Properties

Label 1638.2.a.w.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.70156 q^{5} +1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.70156 q^{5} +1.00000 q^{7} -1.00000 q^{8} +2.70156 q^{10} +0.701562 q^{11} +1.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +2.70156 q^{17} -0.701562 q^{19} -2.70156 q^{20} -0.701562 q^{22} -4.70156 q^{23} +2.29844 q^{25} -1.00000 q^{26} +1.00000 q^{28} -2.70156 q^{29} -1.00000 q^{32} -2.70156 q^{34} -2.70156 q^{35} +10.7016 q^{37} +0.701562 q^{38} +2.70156 q^{40} -3.40312 q^{41} -10.1047 q^{43} +0.701562 q^{44} +4.70156 q^{46} +8.00000 q^{47} +1.00000 q^{49} -2.29844 q^{50} +1.00000 q^{52} +2.00000 q^{53} -1.89531 q^{55} -1.00000 q^{56} +2.70156 q^{58} +14.8062 q^{59} +1.29844 q^{61} +1.00000 q^{64} -2.70156 q^{65} +5.40312 q^{67} +2.70156 q^{68} +2.70156 q^{70} +8.00000 q^{71} -1.29844 q^{73} -10.7016 q^{74} -0.701562 q^{76} +0.701562 q^{77} +9.40312 q^{79} -2.70156 q^{80} +3.40312 q^{82} +13.4031 q^{83} -7.29844 q^{85} +10.1047 q^{86} -0.701562 q^{88} +8.80625 q^{89} +1.00000 q^{91} -4.70156 q^{92} -8.00000 q^{94} +1.89531 q^{95} -8.80625 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + q^{5} + 2 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + q^{5} + 2 q^{7} - 2 q^{8} - q^{10} - 5 q^{11} + 2 q^{13} - 2 q^{14} + 2 q^{16} - q^{17} + 5 q^{19} + q^{20} + 5 q^{22} - 3 q^{23} + 11 q^{25} - 2 q^{26} + 2 q^{28} + q^{29} - 2 q^{32} + q^{34} + q^{35} + 15 q^{37} - 5 q^{38} - q^{40} + 6 q^{41} - q^{43} - 5 q^{44} + 3 q^{46} + 16 q^{47} + 2 q^{49} - 11 q^{50} + 2 q^{52} + 4 q^{53} - 23 q^{55} - 2 q^{56} - q^{58} + 4 q^{59} + 9 q^{61} + 2 q^{64} + q^{65} - 2 q^{67} - q^{68} - q^{70} + 16 q^{71} - 9 q^{73} - 15 q^{74} + 5 q^{76} - 5 q^{77} + 6 q^{79} + q^{80} - 6 q^{82} + 14 q^{83} - 21 q^{85} + q^{86} + 5 q^{88} - 8 q^{89} + 2 q^{91} - 3 q^{92} - 16 q^{94} + 23 q^{95} + 8 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.70156 −1.20818 −0.604088 0.796918i \(-0.706462\pi\)
−0.604088 + 0.796918i \(0.706462\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.70156 0.854309
\(11\) 0.701562 0.211529 0.105764 0.994391i \(-0.466271\pi\)
0.105764 + 0.994391i \(0.466271\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.70156 0.655225 0.327613 0.944812i \(-0.393756\pi\)
0.327613 + 0.944812i \(0.393756\pi\)
\(18\) 0 0
\(19\) −0.701562 −0.160949 −0.0804747 0.996757i \(-0.525644\pi\)
−0.0804747 + 0.996757i \(0.525644\pi\)
\(20\) −2.70156 −0.604088
\(21\) 0 0
\(22\) −0.701562 −0.149574
\(23\) −4.70156 −0.980343 −0.490172 0.871626i \(-0.663066\pi\)
−0.490172 + 0.871626i \(0.663066\pi\)
\(24\) 0 0
\(25\) 2.29844 0.459688
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −2.70156 −0.501667 −0.250834 0.968030i \(-0.580705\pi\)
−0.250834 + 0.968030i \(0.580705\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.70156 −0.463314
\(35\) −2.70156 −0.456647
