Properties

Label 1638.2.bj.a.127.1
Level $1638$
Weight $2$
Character 1638.127
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(127,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.127
Dual form 1638.2.bj.a.1135.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -0.732051i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -0.732051i q^{5} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(0.366025 + 0.633975i) q^{10} +(-4.50000 + 2.59808i) q^{11} +(0.866025 - 3.50000i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.13397 - 1.96410i) q^{17} +(-0.401924 - 0.232051i) q^{19} +(-0.633975 - 0.366025i) q^{20} +(2.59808 - 4.50000i) q^{22} +(3.73205 + 6.46410i) q^{23} +4.46410 q^{25} +(1.00000 + 3.46410i) q^{26} +(0.866025 - 0.500000i) q^{28} +(-1.76795 - 3.06218i) q^{29} -3.26795i q^{31} +(0.866025 + 0.500000i) q^{32} +2.26795i q^{34} +(0.366025 - 0.633975i) q^{35} +(5.83013 - 3.36603i) q^{37} +0.464102 q^{38} +0.732051 q^{40} +(7.33013 - 4.23205i) q^{41} +(-4.36603 + 7.56218i) q^{43} +5.19615i q^{44} +(-6.46410 - 3.73205i) q^{46} -3.92820i q^{47} +(0.500000 + 0.866025i) q^{49} +(-3.86603 + 2.23205i) q^{50} +(-2.59808 - 2.50000i) q^{52} +9.92820 q^{53} +(1.90192 + 3.29423i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(3.06218 + 1.76795i) q^{58} +(-7.73205 - 4.46410i) q^{59} +(-1.86603 + 3.23205i) q^{61} +(1.63397 + 2.83013i) q^{62} -1.00000 q^{64} +(-2.56218 - 0.633975i) q^{65} +(8.66025 - 5.00000i) q^{67} +(-1.13397 - 1.96410i) q^{68} +0.732051i q^{70} +(-6.29423 - 3.63397i) q^{71} -1.46410i q^{73} +(-3.36603 + 5.83013i) q^{74} +(-0.401924 + 0.232051i) q^{76} -5.19615 q^{77} +9.00000 q^{79} +(-0.633975 + 0.366025i) q^{80} +(-4.23205 + 7.33013i) q^{82} -9.26795i q^{83} +(-1.43782 - 0.830127i) q^{85} -8.73205i q^{86} +(-2.59808 - 4.50000i) q^{88} +(14.5981 - 8.42820i) q^{89} +(2.50000 - 2.59808i) q^{91} +7.46410 q^{92} +(1.96410 + 3.40192i) q^{94} +(-0.169873 + 0.294229i) q^{95} +(-12.2942 - 7.09808i) q^{97} +(-0.866025 - 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{10} - 18 q^{11} - 4 q^{14} - 2 q^{16} + 8 q^{17} - 12 q^{19} - 6 q^{20} + 8 q^{23} + 4 q^{25} + 4 q^{26} - 14 q^{29} - 2 q^{35} + 6 q^{37} - 12 q^{38} - 4 q^{40} + 12 q^{41} - 14 q^{43} - 12 q^{46} + 2 q^{49} - 12 q^{50} + 12 q^{53} + 18 q^{55} - 2 q^{56} - 12 q^{58} - 24 q^{59} - 4 q^{61} + 10 q^{62} - 4 q^{64} + 14 q^{65} - 8 q^{68} + 6 q^{71} - 10 q^{74} - 12 q^{76} + 36 q^{79} - 6 q^{80} - 10 q^{82} - 30 q^{85} + 48 q^{89} + 10 q^{91} + 16 q^{92} - 6 q^{94} - 18 q^{95} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.732051i 0.327383i −0.986512 0.163692i \(-0.947660\pi\)
0.986512 0.163692i \(-0.0523402\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.366025 + 0.633975i 0.115747 + 0.200480i
\(11\) −4.50000 + 2.59808i −1.35680 + 0.783349i −0.989191 0.146631i \(-0.953157\pi\)
−0.367610 + 0.929980i \(0.619824\pi\)
\(12\) 0 0
\(13\) 0.866025 3.50000i 0.240192 0.970725i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.13397 1.96410i 0.275029 0.476365i −0.695113 0.718900i \(-0.744646\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) −0.401924 0.232051i −0.0922076 0.0532361i 0.453187 0.891415i \(-0.350287\pi\)
−0.545395 + 0.838179i \(0.683620\pi\)
\(20\) −0.633975 0.366025i −0.141761 0.0818458i
\(21\) 0 0
\(22\) 2.59808 4.50000i 0.553912 0.959403i
\(23\) 3.73205 + 6.46410i 0.778186 + 1.34786i 0.932986 + 0.359912i \(0.117193\pi\)
−0.154800 + 0.987946i \(0.549473\pi\)
\(24\) 0 0
\(25\) 4.46410 0.892820
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 0 0
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) −1.76795 3.06218i −0.328300 0.568632i 0.653875 0.756603i \(-0.273142\pi\)
−0.982175 + 0.187971i \(0.939809\pi\)
\(30\) 0 0
\(31\) 3.26795i 0.586941i −0.955968 0.293471i \(-0.905190\pi\)
0.955968 0.293471i \(-0.0948102\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 2.26795i 0.388950i
\(35\) 0.366025 0.633975i 0.0618696 0.107161i
\(36\) 0 0
\(37\) 5.83013 3.36603i 0.958467 0.553371i 0.0627661 0.998028i \(-0.480008\pi\)
0.895701 + 0.444657i \(0.146674\pi\)
\(38\) 0.464102 0.0752872
\(39\) 0 0
\(40\) 0.732051 0.115747
\(41\) 7.33013 4.23205i 1.14477 0.660935i 0.197165 0.980370i \(-0.436826\pi\)
0.947608 + 0.319435i \(0.103493\pi\)
\(42\) 0 0
\(43\) −4.36603 + 7.56218i −0.665813 + 1.15322i 0.313252 + 0.949670i \(0.398582\pi\)
−0.979064 + 0.203551i \(0.934752\pi\)
\(44\) 5.19615i 0.783349i
\(45\) 0 0
\(46\) −6.46410 3.73205i −0.953080 0.550261i
\(47\) 3.92820i 0.572987i −0.958082 0.286494i \(-0.907510\pi\)
0.958082 0.286494i \(-0.0924897\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −3.86603 + 2.23205i −0.546739 + 0.315660i
