) 0 0
\(523\) −10.7321 18.5885i −0.469280 0.812816i 0.530103 0.847933i \(-0.322153\pi\)
−0.999383 + 0.0351165i \(0.988820\pi\)
\(524\) 2.53590 4.39230i 0.110781 0.191879i
\(525\) 0 0
\(526\) 17.8301 + 10.2942i 0.777430 + 0.448850i
\(527\) 26.1506 + 15.0981i 1.13914 + 0.657683i
\(528\) 0 0
\(529\) 10.6962 18.5263i 0.465050 0.805490i
\(530\) 0.767949 + 1.33013i 0.0333576 + 0.0577770i
\(531\) 0 0
\(532\) 1.46410 0.0634769
\(533\) 8.62436 + 2.13397i 0.373562 + 0.0924327i
\(534\) 0 0
\(535\) −9.46410 + 5.46410i −0.409169 + 0.236234i
\(536\) 5.83013 + 10.0981i 0.251823 + 0.436170i
\(537\) 0 0
\(538\) 28.7846i 1.24099i
\(539\) −0.633975 0.366025i −0.0273072 0.0157658i
\(540\) 0 0
\(541\) 8.26795i 0.355467i 0.984079 + 0.177733i \(0.0568765\pi\)
−0.984079 + 0.177733i \(0.943124\pi\)
\(542\) −3.56218 + 6.16987i −0.153009 + 0.265019i
\(543\) 0 0
\(544\) 4.96410 2.86603i 0.212834 0.122880i
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −30.4449 −1.30173 −0.650864 0.759194i \(-0.725593\pi\)
−0.650864 + 0.759194i \(0.725593\pi\)
\(548\) 5.30385 3.06218i 0.226569 0.130810i
\(549\) 0 0
\(550\) 1.46410 2.53590i 0.0624295 0.108131i
\(551\) 4.39230i 0.187118i
\(552\) 0 0
\(553\) 3.29423 + 1.90192i 0.140085 + 0.0808780i
\(554\) 9.39230i 0.399041i
\(555\) 0 0
\(556\) −0.169873 0.294229i −0.00720422 0.0124781i
\(557\) −22.6244 + 13.0622i −0.958625 + 0.553462i −0.895749 0.444559i \(-0.853360\pi\)
−0.0628752 + 0.998021i \(0.520027\pi\)
\(558\) 0 0
\(559\) −42.2487 + 12.1962i −1.78693 + 0.515842i
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) −8.33013 14.4282i −0.351385 0.608617i
\(563\) 14.2224 24.6340i 0.599404 1.03820i −0.393505 0.919322i \(-0.628738\pi\)
0.992909 0.118876i \(-0.0379290\pi\)
\(564\) 0 0
\(565\) 9.86603 + 5.69615i 0.415067 + 0.239639i
\(566\) 9.16987 + 5.29423i 0.385439 + 0.222533i
\(567\) 0 0
\(568\) −6.92820 + 12.0000i −0.290701 + 0.503509i
\(569\) 5.66025 + 9.80385i 0.237290 + 0.410999i 0.959936 0.280220i \(-0.0904074\pi\)
−0.722646 + 0.691219i \(0.757074\pi\)
\(570\) 0 0
\(571\) 5.46410 0.228666 0.114333 0.993443i \(-0.463527\pi\)
0.114333 + 0.993443i \(0.463527\pi\)
\(572\) −1.83013 + 1.90192i −0.0765215 + 0.0795234i
\(573\) 0 0
\(574\) 2.13397 1.23205i 0.0890704 0.0514248i
\(575\) −2.53590 4.39230i −0.105754 0.183172i
\(576\) 0 0
\(577\) 34.1769i 1.42280i 0.702786 + 0.711402i \(0.251939\pi\)
−0.702786 + 0.711402i \(0.748061\pi\)
\(578\) 13.7321 + 7.92820i 0.571178 + 0.329770i
\(579\) 0 0
\(580\) 3.00000i 0.124568i
\(581\) 1.90192 3.29423i 0.0789051 0.136668i
\(582\) 0 0
\(583\) 0.973721 0.562178i 0.0403274 0.0232830i
\(584\) −11.3923 −0.471417
\(585\) 0 0
\(586\) 17.3923 0.718469
\(587\) 24.9282 14.3923i 1.02890 0.594034i 0.112229 0.993682i \(-0.464201\pi\)
0.916668 + 0.399648i \(0.130868\pi\)
\(588\) 0 0