\(36\) 0 0
\(37\) 10.7016 1.75933 0.879663 0.475598i \(-0.157768\pi\)
0.879663 + 0.475598i \(0.157768\pi\)
\(38\) 0.701562 0.113808
\(39\) 0 0
\(40\) 2.70156 0.427154
\(41\) −3.40312 −0.531479 −0.265739 0.964045i \(-0.585616\pi\)
−0.265739 + 0.964045i \(0.585616\pi\)
\(42\) 0 0
\(43\) −10.1047 −1.54095 −0.770475 0.637470i \(-0.779981\pi\)
−0.770475 + 0.637470i \(0.779981\pi\)
\(44\) 0.701562 0.105764
\(45\) 0 0
\(46\) 4.70156 0.693208
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −2.29844 −0.325048
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −1.89531 −0.255564
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 2.70156 0.354732
\(59\) 14.8062 1.92761 0.963805 0.266609i \(-0.0859033\pi\)
0.963805 + 0.266609i \(0.0859033\pi\)
\(60\) 0 0
\(61\) 1.29844 0.166248 0.0831240 0.996539i \(-0.473510\pi\)
0.0831240 + 0.996539i \(0.473510\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.70156 −0.335088
\(66\) 0 0
\(67\) 5.40312 0.660097 0.330048 0.943964i \(-0.392935\pi\)
0.330048 + 0.943964i \(0.392935\pi\)
\(68\) 2.70156 0.327613
\(69\) 0 0
\(70\) 2.70156 0.322898
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −1.29844 −0.151971 −0.0759853 0.997109i \(-0.524210\pi\)
−0.0759853 + 0.997109i \(0.524210\pi\)
\(74\) −10.7016 −1.24403
\(75\) 0 0
\(76\) −0.701562 −0.0804747
\(77\) 0.701562 0.0799504
\(78\) 0 0
\(79\) 9.40312 1.05793 0.528967 0.848642i \(-0.322579\pi\)
0.528967 + 0.848642i \(0.322579\pi\)
\(80\) −2.70156 −0.302044
\(81\) 0 0
\(82\) 3.40312 0.375812
\(83\) 13.4031 1.47118 0.735592 0.677425i \(-0.236904\pi\)
0.735592 + 0.677425i \(0.236904\pi\)
\(84\) 0 0
\(85\) −7.29844 −0.791627
\(86\) 10.1047 1.08962
\(87\) 0 0
\(88\) −0.701562 −0.0747868
\(89\) 8.80625 0.933460 0.466730 0.884400i \(-0.345432\pi\)
0.466730 + 0.884400i \(0.345432\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −4.70156 −0.490172
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 1.89531 0.194455
\(96\) 0 0
\(97\) −8.80625 −0.894139 −0.447070 0.894499i \(-0.647532\pi\)
−0.447070 + 0.894499i \(0.647532\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 2.29844 0.229844
\(101\) 3.40312 0.338624 0.169312 0.985563i \(-0.445846\pi\)
0.169312 + 0.985563i \(0.445846\pi\)
\(102\) 0 0
\(103\) −3.29844 −0.325005 −0.162502 0.986708i \(-0.551957\pi\)
−0.162502 + 0.986708i \(0.551957\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 5.40312 0.522340 0.261170 0.965293i \(-0.415892\pi\)
0.261170 + 0.965293i \(0.415892\pi\)
\(108\) 0 0
\(109\) 9.29844 0.890629 0.445314 0.895374i \(-0.353092\pi\)
0.445314 + 0.895374i \(0.353092\pi\)
\(110\) 1.89531 0.180711
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −4.80625 −0.452134 −0.226067 0.974112i \(-0.572587\pi\)
−0.226067 + 0.974112i \(0.572587\pi\)
\(114\) 0 0
\(115\) 12.7016 1.18443
\(116\) −2.70156 −0.250834
\(117\) 0 0
\(118\) −14.8062 −1.36303