\(51\) 0 0
\(52\) −2.59808 2.50000i −0.360288 0.346688i
\(53\) 9.92820 1.36374 0.681872 0.731472i \(-0.261166\pi\)
0.681872 + 0.731472i \(0.261166\pi\)
\(54\) 0 0
\(55\) 1.90192 + 3.29423i 0.256455 + 0.444194i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 3.06218 + 1.76795i 0.402084 + 0.232143i
\(59\) −7.73205 4.46410i −1.00663 0.581177i −0.0964249 0.995340i \(-0.530741\pi\)
−0.910202 + 0.414164i \(0.864074\pi\)
\(60\) 0 0
\(61\) −1.86603 + 3.23205i −0.238920 + 0.413822i −0.960405 0.278609i \(-0.910127\pi\)
0.721485 + 0.692430i \(0.243460\pi\)
\(62\) 1.63397 + 2.83013i 0.207515 + 0.359426i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.56218 0.633975i −0.317799 0.0786349i
\(66\) 0 0
\(67\) 8.66025 5.00000i 1.05802 0.610847i 0.133135 0.991098i \(-0.457496\pi\)
0.924883 + 0.380251i \(0.124162\pi\)
\(68\) −1.13397 1.96410i −0.137515 0.238182i
\(69\) 0 0
\(70\) 0.732051i 0.0874968i
\(71\) −6.29423 3.63397i −0.746988 0.431273i 0.0776169 0.996983i \(-0.475269\pi\)
−0.824604 + 0.565710i \(0.808602\pi\)
\(72\) 0 0
\(73\) 1.46410i 0.171360i −0.996323 0.0856801i \(-0.972694\pi\)
0.996323 0.0856801i \(-0.0273063\pi\)
\(74\) −3.36603 + 5.83013i −0.391293 + 0.677738i
\(75\) 0 0
\(76\) −0.401924 + 0.232051i −0.0461038 + 0.0266181i
\(77\) −5.19615 −0.592157
\(78\) 0 0
\(79\) 9.00000 1.01258 0.506290 0.862364i \(-0.331017\pi\)
0.506290 + 0.862364i \(0.331017\pi\)
\(80\) −0.633975 + 0.366025i −0.0708805 + 0.0409229i
\(81\) 0 0
\(82\) −4.23205 + 7.33013i −0.467352 + 0.809477i
\(83\) 9.26795i 1.01729i −0.860976 0.508645i \(-0.830147\pi\)
0.860976 0.508645i \(-0.169853\pi\)
\(84\) 0 0
\(85\) −1.43782 0.830127i −0.155954 0.0900399i
\(86\) 8.73205i 0.941601i
\(87\) 0 0
\(88\) −2.59808 4.50000i −0.276956 0.479702i
\(89\) 14.5981 8.42820i 1.54739 0.893388i 0.549053 0.835787i \(-0.314988\pi\)
0.998340 0.0576004i \(-0.0183449\pi\)
\(90\) 0 0
\(91\) 2.50000 2.59808i 0.262071 0.272352i
\(92\) 7.46410 0.778186
\(93\) 0 0
\(94\) 1.96410 + 3.40192i 0.202582 + 0.350882i
\(95\) −0.169873 + 0.294229i −0.0174286 + 0.0301872i
\(96\) 0 0
\(97\) −12.2942 7.09808i −1.24829 0.720700i −0.277522 0.960719i \(-0.589513\pi\)
−0.970768 + 0.240019i \(0.922846\pi\)
\(98\) −0.866025 0.500000i −0.0874818 0.0505076i
\(99\) 0 0
\(100\) 2.23205 3.86603i 0.223205 0.386603i
\(101\) −2.46410 4.26795i −0.245187 0.424677i 0.716997 0.697076i \(-0.245516\pi\)
−0.962184 + 0.272399i \(0.912183\pi\)
\(102\) 0 0
\(103\) 16.1962 1.59585 0.797927 0.602754i \(-0.205930\pi\)
0.797927 + 0.602754i \(0.205930\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) 0 0
\(106\) −8.59808 + 4.96410i −0.835119 + 0.482156i
\(107\) −3.03590 5.25833i −0.293491 0.508342i 0.681141 0.732152i \(-0.261484\pi\)
−0.974633 + 0.223810i \(0.928151\pi\)
\(108\) 0 0
\(109\) 11.2679i 1.07927i 0.841898 + 0.539637i \(0.181438\pi\)
−0.841898 + 0.539637i \(0.818562\pi\)
\(110\) −3.29423 1.90192i −0.314092 0.181341i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 3.83013 6.63397i 0.360308 0.624072i −0.627703 0.778453i \(-0.716005\pi\)
0.988011 + 0.154381i \(0.0493382\pi\)
\(114\) 0 0
\(115\) 4.73205 2.73205i 0.441266 0.254765i
\(116\) −3.53590 −0.328300
\(117\) 0 0
\(118\) 8.92820 0.821908
\(119\) 1.96410 1.13397i 0.180049 0.103951i
\(120\) 0 0
\(121\) 8.00000 13.8564i 0.727273 1.25967i
\(122\) 3.73205i 0.337884i
\(123\) 0 0
\(124\) −2.83013 1.63397i −0.254153 0.146735i
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 7.19615 + 12.4641i 0.638555 + 1.10601i 0.985750 + 0.168217i \(0.0538010\pi\)
−0.347195 + 0.937793i \(0.612866\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 2.53590 0.732051i 0.222413 0.0642051i
\(131\) 14.9282 1.30428 0.652142 0.758097i \(-0.273871\pi\)
0.652142 + 0.758097i \(0.273871\pi\)
\(132\) 0 0
\(133\) −0.232051 0.401924i −0.0201214 0.0348512i
\(134\) −5.00000 + 8.66025i −0.431934 + 0.748132i
\(135\) 0 0
\(136\) 1.96410 + 1.13397i 0.168420 + 0.0972375i
\(137\) 16.8564 + 9.73205i 1.44014 + 0.831465i 0.997858 0.0654110i \(-0.0208359\pi\)
0.442282 + 0.896876i \(0.354169\pi\)
\(138\) 0 0
\(139\) −8.52628 + 14.7679i −0.723190 + 1.25260i 0.236525 + 0.971625i \(0.423991\pi\)
−0.959715 + 0.280976i \(0.909342\pi\)
\(140\) −0.366025 0.633975i −0.0309348 0.0535806i
\(141\) 0 0
\(142\) 7.26795 0.609913
\(143\) 5.19615 + 18.0000i 0.434524 + 1.50524i
\(144\) 0 0
\(145\) −2.24167 + 1.29423i −0.186161 + 0.107480i
\(146\) 0.732051 + 1.26795i 0.0605850 + 0.104936i
\(147\) 0 0
\(148\) 6.73205i 0.553371i
\(149\) 6.92820 + 4.00000i 0.567581 + 0.327693i 0.756182 0.654361i \(-0.227062\pi\)