\(589\) 3.85641 6.67949i 0.158900 0.275224i
\(590\) 10.7321i 0.441832i
\(591\) 0 0
\(592\) −4.50000 2.59808i −0.184949 0.106780i
\(593\) 3.14359i 0.129092i 0.997915 + 0.0645460i \(0.0205599\pi\)
−0.997915 + 0.0645460i \(0.979440\pi\)
\(594\) 0 0
\(595\) −2.86603 4.96410i −0.117496 0.203508i
\(596\) 14.8923 8.59808i 0.610013 0.352191i
\(597\) 0 0
\(598\) 1.26795 + 4.39230i 0.0518503 + 0.179615i
\(599\) −30.9282 −1.26369 −0.631846 0.775094i \(-0.717703\pi\)
−0.631846 + 0.775094i \(0.717703\pi\)
\(600\) 0 0
\(601\) 11.5263 + 19.9641i 0.470167 + 0.814353i 0.999418 0.0341125i \(-0.0108604\pi\)
−0.529251 + 0.848465i \(0.677527\pi\)
\(602\) −6.09808 + 10.5622i −0.248539 + 0.430482i
\(603\) 0 0
\(604\) 10.7321 + 6.19615i 0.436681 + 0.252118i
\(605\) −9.06218 5.23205i −0.368430 0.212713i
\(606\) 0 0
\(607\) 4.92820 8.53590i 0.200030 0.346461i −0.748508 0.663126i \(-0.769230\pi\)
0.948538 + 0.316664i \(0.102563\pi\)
\(608\) −0.732051 1.26795i −0.0296886 0.0514221i
\(609\) 0 0
\(610\) −11.7321 −0.475017
\(611\) −7.32051 + 7.60770i −0.296156 + 0.307774i
\(612\) 0 0
\(613\) 13.8397 7.99038i 0.558982 0.322728i −0.193755 0.981050i \(-0.562067\pi\)
0.752737 + 0.658322i \(0.228733\pi\)
\(614\) 11.7583 + 20.3660i 0.474528 + 0.821906i
\(615\) 0 0
\(616\) 0.732051i 0.0294952i
\(617\) 28.7487 + 16.5981i 1.15738 + 0.668213i 0.950675 0.310190i \(-0.100393\pi\)
0.206705 + 0.978403i \(0.433726\pi\)
\(618\) 0 0
\(619\) 34.0526i 1.36869i 0.729159 + 0.684344i \(0.239911\pi\)
−0.729159 + 0.684344i \(0.760089\pi\)
\(620\) −2.63397 + 4.56218i −0.105783 + 0.183221i
\(621\) 0 0
\(622\) 8.83013 5.09808i 0.354056 0.204414i
\(623\) 2.53590 0.101599
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 27.7128 16.0000i 1.10763 0.639489i
\(627\) 0 0
\(628\) 6.86603 11.8923i 0.273984 0.474555i
\(629\) 29.7846i 1.18759i
\(630\) 0 0
\(631\) 9.12436 + 5.26795i 0.363235 + 0.209714i 0.670499 0.741911i \(-0.266080\pi\)
−0.307264 + 0.951624i \(0.599413\pi\)
\(632\) 3.80385i 0.151309i
\(633\) 0 0
\(634\) 3.52628 + 6.10770i 0.140046 + 0.242568i
\(635\) −8.53590 + 4.92820i −0.338737 + 0.195570i
\(636\) 0 0
\(637\) −0.866025 + 3.50000i −0.0343132 + 0.138675i
\(638\) −2.19615 −0.0869465
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) −22.2321 + 38.5070i −0.878113 + 1.52094i −0.0247042 + 0.999695i \(0.507864\pi\)
−0.853409 + 0.521242i \(0.825469\pi\)
\(642\) 0 0
\(643\) 30.9282 + 17.8564i 1.21969 + 0.704188i 0.964851 0.262796i \(-0.0846446\pi\)
0.254838 + 0.966984i \(0.417978\pi\)
\(644\) 1.09808 + 0.633975i 0.0432703 + 0.0249821i
\(645\) 0 0
\(646\) 4.19615 7.26795i 0.165095 0.285954i
\(647\) 6.92820 + 12.0000i 0.272376 + 0.471769i 0.969470 0.245211i \(-0.0788573\pi\)
−0.697094 + 0.716980i \(0.745524\pi\)
\(648\) 0 0
\(649\) −7.85641 −0.308391