\(119\) 2.70156 0.247652
\(120\) 0 0
\(121\) −10.5078 −0.955256
\(122\) −1.29844 −0.117555
\(123\) 0 0
\(124\) 0 0
\(125\) 7.29844 0.652792
\(126\) 0 0
\(127\) −6.59688 −0.585378 −0.292689 0.956208i \(-0.594550\pi\)
−0.292689 + 0.956208i \(0.594550\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.70156 0.236943
\(131\) 7.29844 0.637667 0.318834 0.947811i \(-0.396709\pi\)
0.318834 + 0.947811i \(0.396709\pi\)
\(132\) 0 0
\(133\) −0.701562 −0.0608332
\(134\) −5.40312 −0.466759
\(135\) 0 0
\(136\) −2.70156 −0.231657
\(137\) 18.7016 1.59778 0.798891 0.601476i \(-0.205420\pi\)
0.798891 + 0.601476i \(0.205420\pi\)
\(138\) 0 0
\(139\) 6.80625 0.577298 0.288649 0.957435i \(-0.406794\pi\)
0.288649 + 0.957435i \(0.406794\pi\)
\(140\) −2.70156 −0.228324
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 0.701562 0.0586676
\(144\) 0 0
\(145\) 7.29844 0.606102
\(146\) 1.29844 0.107459
\(147\) 0 0
\(148\) 10.7016 0.879663
\(149\) −15.4031 −1.26187 −0.630937 0.775834i \(-0.717329\pi\)
−0.630937 + 0.775834i \(0.717329\pi\)
\(150\) 0 0
\(151\) −4.70156 −0.382608 −0.191304 0.981531i \(-0.561272\pi\)
−0.191304 + 0.981531i \(0.561272\pi\)
\(152\) 0.701562 0.0569042
\(153\) 0 0
\(154\) −0.701562 −0.0565335
\(155\) 0 0
\(156\) 0 0
\(157\) 20.1047 1.60453 0.802264 0.596969i \(-0.203628\pi\)
0.802264 + 0.596969i \(0.203628\pi\)
\(158\) −9.40312 −0.748072
\(159\) 0 0
\(160\) 2.70156 0.213577
\(161\) −4.70156 −0.370535
\(162\) 0 0
\(163\) 5.40312 0.423205 0.211603 0.977356i \(-0.432132\pi\)
0.211603 + 0.977356i \(0.432132\pi\)
\(164\) −3.40312 −0.265739
\(165\) 0 0
\(166\) −13.4031 −1.04028
\(167\) −3.29844 −0.255241 −0.127620 0.991823i \(-0.540734\pi\)
−0.127620 + 0.991823i \(0.540734\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 7.29844 0.559765
\(171\) 0 0
\(172\) −10.1047 −0.770475
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 2.29844 0.173746
\(176\) 0.701562 0.0528822
\(177\) 0 0
\(178\) −8.80625 −0.660056
\(179\) −14.8062 −1.10667 −0.553335 0.832958i \(-0.686645\pi\)
−0.553335 + 0.832958i \(0.686645\pi\)
\(180\) 0 0
\(181\) 8.80625 0.654563 0.327282 0.944927i \(-0.393867\pi\)
0.327282 + 0.944927i \(0.393867\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 4.70156 0.346604
\(185\) −28.9109 −2.12557
\(186\) 0 0
\(187\) 1.89531 0.138599
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) −1.89531 −0.137501
\(191\) −12.7016 −0.919053 −0.459526 0.888164i \(-0.651981\pi\)
−0.459526 + 0.888164i \(0.651981\pi\)
\(192\) 0 0
\(193\) 11.4031 0.820815 0.410407 0.911902i \(-0.365386\pi\)
0.410407 + 0.911902i \(0.365386\pi\)
\(194\) 8.80625 0.632252
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 3.40312 0.242463 0.121231 0.992624i \(-0.461316\pi\)
0.121231 + 0.992624i \(0.461316\pi\)
\(198\) 0 0
\(199\) 22.1047 1.56696 0.783480 0.621417i \(-0.213443\pi\)
0.783480 + 0.621417i \(0.213443\pi\)