−0.188602 + 0.982054i \(0.560396\pi\)
\(150\) 0 0
\(151\) 1.19615i 0.0973415i −0.998815 0.0486708i \(-0.984501\pi\)
0.998815 0.0486708i \(-0.0154985\pi\)
\(152\) 0.232051 0.401924i 0.0188218 0.0326003i
\(153\) 0 0
\(154\) 4.50000 2.59808i 0.362620 0.209359i
\(155\) −2.39230 −0.192155
\(156\) 0 0
\(157\) −11.4641 −0.914935 −0.457467 0.889226i \(-0.651243\pi\)
−0.457467 + 0.889226i \(0.651243\pi\)
\(158\) −7.79423 + 4.50000i −0.620076 + 0.358001i
\(159\) 0 0
\(160\) 0.366025 0.633975i 0.0289368 0.0501201i
\(161\) 7.46410i 0.588254i
\(162\) 0 0
\(163\) −6.16987 3.56218i −0.483262 0.279011i 0.238513 0.971139i \(-0.423340\pi\)
−0.721775 + 0.692128i \(0.756673\pi\)
\(164\) 8.46410i 0.660935i
\(165\) 0 0
\(166\) 4.63397 + 8.02628i 0.359666 + 0.622960i
\(167\) 4.39230 2.53590i 0.339887 0.196234i −0.320335 0.947304i \(-0.603796\pi\)
0.660222 + 0.751071i \(0.270462\pi\)
\(168\) 0 0
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) 1.66025 0.127336
\(171\) 0 0
\(172\) 4.36603 + 7.56218i 0.332906 + 0.576611i
\(173\) −1.09808 + 1.90192i −0.0834852 + 0.144601i −0.904745 0.425954i \(-0.859938\pi\)
0.821260 + 0.570555i \(0.193272\pi\)
\(174\) 0 0
\(175\) 3.86603 + 2.23205i 0.292244 + 0.168727i
\(176\) 4.50000 + 2.59808i 0.339200 + 0.195837i
\(177\) 0 0
\(178\) −8.42820 + 14.5981i −0.631721 + 1.09417i
\(179\) 1.73205 + 3.00000i 0.129460 + 0.224231i 0.923467 0.383677i \(-0.125342\pi\)
−0.794008 + 0.607908i \(0.792009\pi\)
\(180\) 0 0
\(181\) 14.2679 1.06053 0.530264 0.847832i \(-0.322093\pi\)
0.530264 + 0.847832i \(0.322093\pi\)
\(182\) −0.866025 + 3.50000i −0.0641941 + 0.259437i
\(183\) 0 0
\(184\) −6.46410 + 3.73205i −0.476540 + 0.275130i
\(185\) −2.46410 4.26795i −0.181164 0.313786i
\(186\) 0 0
\(187\) 11.7846i 0.861776i
\(188\) −3.40192 1.96410i −0.248111 0.143247i
\(189\) 0 0
\(190\) 0.339746i 0.0246478i
\(191\) −4.09808 + 7.09808i −0.296526 + 0.513599i −0.975339 0.220713i \(-0.929162\pi\)
0.678812 + 0.734312i \(0.262495\pi\)
\(192\) 0 0
\(193\) 6.57180 3.79423i 0.473048 0.273115i −0.244467 0.969658i \(-0.578613\pi\)
0.717515 + 0.696543i \(0.245280\pi\)
\(194\) 14.1962 1.01922
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −0.232051 + 0.133975i −0.0165329 + 0.00954529i −0.508244 0.861213i \(-0.669705\pi\)
0.491711 + 0.870759i \(0.336372\pi\)
\(198\) 0 0
\(199\) 12.2942 21.2942i 0.871515 1.50951i 0.0110851 0.999939i \(-0.496471\pi\)
0.860430 0.509569i \(-0.170195\pi\)
\(200\) 4.46410i 0.315660i
\(201\) 0 0
\(202\) 4.26795 + 2.46410i 0.300292 + 0.173374i
\(203\) 3.53590i 0.248171i
\(204\) 0 0
\(205\) −3.09808 5.36603i −0.216379 0.374779i
\(206\) −14.0263 + 8.09808i −0.977257 + 0.564220i
\(207\) 0 0
\(208\) −3.46410 + 1.00000i −0.240192 + 0.0693375i
\(209\) 2.41154 0.166810
\(210\) 0 0
\(211\) −12.4641 21.5885i −0.858064 1.48621i −0.873773 0.486334i \(-0.838334\pi\)
0.0157088 0.999877i \(-0.495000\pi\)
\(212\) 4.96410 8.59808i 0.340936 0.590518i
\(213\) 0 0
\(214\) 5.25833 + 3.03590i 0.359452 + 0.207530i
\(215\) 5.53590 + 3.19615i 0.377545 + 0.217976i
\(216\) 0 0
\(217\) 1.63397 2.83013i 0.110921 0.192122i
\(218\) −5.63397 9.75833i −0.381581 0.660918i
\(219\) 0 0
\(220\) 3.80385 0.256455
\(221\) −5.89230 5.66987i −0.396359 0.381397i
\(222\) 0 0
\(223\) −4.73205 + 2.73205i −0.316882 + 0.182952i −0.650002 0.759933i \(-0.725232\pi\)
0.333120 + 0.942884i \(0.391899\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 7.66025i 0.509553i
\(227\) 11.5359 + 6.66025i 0.765664 + 0.442057i 0.831326 0.555785i \(-0.187582\pi\)
−0.0656613 + 0.997842i \(0.520916\pi\)
\(228\) 0 0
\(229\) 17.3923i 1.14932i 0.818394 + 0.574658i \(0.194865\pi\)
−0.818394 + 0.574658i \(0.805135\pi\)
\(230\) −2.73205 + 4.73205i −0.180146 + 0.312022i
\(231\) 0 0
\(232\) 3.06218 1.76795i 0.201042 0.116072i
\(233\) −18.5885 −1.21777 −0.608885 0.793258i \(-0.708383\pi\)
−0.608885 + 0.793258i \(0.708383\pi\)
\(234\) 0 0
\(235\) −2.87564 −0.187586
\(236\) −7.73205 + 4.46410i −0.503314 + 0.290588i
\(237\) 0 0
\(238\) −1.13397 + 1.96410i −0.0735047 + 0.127314i
\(239\) 26.5885i 1.71986i −0.510408 0.859932i \(-0.670506\pi\)
0.510408 0.859932i \(-0.329494\pi\)
\(240\) 0 0
\(241\) 9.46410 + 5.46410i 0.609636 + 0.351974i 0.772823 0.634621i \(-0.218844\pi\)
−0.163187 + 0.986595i \(0.552177\pi\)
\(242\) 16.0000i 1.02852i
\(243\) 0 0
\(244\) 1.86603 + 3.23205i 0.119460 + 0.206911i
\(245\) 0.633975 0.366025i 0.0405032 0.0233845i
\(246\) 0 0
\(247\) −1.16025 + 1.20577i −0.0738252 + 0.0767214i
\(248\) 3.26795 0.207515
\(249\) 0 0
\(250\) 3.46410 + 6.00000i 0.219089 + 0.379473i
\(251\) −8.75833 + 15.1699i −0.552821 + 0.957514i 0.445249 + 0.895407i \(0.353115\pi\)