\(650\) −14.0000 3.46410i −0.549125 0.135873i
\(651\) 0 0
\(652\) −0.633975 + 0.366025i −0.0248284 + 0.0143347i
\(653\) 6.19615 + 10.7321i 0.242474 + 0.419978i 0.961418 0.275090i \(-0.0887077\pi\)
−0.718944 + 0.695068i \(0.755374\pi\)
\(654\) 0 0
\(655\) 5.07180i 0.198171i
\(656\) −2.13397 1.23205i −0.0833177 0.0481035i
\(657\) 0 0
\(658\) 2.92820i 0.114153i
\(659\) 4.39230 7.60770i 0.171100 0.296354i −0.767705 0.640804i \(-0.778601\pi\)
0.938805 + 0.344450i \(0.111935\pi\)
\(660\) 0 0
\(661\) 1.66987 0.964102i 0.0649505 0.0374992i −0.467173 0.884166i \(-0.654727\pi\)
0.532124 + 0.846667i \(0.321394\pi\)
\(662\) −4.33975 −0.168669
\(663\) 0 0
\(664\) −3.80385 −0.147618
\(665\) −1.26795 + 0.732051i −0.0491690 + 0.0283877i
\(666\) 0 0
\(667\) −1.90192 + 3.29423i −0.0736428 + 0.127553i
\(668\) 5.26795i 0.203823i
\(669\) 0 0
\(670\) −10.0981 5.83013i −0.390123 0.225237i
\(671\) 8.58846i 0.331554i
\(672\) 0 0
\(673\) 10.8923 + 18.8660i 0.419867 + 0.727232i 0.995926 0.0901768i \(-0.0287432\pi\)
−0.576058 + 0.817409i \(0.695410\pi\)
\(674\) 5.47372 3.16025i 0.210840 0.121728i
\(675\) 0 0
\(676\) 11.5000 + 6.06218i 0.442308 + 0.233161i
\(677\) −27.8564 −1.07061 −0.535304 0.844659i \(-0.679803\pi\)
−0.535304 + 0.844659i \(0.679803\pi\)
\(678\) 0 0
\(679\) 2.73205 + 4.73205i 0.104846 + 0.181599i
\(680\) −2.86603 + 4.96410i −0.109907 + 0.190365i
\(681\) 0 0
\(682\) 3.33975 + 1.92820i 0.127885 + 0.0738347i
\(683\) −5.66025 3.26795i −0.216584 0.125045i 0.387784 0.921750i \(-0.373241\pi\)
−0.604367 + 0.796706i \(0.706574\pi\)
\(684\) 0 0
\(685\) −3.06218 + 5.30385i −0.117000 + 0.202650i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 12.1962 0.464974
\(689\) −3.99038 3.83975i −0.152021 0.146283i
\(690\) 0 0
\(691\) 5.07180 2.92820i 0.192940 0.111394i −0.400418 0.916333i \(-0.631135\pi\)
0.593358 + 0.804938i \(0.297802\pi\)
\(692\) −10.4641 18.1244i −0.397785 0.688985i
\(693\) 0 0
\(694\) 28.9808i 1.10009i
\(695\) 0.294229 + 0.169873i 0.0111607 + 0.00644365i
\(696\) 0 0
\(697\) 14.1244i 0.534998i
\(698\) 1.00000 1.73205i 0.0378506 0.0655591i
\(699\) 0 0
\(700\) −3.46410 + 2.00000i −0.130931 + 0.0755929i
\(701\) 14.5359 0.549013 0.274507 0.961585i \(-0.411485\pi\)
0.274507 + 0.961585i \(0.411485\pi\)
\(702\) 0 0
\(703\) −7.60770 −0.286930
\(704\) 0.633975 0.366025i 0.0238938 0.0137951i
\(705\) 0 0
\(706\) −18.0885 + 31.3301i −0.680768 + 1.17912i
\(707\) 1.19615i 0.0449859i
\(708\) 0 0
\(709\) −5.64359 3.25833i −0.211950 0.122369i 0.390268 0.920702i \(-0.372383\pi\)
−0.602217 + 0.798332i \(0.705716\pi\)
\(710\) 13.8564i 0.520022i
\(711\) 0 0
\(712\) −1.26795 2.19615i −0.0475184 0.0823043i
\(713\) 5.78461 3.33975i 0.216635 0.125074i
\(714\) 0 0
\(715\) 0.633975 2.56218i 0.0237093 0.0958200i
\(716\) −16.3923 −0.612609
\(717\) 0 0
\(718\) 8.19615 + 14.1962i 0.305878 + 0.529796i