\(200\) −2.29844 −0.162524
\(201\) 0 0
\(202\) −3.40312 −0.239443
\(203\) −2.70156 −0.189612
\(204\) 0 0
\(205\) 9.19375 0.642119
\(206\) 3.29844 0.229813
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) −0.492189 −0.0340455
\(210\) 0 0
\(211\) −24.7016 −1.70053 −0.850263 0.526358i \(-0.823557\pi\)
−0.850263 + 0.526358i \(0.823557\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −5.40312 −0.369350
\(215\) 27.2984 1.86174
\(216\) 0 0
\(217\) 0 0
\(218\) −9.29844 −0.629770
\(219\) 0 0
\(220\) −1.89531 −0.127782
\(221\) 2.70156 0.181727
\(222\) 0 0
\(223\) 9.40312 0.629680 0.314840 0.949145i \(-0.398049\pi\)
0.314840 + 0.949145i \(0.398049\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 4.80625 0.319707
\(227\) −21.4031 −1.42058 −0.710288 0.703912i \(-0.751435\pi\)
−0.710288 + 0.703912i \(0.751435\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −12.7016 −0.837516
\(231\) 0 0
\(232\) 2.70156 0.177366
\(233\) 18.2094 1.19294 0.596468 0.802637i \(-0.296570\pi\)
0.596468 + 0.802637i \(0.296570\pi\)
\(234\) 0 0
\(235\) −21.6125 −1.40984
\(236\) 14.8062 0.963805
\(237\) 0 0
\(238\) −2.70156 −0.175116
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −24.8062 −1.59791 −0.798955 0.601390i \(-0.794614\pi\)
−0.798955 + 0.601390i \(0.794614\pi\)
\(242\) 10.5078 0.675468
\(243\) 0 0
\(244\) 1.29844 0.0831240
\(245\) −2.70156 −0.172596
\(246\) 0 0
\(247\) −0.701562 −0.0446393
\(248\) 0 0
\(249\) 0 0
\(250\) −7.29844 −0.461594
\(251\) −3.50781 −0.221411 −0.110706 0.993853i \(-0.535311\pi\)
−0.110706 + 0.993853i \(0.535311\pi\)
\(252\) 0 0
\(253\) −3.29844 −0.207371
\(254\) 6.59688 0.413925
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 10.7016 0.664963
\(260\) −2.70156 −0.167544
\(261\) 0 0
\(262\) −7.29844 −0.450899
\(263\) 26.8062 1.65294 0.826472 0.562978i \(-0.190344\pi\)
0.826472 + 0.562978i \(0.190344\pi\)
\(264\) 0 0
\(265\) −5.40312 −0.331911
\(266\) 0.701562 0.0430155
\(267\) 0 0
\(268\) 5.40312 0.330048
\(269\) 4.80625 0.293042 0.146521 0.989208i \(-0.453192\pi\)
0.146521 + 0.989208i \(0.453192\pi\)
\(270\) 0 0
\(271\) 12.2094 0.741667 0.370833 0.928699i \(-0.379072\pi\)
0.370833 + 0.928699i \(0.379072\pi\)
\(272\) 2.70156 0.163806
\(273\) 0 0
\(274\) −18.7016 −1.12980
\(275\) 1.61250 0.0972372
\(276\) 0 0
\(277\) 27.6125 1.65907 0.829537 0.558452i \(-0.188604\pi\)
0.829537 + 0.558452i \(0.188604\pi\)
\(278\) −6.80625 −0.408212
\(279\) 0 0
\(280\) 2.70156 0.161449
\(281\) −12.8062 −0.763957 −0.381978 0.924171i \(-0.624757\pi\)
−0.381978 + 0.924171i \(0.624757\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −0.701562 −0.0414842
\(287\) −3.40312 −0.200880
\(288\) 0 0
\(289\) −9.70156 −0.570680
\(290\) −7.29844 −0.428579
\(291\) 0 0
\(292\) −1.29844 −0.0759853
\(293\) 12.8062 0.748149 0.374075 0.927399i \(-0.377960\pi\)
0.374075 + 0.927399i \(0.377960\pi\)