−0.998070 + 0.0621069i \(0.980218\pi\)
\(252\) 0 0
\(253\) −33.5885 19.3923i −2.11169 1.21918i
\(254\) −12.4641 7.19615i −0.782067 0.451527i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 12.5263 + 21.6962i 0.781368 + 1.35337i 0.931145 + 0.364649i \(0.118811\pi\)
−0.149777 + 0.988720i \(0.547856\pi\)
\(258\) 0 0
\(259\) 6.73205 0.418309
\(260\) −1.83013 + 1.90192i −0.113500 + 0.117952i
\(261\) 0 0
\(262\) −12.9282 + 7.46410i −0.798707 + 0.461134i
\(263\) 1.56218 + 2.70577i 0.0963280 + 0.166845i 0.910162 0.414252i \(-0.135957\pi\)
−0.813834 + 0.581097i \(0.802624\pi\)
\(264\) 0 0
\(265\) 7.26795i 0.446467i
\(266\) 0.401924 + 0.232051i 0.0246435 + 0.0142279i
\(267\) 0 0
\(268\) 10.0000i 0.610847i
\(269\) −2.00000 + 3.46410i −0.121942 + 0.211210i −0.920534 0.390664i \(-0.872246\pi\)
0.798591 + 0.601874i \(0.205579\pi\)
\(270\) 0 0
\(271\) 6.63397 3.83013i 0.402985 0.232664i −0.284786 0.958591i \(-0.591923\pi\)
0.687771 + 0.725927i \(0.258589\pi\)
\(272\) −2.26795 −0.137515
\(273\) 0 0
\(274\) −19.4641 −1.17587
\(275\) −20.0885 + 11.5981i −1.21138 + 0.699390i
\(276\) 0 0
\(277\) −7.19615 + 12.4641i −0.432375 + 0.748895i −0.997077 0.0763993i \(-0.975658\pi\)
0.564702 + 0.825295i \(0.308991\pi\)
\(278\) 17.0526i 1.02274i
\(279\) 0 0
\(280\) 0.633975 + 0.366025i 0.0378872 + 0.0218742i
\(281\) 12.7321i 0.759530i −0.925083 0.379765i \(-0.876005\pi\)
0.925083 0.379765i \(-0.123995\pi\)
\(282\) 0 0
\(283\) −8.92820 15.4641i −0.530727 0.919245i −0.999357 0.0358512i \(-0.988586\pi\)
0.468631 0.883394i \(-0.344748\pi\)
\(284\) −6.29423 + 3.63397i −0.373494 + 0.215637i
\(285\) 0 0
\(286\) −13.5000 12.9904i −0.798272 0.768137i
\(287\) 8.46410 0.499620
\(288\) 0 0
\(289\) 5.92820 + 10.2679i 0.348718 + 0.603997i
\(290\) 1.29423 2.24167i 0.0759997 0.131635i
\(291\) 0 0
\(292\) −1.26795 0.732051i −0.0742011 0.0428400i
\(293\) −0.928203 0.535898i −0.0542262 0.0313075i 0.472642 0.881255i \(-0.343300\pi\)
−0.526868 + 0.849947i \(0.676634\pi\)
\(294\) 0 0
\(295\) −3.26795 + 5.66025i −0.190267 + 0.329553i
\(296\) 3.36603 + 5.83013i 0.195646 + 0.338869i
\(297\) 0 0
\(298\) −8.00000 −0.463428
\(299\) 25.8564 7.46410i 1.49531 0.431660i
\(300\) 0 0
\(301\) −7.56218 + 4.36603i −0.435877 + 0.251654i
\(302\) 0.598076 + 1.03590i 0.0344154 + 0.0596093i
\(303\) 0 0
\(304\) 0.464102i 0.0266181i
\(305\) 2.36603 + 1.36603i 0.135478 + 0.0782184i
\(306\) 0 0
\(307\) 5.00000i 0.285365i −0.989769 0.142683i \(-0.954427\pi\)
0.989769 0.142683i \(-0.0455728\pi\)
\(308\) −2.59808 + 4.50000i −0.148039 + 0.256411i
\(309\) 0 0
\(310\) 2.07180 1.19615i 0.117670 0.0679369i
\(311\) −14.8038 −0.839449 −0.419725 0.907652i \(-0.637873\pi\)
−0.419725 + 0.907652i \(0.637873\pi\)
\(312\) 0 0
\(313\) 6.87564 0.388634 0.194317 0.980939i \(-0.437751\pi\)
0.194317 + 0.980939i \(0.437751\pi\)
\(314\) 9.92820 5.73205i 0.560281 0.323478i
\(315\) 0 0
\(316\) 4.50000 7.79423i 0.253145 0.438460i
\(317\) 14.7846i 0.830386i −0.909733 0.415193i \(-0.863714\pi\)
0.909733 0.415193i \(-0.136286\pi\)
\(318\) 0 0
\(319\) 15.9115 + 9.18653i 0.890875 + 0.514347i
\(320\) 0.732051i 0.0409229i
\(321\) 0 0
\(322\) −3.73205 6.46410i −0.207979 0.360230i
\(323\) −0.911543 + 0.526279i −0.0507196 + 0.0292830i
\(324\) 0 0
\(325\) 3.86603 15.6244i 0.214449 0.866683i
\(326\) 7.12436 0.394582
\(327\) 0 0
\(328\) 4.23205 + 7.33013i 0.233676 + 0.404739i
\(329\) 1.96410 3.40192i 0.108284 0.187554i
\(330\) 0 0
\(331\) 5.87564 + 3.39230i 0.322955 + 0.186458i 0.652709 0.757609i \(-0.273633\pi\)
−0.329754 + 0.944067i \(0.606966\pi\)
\(332\) −8.02628 4.63397i −0.440499 0.254322i
\(333\) 0 0
\(334\) −2.53590 + 4.39230i −0.138758 + 0.240336i
\(335\) −3.66025 6.33975i −0.199981 0.346377i
\(336\) 0 0
\(337\) −11.0000 −0.599208 −0.299604 0.954064i \(-0.596855\pi\)
−0.299604 + 0.954064i \(0.596855\pi\)
\(338\) 12.9904 0.500000i 0.706584 0.0271964i
\(339\) 0 0
\(340\) −1.43782 + 0.830127i −0.0779769 + 0.0450200i
\(341\) 8.49038 + 14.7058i 0.459780 + 0.796362i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −7.56218 4.36603i −0.407725 0.235400i
\(345\) 0 0
\(346\) 2.19615i 0.118066i
\(347\) −3.23205 + 5.59808i −0.173506 + 0.300520i −0.939643 0.342156i \(-0.888843\pi\)
0.766138 + 0.642677i \(0.222176\pi\)
\(348\) 0 0
\(349\) 5.32051 3.07180i 0.284800 0.164430i −0.350794 0.936453i \(-0.614088\pi\)
0.635595 + 0.772023i \(0.280755\pi\)
\(350\) −4.46410 −0.238616
\(351\) 0 0
\(352\) −5.19615 −0.276956
\(353\) −27.1244 + 15.6603i −1.44368 + 0.833511i −0.998093 0.0617256i \(-0.980340\pi\)
−0.445591 + 0.895237i \(0.647006\pi\)
\(354\) 0 0
\(355\) −2.66025 + 4.60770i −0.141192 + 0.244551i