\(719\) 3.09808 5.36603i 0.115539 0.200119i −0.802456 0.596711i \(-0.796474\pi\)
0.917995 + 0.396592i \(0.129807\pi\)
\(720\) 0 0
\(721\) −7.26795 4.19615i −0.270673 0.156273i
\(722\) 14.5981 + 8.42820i 0.543284 + 0.313665i
\(723\) 0 0
\(724\) 1.59808 2.76795i 0.0593920 0.102870i
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) −53.8564 −1.99742 −0.998712 0.0507424i \(-0.983841\pi\)
−0.998712 + 0.0507424i \(0.983841\pi\)
\(728\) 3.46410 1.00000i 0.128388 0.0370625i
\(729\) 0 0
\(730\) 9.86603 5.69615i 0.365158 0.210824i
\(731\) 34.9545 + 60.5429i 1.29284 + 2.23926i
\(732\) 0 0
\(733\) 2.46410i 0.0910137i −0.998964 0.0455068i \(-0.985510\pi\)
0.998964 0.0455068i \(-0.0144903\pi\)
\(734\) 29.3660 + 16.9545i 1.08392 + 0.625801i
\(735\) 0 0
\(736\) 1.26795i 0.0467372i
\(737\) −4.26795 + 7.39230i −0.157212 + 0.272299i
\(738\) 0 0
\(739\) 5.66025 3.26795i 0.208216 0.120213i −0.392266 0.919852i \(-0.628309\pi\)
0.600482 + 0.799638i \(0.294975\pi\)
\(740\) 5.19615 0.191014
\(741\) 0 0
\(742\) −1.53590 −0.0563846
\(743\) 4.39230 2.53590i 0.161138 0.0930331i −0.417262 0.908786i \(-0.637010\pi\)
0.578401 + 0.815753i \(0.303677\pi\)
\(744\) 0 0
\(745\) −8.59808 + 14.8923i −0.315009 + 0.545612i
\(746\) 32.4641i 1.18860i
\(747\) 0 0
\(748\) 3.63397 + 2.09808i 0.132871 + 0.0767133i
\(749\) 10.9282i 0.399308i
\(750\) 0 0
\(751\) 3.22243 + 5.58142i 0.117588 + 0.203669i 0.918811 0.394697i \(-0.129150\pi\)
−0.801223 + 0.598366i \(0.795817\pi\)
\(752\) 2.53590 1.46410i 0.0924747 0.0533903i
\(753\) 0 0
\(754\) 3.00000 + 10.3923i 0.109254 + 0.378465i
\(755\) −12.3923 −0.451002
\(756\) 0 0
\(757\) 22.1962 + 38.4449i 0.806733 + 1.39730i 0.915115 + 0.403193i \(0.132100\pi\)
−0.108382 + 0.994109i \(0.534567\pi\)
\(758\) −11.0981 + 19.2224i −0.403100 + 0.698190i
\(759\) 0 0
\(760\) 1.26795 + 0.732051i 0.0459934 + 0.0265543i
\(761\) −15.8038 9.12436i −0.572889 0.330758i 0.185413 0.982661i \(-0.440638\pi\)
−0.758302 + 0.651903i \(0.773971\pi\)
\(762\) 0 0
\(763\) −5.00000 + 8.66025i −0.181012 + 0.313522i
\(764\) −3.56218 6.16987i −0.128875 0.223218i
\(765\) 0 0
\(766\) 32.5885 1.17747
\(767\) 10.7321 + 37.1769i 0.387512 + 1.34238i
\(768\) 0 0
\(769\) 0.339746 0.196152i 0.0122516 0.00707344i −0.493862 0.869540i \(-0.664415\pi\)
0.506113 + 0.862467i \(0.331082\pi\)
\(770\) −0.366025 0.633975i −0.0131906 0.0228469i
\(771\) 0 0
\(772\) 23.1962i 0.834848i
\(773\) −40.0526 23.1244i −1.44059 0.831725i −0.442701 0.896669i \(-0.645980\pi\)
−0.997889 + 0.0649438i \(0.979313\pi\)
\(774\) 0 0
\(775\) 21.0718i 0.756921i
\(776\) 2.73205 4.73205i 0.0980749 0.169871i
\(777\) 0 0
\(778\) −21.0622 + 12.1603i −0.755116 + 0.435966i
\(779\) −3.60770 −0.129259
\(780\) 0 0
\(781\) −10.1436 −0.362966
\(782\) 6.29423 3.63397i 0.225081 0.129951i