\(294\) 0 0
\(295\) −40.0000 −2.32889
\(296\) −10.7016 −0.622016
\(297\) 0 0
\(298\) 15.4031 0.892279
\(299\) −4.70156 −0.271898
\(300\) 0 0
\(301\) −10.1047 −0.582424
\(302\) 4.70156 0.270544
\(303\) 0 0
\(304\) −0.701562 −0.0402373
\(305\) −3.50781 −0.200857
\(306\) 0 0
\(307\) −6.80625 −0.388453 −0.194227 0.980957i \(-0.562220\pi\)
−0.194227 + 0.980957i \(0.562220\pi\)
\(308\) 0.701562 0.0399752
\(309\) 0 0
\(310\) 0 0
\(311\) −14.5969 −0.827713 −0.413856 0.910342i \(-0.635818\pi\)
−0.413856 + 0.910342i \(0.635818\pi\)
\(312\) 0 0
\(313\) 22.2094 1.25535 0.627674 0.778476i \(-0.284007\pi\)
0.627674 + 0.778476i \(0.284007\pi\)
\(314\) −20.1047 −1.13457
\(315\) 0 0
\(316\) 9.40312 0.528967
\(317\) −7.40312 −0.415801 −0.207900 0.978150i \(-0.566663\pi\)
−0.207900 + 0.978150i \(0.566663\pi\)
\(318\) 0 0
\(319\) −1.89531 −0.106117
\(320\) −2.70156 −0.151022
\(321\) 0 0
\(322\) 4.70156 0.262008
\(323\) −1.89531 −0.105458
\(324\) 0 0
\(325\) 2.29844 0.127494
\(326\) −5.40312 −0.299251
\(327\) 0 0
\(328\) 3.40312 0.187906
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 32.2094 1.77039 0.885194 0.465223i \(-0.154026\pi\)
0.885194 + 0.465223i \(0.154026\pi\)
\(332\) 13.4031 0.735592
\(333\) 0 0
\(334\) 3.29844 0.180482
\(335\) −14.5969 −0.797513
\(336\) 0 0
\(337\) −29.5078 −1.60739 −0.803696 0.595040i \(-0.797136\pi\)
−0.803696 + 0.595040i \(0.797136\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) −7.29844 −0.395813
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 10.1047 0.544808
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) −2.29844 −0.122857
\(351\) 0 0
\(352\) −0.701562 −0.0373934
\(353\) −20.8062 −1.10740 −0.553702 0.832715i \(-0.686785\pi\)
−0.553702 + 0.832715i \(0.686785\pi\)
\(354\) 0 0
\(355\) −21.6125 −1.14707
\(356\) 8.80625 0.466730
\(357\) 0 0
\(358\) 14.8062 0.782535
\(359\) −26.8062 −1.41478 −0.707390 0.706824i \(-0.750127\pi\)
−0.707390 + 0.706824i \(0.750127\pi\)
\(360\) 0 0
\(361\) −18.5078 −0.974095
\(362\) −8.80625 −0.462846
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) 3.50781 0.183607
\(366\) 0 0
\(367\) −29.6125 −1.54576 −0.772880 0.634552i \(-0.781184\pi\)
−0.772880 + 0.634552i \(0.781184\pi\)
\(368\) −4.70156 −0.245086
\(369\) 0 0
\(370\) 28.9109 1.50301
\(371\) 2.00000 0.103835
\(372\) 0 0
\(373\) −19.4031 −1.00466 −0.502328 0.864677i \(-0.667523\pi\)
−0.502328 + 0.864677i \(0.667523\pi\)
\(374\) −1.89531 −0.0980043
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −2.70156 −0.139138
\(378\) 0 0
\(379\) −17.6125 −0.904693 −0.452347 0.891842i \(-0.649413\pi\)
−0.452347 + 0.891842i \(0.649413\pi\)
\(380\) 1.89531 0.0972275
\(381\) 0 0
\(382\) 12.7016 0.649868
\(383\) −16.9109 −0.864108 −0.432054 0.901848i \(-0.642211\pi\)
−0.432054 + 0.901848i \(0.642211\pi\)
\(384\) 0 0
\(385\) −1.89531 −0.0965941
\(386\) −11.4031 −0.580404
\(387\) 0 0