\(356\) 16.8564i 0.893388i
\(357\) 0 0
\(358\) −3.00000 1.73205i −0.158555 0.0915417i
\(359\) 34.4449i 1.81793i 0.416872 + 0.908965i \(0.363126\pi\)
−0.416872 + 0.908965i \(0.636874\pi\)
\(360\) 0 0
\(361\) −9.39230 16.2679i −0.494332 0.856208i
\(362\) −12.3564 + 7.13397i −0.649438 + 0.374953i
\(363\) 0 0
\(364\) −1.00000 3.46410i −0.0524142 0.181568i
\(365\) −1.07180 −0.0561004
\(366\) 0 0
\(367\) −6.66025 11.5359i −0.347662 0.602169i 0.638171 0.769894i \(-0.279691\pi\)
−0.985834 + 0.167725i \(0.946358\pi\)
\(368\) 3.73205 6.46410i 0.194547 0.336965i
\(369\) 0 0
\(370\) 4.26795 + 2.46410i 0.221880 + 0.128103i
\(371\) 8.59808 + 4.96410i 0.446390 + 0.257723i
\(372\) 0 0
\(373\) 7.56218 13.0981i 0.391555 0.678193i −0.601100 0.799174i \(-0.705271\pi\)
0.992655 + 0.120981i \(0.0386040\pi\)
\(374\) −5.89230 10.2058i −0.304684 0.527728i
\(375\) 0 0
\(376\) 3.92820 0.202582
\(377\) −12.2487 + 3.53590i −0.630841 + 0.182108i
\(378\) 0 0
\(379\) −31.2224 + 18.0263i −1.60379 + 0.925948i −0.613069 + 0.790030i \(0.710065\pi\)
−0.990720 + 0.135918i \(0.956602\pi\)
\(380\) 0.169873 + 0.294229i 0.00871430 + 0.0150936i
\(381\) 0 0
\(382\) 8.19615i 0.419352i
\(383\) −26.8468 15.5000i −1.37181 0.792013i −0.380651 0.924719i \(-0.624300\pi\)
−0.991155 + 0.132706i \(0.957633\pi\)
\(384\) 0 0
\(385\) 3.80385i 0.193862i
\(386\) −3.79423 + 6.57180i −0.193121 + 0.334496i
\(387\) 0 0
\(388\) −12.2942 + 7.09808i −0.624145 + 0.360350i
\(389\) −21.4641 −1.08827 −0.544137 0.838997i \(-0.683143\pi\)
−0.544137 + 0.838997i \(0.683143\pi\)
\(390\) 0 0
\(391\) 16.9282 0.856096
\(392\) −0.866025 + 0.500000i −0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 0.133975 0.232051i 0.00674954 0.0116906i
\(395\) 6.58846i 0.331501i
\(396\) 0 0
\(397\) −18.5263 10.6962i −0.929807 0.536825i −0.0430567 0.999073i \(-0.513710\pi\)
−0.886751 + 0.462248i \(0.847043\pi\)
\(398\) 24.5885i 1.23251i
\(399\) 0 0
\(400\) −2.23205 3.86603i −0.111603 0.193301i
\(401\) 9.58846 5.53590i 0.478825 0.276450i −0.241102 0.970500i \(-0.577509\pi\)
0.719927 + 0.694050i \(0.244175\pi\)
\(402\) 0 0
\(403\) −11.4378 2.83013i −0.569759 0.140979i
\(404\) −4.92820 −0.245187
\(405\) 0 0
\(406\) 1.76795 + 3.06218i 0.0877418 + 0.151973i
\(407\) −17.4904 + 30.2942i −0.866966 + 1.50163i
\(408\) 0 0
\(409\) −14.3660 8.29423i −0.710354 0.410123i 0.100838 0.994903i \(-0.467848\pi\)
−0.811192 + 0.584780i \(0.801181\pi\)
\(410\) 5.36603 + 3.09808i 0.265009 + 0.153003i
\(411\) 0 0
\(412\) 8.09808 14.0263i 0.398964 0.691025i
\(413\) −4.46410 7.73205i −0.219664 0.380469i
\(414\) 0 0
\(415\) −6.78461 −0.333043
\(416\) 2.50000 2.59808i 0.122573 0.127381i
\(417\) 0 0
\(418\) −2.08846 + 1.20577i −0.102150 + 0.0589762i
\(419\) −7.29423 12.6340i −0.356346 0.617210i 0.631001 0.775782i \(-0.282644\pi\)
−0.987347 + 0.158572i \(0.949311\pi\)
\(420\) 0 0
\(421\) 25.3205i 1.23405i 0.786945 + 0.617023i \(0.211661\pi\)
−0.786945 + 0.617023i \(0.788339\pi\)
\(422\) 21.5885 + 12.4641i 1.05091 + 0.606743i
\(423\) 0 0
\(424\) 9.92820i 0.482156i
\(425\) 5.06218 8.76795i 0.245552 0.425308i
\(426\) 0 0
\(427\) −3.23205 + 1.86603i −0.156410 + 0.0903033i
\(428\) −6.07180 −0.293491
\(429\) 0 0
\(430\) −6.39230 −0.308264
\(431\) −11.3660 + 6.56218i −0.547482 + 0.316089i −0.748106 0.663579i \(-0.769036\pi\)
0.200624 + 0.979668i \(0.435703\pi\)
\(432\) 0 0
\(433\) 6.07180 10.5167i 0.291792 0.505398i −0.682442 0.730940i \(-0.739082\pi\)
0.974234 + 0.225542i \(0.0724152\pi\)
\(434\) 3.26795i 0.156867i
\(435\) 0 0
\(436\) 9.75833 + 5.63397i 0.467339 + 0.269818i
\(437\) 3.46410i 0.165710i
\(438\) 0 0
\(439\) 11.6603 + 20.1962i 0.556514 + 0.963910i 0.997784 + 0.0665356i \(0.0211946\pi\)
−0.441270 + 0.897374i \(0.645472\pi\)
\(440\) −3.29423 + 1.90192i −0.157046 + 0.0906707i
\(441\) 0 0
\(442\) 7.93782 + 1.96410i 0.377564 + 0.0934228i
\(443\) 25.0000 1.18779 0.593893 0.804544i \(-0.297590\pi\)
0.593893 + 0.804544i \(0.297590\pi\)
\(444\) 0 0
\(445\) −6.16987 10.6865i −0.292480 0.506590i
\(446\) 2.73205 4.73205i 0.129366 0.224069i
\(447\) 0 0
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) −25.0981 14.4904i −1.18445 0.683843i −0.227411 0.973799i \(-0.573026\pi\)
−0.957040 + 0.289955i \(0.906360\pi\)
\(450\) 0 0
\(451\) −21.9904 + 38.0885i −1.03549 + 1.79352i
\(452\) −3.83013 6.63397i −0.180154 0.312036i
\(453\) 0 0
\(454\) −13.3205 −0.625162
\(455\) −1.90192 1.83013i −0.0891636 0.0857977i
\(456\) 0 0
\(457\) −25.7321 + 14.8564i −1.20369 + 0.694953i −0.961375 0.275243i \(-0.911242\pi\)
−0.242320 + 0.970196i \(0.577908\pi\)
\(458\) −8.69615 15.0622i −0.406345 0.703809i
\(459\) 0 0
\(460\) 5.46410i 0.254765i
\(461\) −6.00000 3.46410i −0.279448 0.161339i 0.353726 0.935349i \(-0.384915\pi\)
−0.633173 + 0.774010i \(0.718248\pi\)
\(462\) 0 0
\(463\) 15.3397i 0.712898i 0.934315 + 0.356449i \(0.116013\pi\)
−0.934315 + 0.356449i \(0.883987\pi\)
\(464\) −1.76795 + 3.06218i −0.0820750 + 0.142158i
\(465\) 0 0
\(466\) 16.0981 9.29423i 0.745729 0.430547i
\(467\) −18.9282 −0.875893 −0.437946 0.899001i \(-0.644294\pi\)
−0.437946 + 0.899001i \(0.644294\pi\)
\(468\) 0 0
\(469\) 10.0000 0.461757
\(470\) 2.49038 1.43782i 0.114873 0.0663218i
\(471\) 0 0
\(472\) 4.46410 7.73205i 0.205477 0.355896i
\(473\) 45.3731i 2.08626i
\(474\) 0 0
\(475\) −1.79423 1.03590i −0.0823249 0.0475303i
\(476\) 2.26795i 0.103951i
\(477\) 0 0
\(478\) 13.2942 + 23.0263i 0.608064 + 1.05320i
\(479\) −4.20577 + 2.42820i −0.192167 + 0.110947i −0.592996 0.805205i \(-0.702055\pi\)
0.400830 + 0.916153i \(0.368722\pi\)
\(480\) 0 0
\(481\) −6.73205 23.3205i −0.306955 1.06332i
\(482\) −10.9282 −0.497766
\(483\) 0 0
\(484\) −8.00000 13.8564i −0.363636 0.629837i
\(485\) −5.19615 + 9.00000i −0.235945 + 0.408669i
\(486\) 0 0
\(487\) −25.5000 14.7224i −1.15552 0.667137i −0.205290 0.978701i \(-0.565814\pi\)
−0.950225 + 0.311564i \(0.899147\pi\)
\(488\) −3.23205 1.86603i −0.146308 0.0844710i
\(489\) 0 0
\(490\) −0.366025 + 0.633975i −0.0165353 + 0.0286401i
\(491\) 3.19615 + 5.53590i 0.144240 + 0.249832i 0.929089 0.369856i \(-0.120593\pi\)
−0.784849 + 0.619687i \(0.787259\pi\)
\(492\) 0 0
\(493\) −8.01924 −0.361168
\(494\) 0.401924 1.62436i 0.0180834 0.0730832i
\(495\) 0 0
\(496\) −2.83013 + 1.63397i −0.127076 + 0.0733676i
\(497\) −3.63397 6.29423i −0.163006 0.282335i
\(498\) 0 0
\(499\) 20.5885i 0.921666i 0.887487 + 0.460833i \(0.152449\pi\)
−0.887487 + 0.460833i \(0.847551\pi\)
\(500\) −6.00000 3.46410i −0.268328 0.154919i
\(501\) 0 0
\(502\) 17.5167i 0.781807i
\(503\) −15.4641 + 26.7846i −0.689510 + 1.19427i 0.282486 + 0.959271i \(0.408841\pi\)
−0.971996 + 0.234995i \(0.924492\pi\)
\(504\) 0 0
\(505\) −3.12436 + 1.80385i −0.139032 + 0.0802702i
\(506\) 38.7846 1.72419
\(507\) 0 0
\(508\) 14.3923 0.638555
\(509\) 25.6865 14.8301i 1.13854 0.657334i 0.192468 0.981303i \(-0.438351\pi\)
0.946068 + 0.323969i \(0.105017\pi\)
\(510\) 0 0
\(511\) 0.732051 1.26795i 0.0323840 0.0560908i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −21.6962 12.5263i −0.956976 0.552511i
\(515\) 11.8564i 0.522456i
\(516\) 0 0
\(517\) 10.2058 + 17.6769i 0.448849 + 0.777430i
\(518\) −5.83013 + 3.36603i −0.256161 + 0.147895i
\(519\) 0 0
\(520\) 0.633975 2.56218i 0.0278016 0.112359i
\(521\) 21.5885 0.945807 0.472904 0.881114i \(-0.343206\pi\)
0.472904 + 0.881114i \(0.343206\pi\)
\(522\) 0 0
\(523\) 12.5981 + 21.8205i 0.550875 + 0.954144i 0.998212 + 0.0597784i \(0.0190394\pi\)
−0.447336 + 0.894366i \(0.647627\pi\)
\(524\) 7.46410 12.9282i 0.326071 0.564771i
\(525\) 0 0
\(526\) −2.70577 1.56218i −0.117977 0.0681142i
\(527\) −6.41858 3.70577i −0.279598 0.161426i
\(528\) 0 0
\(529\) −16.3564 + 28.3301i −0.711148 + 1.23174i
\(530\) 3.63397 + 6.29423i 0.157850 + 0.273404i
\(531\) 0 0
\(532\) −0.464102 −0.0201214
\(533\) −8.46410 29.3205i −0.366621 1.27001i
\(534\) 0 0
\(535\) −3.84936 + 2.22243i −0.166423 + 0.0960841i
\(536\) 5.00000 + 8.66025i 0.215967 + 0.374066i
\(537\) 0 0
\(538\) 4.00000i 0.172452i
\(539\) −4.50000 2.59808i −0.193829 0.111907i
\(540\) 0 0
\(541\) 8.05256i 0.346207i 0.984904 + 0.173103i \(0.0553794\pi\)
−0.984904 + 0.173103i \(0.944621\pi\)
\(542\) −3.83013 + 6.63397i −0.164518 + 0.284954i
\(543\) 0 0
\(544\) 1.96410 1.13397i 0.0842102 0.0486188i
\(545\) 8.24871 0.353336
\(546\) 0 0
\(547\) −4.19615 −0.179415 −0.0897073 0.995968i \(-0.528593\pi\)
−0.0897073 + 0.995968i \(0.528593\pi\)
\(548\) 16.8564 9.73205i 0.720070 0.415733i
\(549\) 0 0
\(550\) 11.5981 20.0885i 0.494544 0.856575i
\(551\) 1.64102i 0.0699096i
\(552\) 0 0
\(553\) 7.79423 + 4.50000i 0.331444 + 0.191359i
\(554\) 14.3923i 0.611470i
\(555\) 0 0
\(556\) 8.52628 + 14.7679i 0.361595 + 0.626301i
\(557\) −17.0885 + 9.86603i −0.724061 + 0.418037i −0.816246 0.577705i \(-0.803948\pi\)
0.0921844 + 0.995742i \(0.470615\pi\)
\(558\) 0 0
\(559\) 22.6865 + 21.8301i 0.959538 + 0.923316i
\(560\) −0.732051 −0.0309348
\(561\) 0 0
\(562\) 6.36603 + 11.0263i 0.268535 + 0.465116i
\(563\) 6.83013 11.8301i 0.287856 0.498580i −0.685442 0.728127i \(-0.740391\pi\)
0.973298 + 0.229547i \(0.0737244\pi\)
\(564\) 0 0
\(565\) −4.85641 2.80385i −0.204311 0.117959i
\(566\) 15.4641 + 8.92820i 0.650005 + 0.375280i
\(567\) 0 0
\(568\) 3.63397 6.29423i 0.152478 0.264100i