\(388\) −8.80625 −0.447070
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) 0 0
\(391\) −12.7016 −0.642346
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −3.40312 −0.171447
\(395\) −25.4031 −1.27817
\(396\) 0 0
\(397\) 0.806248 0.0404645 0.0202322 0.999795i \(-0.493559\pi\)
0.0202322 + 0.999795i \(0.493559\pi\)
\(398\) −22.1047 −1.10801
\(399\) 0 0
\(400\) 2.29844 0.114922
\(401\) −4.80625 −0.240013 −0.120006 0.992773i \(-0.538291\pi\)
−0.120006 + 0.992773i \(0.538291\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 3.40312 0.169312
\(405\) 0 0
\(406\) 2.70156 0.134076
\(407\) 7.50781 0.372148
\(408\) 0 0
\(409\) 5.29844 0.261991 0.130995 0.991383i \(-0.458183\pi\)
0.130995 + 0.991383i \(0.458183\pi\)
\(410\) −9.19375 −0.454047
\(411\) 0 0
\(412\) −3.29844 −0.162502
\(413\) 14.8062 0.728568
\(414\) 0 0
\(415\) −36.2094 −1.77745
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 0.492189 0.0240738
\(419\) −34.1047 −1.66612 −0.833061 0.553180i \(-0.813414\pi\)
−0.833061 + 0.553180i \(0.813414\pi\)
\(420\) 0 0
\(421\) 19.6125 0.955855 0.477927 0.878399i \(-0.341388\pi\)
0.477927 + 0.878399i \(0.341388\pi\)
\(422\) 24.7016 1.20245
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) 6.20937 0.301199
\(426\) 0 0
\(427\) 1.29844 0.0628358
\(428\) 5.40312 0.261170
\(429\) 0 0
\(430\) −27.2984 −1.31645
\(431\) 12.2094 0.588105 0.294052 0.955789i \(-0.404996\pi\)
0.294052 + 0.955789i \(0.404996\pi\)
\(432\) 0 0
\(433\) 14.2094 0.682859 0.341429 0.939907i \(-0.389089\pi\)
0.341429 + 0.939907i \(0.389089\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9.29844 0.445314
\(437\) 3.29844 0.157786
\(438\) 0 0
\(439\) −0.492189 −0.0234909 −0.0117455 0.999931i \(-0.503739\pi\)
−0.0117455 + 0.999931i \(0.503739\pi\)
\(440\) 1.89531 0.0903555
\(441\) 0 0
\(442\) −2.70156 −0.128500
\(443\) −0.209373 −0.00994760 −0.00497380 0.999988i \(-0.501583\pi\)
−0.00497380 + 0.999988i \(0.501583\pi\)
\(444\) 0 0
\(445\) −23.7906 −1.12778
\(446\) −9.40312 −0.445251
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 7.89531 0.372603 0.186301 0.982493i \(-0.440350\pi\)
0.186301 + 0.982493i \(0.440350\pi\)
\(450\) 0 0
\(451\) −2.38750 −0.112423
\(452\) −4.80625 −0.226067
\(453\) 0 0
\(454\) 21.4031 1.00450
\(455\) −2.70156 −0.126651
\(456\) 0 0
\(457\) 0.596876 0.0279207 0.0139603 0.999903i \(-0.495556\pi\)
0.0139603 + 0.999903i \(0.495556\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) 12.7016 0.592213
\(461\) 20.3141 0.946120 0.473060 0.881030i \(-0.343149\pi\)
0.473060 + 0.881030i \(0.343149\pi\)
\(462\) 0 0
\(463\) −34.3141 −1.59471 −0.797355 0.603511i \(-0.793768\pi\)
−0.797355 + 0.603511i \(0.793768\pi\)
\(464\) −2.70156 −0.125417
\(465\) 0 0
\(466\) −18.2094 −0.843533
\(467\) 4.49219 0.207874 0.103937 0.994584i \(-0.466856\pi\)
0.103937 + 0.994584i \(0.466856\pi\)
\(468\) 0 0
\(469\) 5.40312 0.249493