\(569\) −0.830127 1.43782i −0.0348007 0.0602766i 0.848100 0.529835i \(-0.177746\pi\)
−0.882901 + 0.469559i \(0.844413\pi\)
\(570\) 0 0
\(571\) 39.5167 1.65372 0.826860 0.562407i \(-0.190125\pi\)
0.826860 + 0.562407i \(0.190125\pi\)
\(572\) 18.1865 + 4.50000i 0.760417 + 0.188154i
\(573\) 0 0
\(574\) −7.33013 + 4.23205i −0.305954 + 0.176642i
\(575\) 16.6603 + 28.8564i 0.694781 + 1.20340i
\(576\) 0 0
\(577\) 28.5885i 1.19015i −0.803669 0.595077i \(-0.797122\pi\)
0.803669 0.595077i \(-0.202878\pi\)
\(578\) −10.2679 5.92820i −0.427090 0.246581i
\(579\) 0 0
\(580\) 2.58846i 0.107480i
\(581\) 4.63397 8.02628i 0.192250 0.332986i
\(582\) 0 0
\(583\) −44.6769 + 25.7942i −1.85033 + 1.06829i
\(584\) 1.46410 0.0605850
\(585\) 0 0
\(586\) 1.07180 0.0442755
\(587\) 4.43782 2.56218i 0.183169 0.105752i −0.405612 0.914045i \(-0.632942\pi\)
0.588781 + 0.808293i \(0.299608\pi\)
\(588\) 0 0
\(589\) −0.758330 + 1.31347i −0.0312465 + 0.0541204i
\(590\) 6.53590i 0.269079i
\(591\) 0 0
\(592\) −5.83013 3.36603i −0.239617 0.138343i
\(593\) 37.0000i 1.51941i 0.650269 + 0.759704i \(0.274656\pi\)
−0.650269 + 0.759704i \(0.725344\pi\)
\(594\) 0 0
\(595\) −0.830127 1.43782i −0.0340319 0.0589450i
\(596\) 6.92820 4.00000i 0.283790 0.163846i
\(597\) 0 0
\(598\) −18.6603 + 19.3923i −0.763075 + 0.793010i
\(599\) 47.5692 1.94363 0.971813 0.235754i \(-0.0757559\pi\)
0.971813 + 0.235754i \(0.0757559\pi\)
\(600\) 0 0
\(601\) 24.1506 + 41.8301i 0.985125 + 1.70629i 0.641380 + 0.767223i \(0.278362\pi\)
0.343745 + 0.939063i \(0.388304\pi\)
\(602\) 4.36603 7.56218i 0.177946 0.308211i
\(603\) 0 0
\(604\) −1.03590 0.598076i −0.0421501 0.0243354i
\(605\) −10.1436 5.85641i −0.412396 0.238097i
\(606\) 0 0
\(607\) 12.8301 22.2224i 0.520759 0.901981i −0.478950 0.877842i \(-0.658982\pi\)
0.999709 0.0241384i \(-0.00768424\pi\)
\(608\) −0.232051 0.401924i −0.00941090 0.0163002i
\(609\) 0 0
\(610\) −2.73205 −0.110618
\(611\) −13.7487 3.40192i −0.556213 0.137627i
\(612\) 0 0
\(613\) −41.3205 + 23.8564i −1.66892 + 0.963551i −0.700698 + 0.713458i \(0.747128\pi\)
−0.968222 + 0.250093i \(0.919539\pi\)
\(614\) 2.50000 + 4.33013i 0.100892 + 0.174750i
\(615\) 0 0
\(616\) 5.19615i 0.209359i
\(617\) −11.9545 6.90192i −0.481269 0.277861i 0.239676 0.970853i \(-0.422959\pi\)
−0.720945 + 0.692992i \(0.756292\pi\)
\(618\) 0 0
\(619\) 11.3923i 0.457895i 0.973439 + 0.228948i \(0.0735285\pi\)
−0.973439 + 0.228948i \(0.926472\pi\)
\(620\) −1.19615 + 2.07180i −0.0480386 + 0.0832054i
\(621\) 0 0
\(622\) 12.8205 7.40192i 0.514056 0.296790i
\(623\) 16.8564 0.675338
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) −5.95448 + 3.43782i −0.237989 + 0.137403i
\(627\) 0 0
\(628\) −5.73205 + 9.92820i −0.228734 + 0.396178i
\(629\) 15.2679i 0.608773i
\(630\) 0 0
\(631\) 1.62436 + 0.937822i 0.0646646 + 0.0373341i 0.531984 0.846755i \(-0.321447\pi\)
−0.467319 + 0.884089i \(0.654780\pi\)
\(632\) 9.00000i 0.358001i
\(633\) 0 0
\(634\) 7.39230 + 12.8038i 0.293586 + 0.508506i
\(635\) 9.12436 5.26795i 0.362089 0.209052i
\(636\) 0 0
\(637\) 3.46410 1.00000i 0.137253 0.0396214i
\(638\) −18.3731 −0.727397
\(639\) 0 0
\(640\) −0.366025 0.633975i −0.0144684 0.0250600i
\(641\) 8.66025 15.0000i 0.342059 0.592464i −0.642756 0.766071i \(-0.722209\pi\)
0.984815 + 0.173607i \(0.0555422\pi\)
\(642\) 0 0
\(643\) 2.00962 + 1.16025i 0.0792516 + 0.0457560i 0.539102 0.842240i \(-0.318764\pi\)
−0.459851 + 0.887996i \(0.652097\pi\)
\(644\) 6.46410 + 3.73205i 0.254721 + 0.147063i
\(645\) 0 0
\(646\) 0.526279 0.911543i 0.0207062 0.0358642i
\(647\) 11.8660 + 20.5526i 0.466502 + 0.808004i 0.999268 0.0382579i \(-0.0121809\pi\)
−0.532766 + 0.846262i \(0.678848\pi\)
\(648\) 0 0
\(649\) 46.3923 1.82106
\(650\) 4.46410 + 15.4641i 0.175096 + 0.606552i
\(651\) 0 0
\(652\) −6.16987 + 3.56218i −0.241631 + 0.139506i
\(653\) −7.35641 12.7417i −0.287878 0.498620i 0.685425 0.728144i \(-0.259617\pi\)
−0.973303 + 0.229523i \(0.926283\pi\)
\(654\) 0 0
\(655\) 10.9282i 0.427000i
\(656\) −7.33013 4.23205i −0.286193 0.165234i
\(657\) 0 0
\(658\) 3.92820i 0.153137i
\(659\) −6.62436 + 11.4737i −0.258048 + 0.446953i −0.965719 0.259590i \(-0.916413\pi\)
0.707671 + 0.706542i \(0.249746\pi\)
\(660\) 0 0
\(661\) 19.5167 11.2679i 0.759110 0.438272i −0.0698660 0.997556i \(-0.522257\pi\)
0.828976 + 0.559284i \(0.188924\pi\)
\(662\) −6.78461 −0.263691
\(663\) 0 0
\(664\) 9.26795 0.359666
\(665\) −0.294229 + 0.169873i −0.0114097 + 0.00658739i
\(666\) 0 0
\(667\) 13.1962 22.8564i 0.510957 0.885004i
\(668\) 5.07180i 0.196234i
\(669\) 0 0
\(670\) 6.33975 + 3.66025i 0.244926 + 0.141408i
\(671\) 19.3923i 0.748632i
\(672\) 0 0
\(673\) −21.8205 37.7942i −0.841119 1.45686i −0.888950 0.458005i \(-0.848564\pi\)
0.0478308 0.998855i \(-0.484769\pi\)
\(674\) 9.52628 5.50000i 0.366939 0.211852i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) −43.2679 −1.66292 −0.831461 0.555583i \(-0.812495\pi\)
−0.831461 + 0.555583i \(0.812495\pi\)
\(678\) 0 0
\(679\) −7.09808 12.2942i −0.272399 0.471809i
\(680\) 0.830127 1.43782i 0.0318339 0.0551380i
\(681\) 0 0
\(682\) −14.7058 8.49038i −0.563113 0.325113i
\(683\) 15.0000 + 8.66025i 0.573959 + 0.331375i 0.758729 0.651406i \(-0.225821\pi\)
−0.184770 + 0.982782i \(0.559154\pi\)
\(684\) 0 0
\(685\) 7.12436 12.3397i 0.272208 0.471477i
\(686\) −0.500000 0.866025i −0.0190901 0.0330650i
\(687\) 0 0
\(688\) 8.73205 0.332906
\(689\) 8.59808 34.7487i 0.327561 1.32382i
\(690\) 0 0
\(691\) 32.1051 18.5359i 1.22134 0.705139i 0.256133 0.966641i \(-0.417551\pi\)
0.965203 + 0.261503i \(0.0842180\pi\)
\(692\) 1.09808 + 1.90192i 0.0417426 + 0.0723003i
\(693\) 0 0
\(694\) 6.46410i 0.245374i
\(695\) 10.8109 + 6.24167i 0.410080 + 0.236760i
\(696\) 0 0
\(697\) 19.1962i 0.727106i
\(698\) −3.07180 + 5.32051i −0.116269 + 0.201384i
\(699\) 0 0
\(700\) 3.86603 2.23205i 0.146122 0.0843636i
\(701\) 25.7846 0.973871 0.486936 0.873438i \(-0.338115\pi\)
0.486936 + 0.873438i \(0.338115\pi\)
\(702\) 0 0
\(703\) −3.12436 −0.117837
\(704\) 4.50000 2.59808i 0.169600 0.0979187i
\(705\) 0 0
\(706\) 15.6603 27.1244i 0.589381 1.02084i
\(707\) 4.92820i 0.185344i
\(708\) 0 0
\(709\) 44.4904 + 25.6865i 1.67087 + 0.964678i 0.967152 + 0.254200i \(0.0818123\pi\)
0.703720 + 0.710478i \(0.251521\pi\)
\(710\) 5.32051i 0.199675i
\(711\) 0 0
\(712\) 8.42820 + 14.5981i 0.315860 + 0.547086i
\(713\) 21.1244 12.1962i 0.791113 0.456749i
\(714\) 0 0
\(715\) 13.1769 3.80385i 0.492789 0.142256i
\(716\) 3.46410 0.129460
\(717\) 0 0
\(718\) −17.2224 29.8301i −0.642735 1.11325i
\(719\) −19.7224 + 34.1603i −0.735523 + 1.27396i 0.218971 + 0.975731i \(0.429730\pi\)
−0.954494 + 0.298231i \(0.903603\pi\)
\(720\) 0 0
\(721\) 14.0263 + 8.09808i 0.522366 + 0.301588i
\(722\) 16.2679 + 9.39230i 0.605430 + 0.349545i
\(723\) 0 0
\(724\) 7.13397 12.3564i 0.265132 0.459222i
\(725\) −7.89230 13.6699i −0.293113 0.507686i
\(726\) 0 0
\(727\) 3.60770 0.133802 0.0669010 0.997760i \(-0.478689\pi\)
0.0669010 + 0.997760i \(0.478689\pi\)
\(728\) 2.59808 + 2.50000i 0.0962911 + 0.0926562i
\(729\) 0 0
\(730\) 0.928203 0.535898i 0.0343543 0.0198345i
\(731\) 9.90192 + 17.1506i 0.366236 + 0.634339i
\(732\) 0 0
\(733\) 25.7846i 0.952376i −0.879343 0.476188i \(-0.842018\pi\)
0.879343 0.476188i \(-0.157982\pi\)
\(734\) 11.5359 + 6.66025i 0.425798 + 0.245834i
\(735\) 0 0
\(736\) 7.46410i 0.275130i
\(737\) −25.9808 + 45.0000i −0.957014 + 1.65760i
\(738\) 0 0
\(739\) −33.9282 + 19.5885i −1.24807 + 0.720573i −0.970724 0.240197i \(-0.922788\pi\)
−0.277345 + 0.960770i \(0.589455\pi\)
\(740\) −4.92820 −0.181164
\(741\) 0 0
\(742\) −9.92820 −0.364476
\(743\) −12.1699 + 7.02628i −0.446469 + 0.257769i −0.706338 0.707875i \(-0.749654\pi\)
0.259869 + 0.965644i \(0.416321\pi\)
\(744\) 0 0
\(745\) 2.92820 5.07180i 0.107281 0.185816i
\(746\) 15.1244i 0.553742i
\(747\) 0 0
\(748\) 10.2058 + 5.89230i 0.373160 + 0.215444i
\(749\) 6.07180i 0.221859i
\(750\) 0 0
\(751\) 2.57180 + 4.45448i 0.0938462 + 0.162546i 0.909126 0.416520i \(-0.136750\pi\)
−0.815280 + 0.579067i \(0.803417\pi\)
\(752\) −3.40192 + 1.96410i −0.124055 + 0.0716234i
\(753\) 0 0
\(754\) 8.83975 9.18653i 0.321925 0.334554i
\(755\) −0.875644 −0.0318680
\(756\) 0 0
\(757\) −8.09808 14.0263i −0.294330 0.509794i 0.680499 0.732749i \(-0.261763\pi\)
−0.974829 + 0.222955i \(0.928430\pi\)
\(758\) 18.0263 31.2224i 0.654744 1.13405i
\(759\) 0 0
\(760\) −0.294229 0.169873i −0.0106728 0.00616194i
\(761\) 15.8038 + 9.12436i 0.572889 + 0.330758i 0.758302 0.651903i \(-0.226029\pi\)
−0.185413 + 0.982661i \(0.559362\pi\)
\(762\) 0 0
\(763\) −5.63397 + 9.75833i −0.203964 + 0.353275i
\(764\) 4.09808 + 7.09808i 0.148263 + 0.256799i
\(765\) 0 0
\(766\) 31.0000 1.12008
\(767\) −22.3205 + 23.1962i −0.805947 + 0.837565i
\(768\) 0 0
\(769\) −37.4711 + 21.6340i −1.35124 + 0.780141i −0.988424 0.151718i \(-0.951519\pi\)
−0.362820 + 0.931859i \(0.618186\pi\)
\(770\) −1.90192 3.29423i −0.0685406 0.118716i
\(771\) 0 0
\(772\) 7.58846i 0.273115i
\(773\) −16.6077 9.58846i −0.597337 0.344873i 0.170656 0.985331i \(-0.445411\pi\)
−0.767993 + 0.640458i \(0.778745\pi\)
\(774\) 0 0
\(775\) 14.5885i 0.524033i
\(776\) 7.09808 12.2942i 0.254806 0.441337i
\(777\) 0 0
\(778\) 18.5885 10.7321i 0.666428 0.384763i
\(779\) −3.92820 −0.140742
\(780\) 0 0
\(781\) 37.7654 1.35135
\(782\) −14.6603 +