\(470\) 21.6125 0.996910
\(471\) 0 0
\(472\) −14.8062 −0.681513
\(473\) −7.08907 −0.325956
\(474\) 0 0
\(475\) −1.61250 −0.0739864
\(476\) 2.70156 0.123826
\(477\) 0 0
\(478\) 16.0000 0.731823
\(479\) −7.50781 −0.343041 −0.171520 0.985181i \(-0.554868\pi\)
−0.171520 + 0.985181i \(0.554868\pi\)
\(480\) 0 0
\(481\) 10.7016 0.487949
\(482\) 24.8062 1.12989
\(483\) 0 0
\(484\) −10.5078 −0.477628
\(485\) 23.7906 1.08028
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −1.29844 −0.0587775
\(489\) 0 0
\(490\) 2.70156 0.122044
\(491\) −26.5969 −1.20030 −0.600150 0.799887i \(-0.704892\pi\)
−0.600150 + 0.799887i \(0.704892\pi\)
\(492\) 0 0
\(493\) −7.29844 −0.328705
\(494\) 0.701562 0.0315648
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) −1.19375 −0.0534397 −0.0267198 0.999643i \(-0.508506\pi\)
−0.0267198 + 0.999643i \(0.508506\pi\)
\(500\) 7.29844 0.326396
\(501\) 0 0
\(502\) 3.50781 0.156561
\(503\) 33.4031 1.48937 0.744686 0.667415i \(-0.232599\pi\)
0.744686 + 0.667415i \(0.232599\pi\)
\(504\) 0 0
\(505\) −9.19375 −0.409117
\(506\) 3.29844 0.146633
\(507\) 0 0
\(508\) −6.59688 −0.292689
\(509\) −38.9109 −1.72470 −0.862348 0.506315i \(-0.831007\pi\)
−0.862348 + 0.506315i \(0.831007\pi\)
\(510\) 0 0
\(511\) −1.29844 −0.0574395
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −6.00000 −0.264649
\(515\) 8.91093 0.392663
\(516\) 0 0
\(517\) 5.61250 0.246837
\(518\) −10.7016 −0.470200
\(519\) 0 0
\(520\) 2.70156 0.118471
\(521\) 1.29844 0.0568856 0.0284428 0.999595i \(-0.490945\pi\)
0.0284428 + 0.999595i \(0.490945\pi\)
\(522\) 0 0
\(523\) −33.6125 −1.46977 −0.734886 0.678191i \(-0.762764\pi\)
−0.734886 + 0.678191i \(0.762764\pi\)
\(524\) 7.29844 0.318834
\(525\) 0 0
\(526\) −26.8062 −1.16881
\(527\) 0 0
\(528\) 0 0
\(529\) −0.895314 −0.0389267
\(530\) 5.40312 0.234697
\(531\) 0 0
\(532\) −0.701562 −0.0304166
\(533\) −3.40312 −0.147406
\(534\) 0 0
\(535\) −14.5969 −0.631078
\(536\) −5.40312 −0.233379
\(537\) 0 0
\(538\) −4.80625 −0.207212
\(539\) 0.701562 0.0302184
\(540\) 0 0
\(541\) −6.70156 −0.288123 −0.144061 0.989569i \(-0.546016\pi\)
−0.144061 + 0.989569i \(0.546016\pi\)
\(542\) −12.2094 −0.524437
\(543\) 0 0
\(544\) −2.70156 −0.115829
\(545\) −25.1203 −1.07604
\(546\) 0 0
\(547\) 9.61250 0.411001 0.205500 0.978657i \(-0.434118\pi\)
0.205500 + 0.978657i \(0.434118\pi\)
\(548\) 18.7016 0.798891
\(549\) 0 0
\(550\) −1.61250 −0.0687571
\(551\) 1.89531 0.0807431
\(552\) 0 0
\(553\) 9.40312 0.399862
\(554\) −27.6125 −1.17314
\(555\) 0 0
\(556\) 6.80625 0.288649
\(557\) 24.5969 1.04220 0.521102 0.853495i \(-0.325521\pi\)
0.521102 + 0.853495i \(0.325521\pi\)
\(558\) 0 0
\(559\) −10.1047 −0.427383
\(560\) −2.70156 −0.114162
\(561\) 0 0
\(562\) 12.8062 0.540199
\(563\) −8.70156 −0.366727 −0.183364 0.983045i \(-0.558699\pi\)
−0.183364 + 0.983045i \(0.558699\pi\)
\(564\) 0 0
\(565\) 12.9844 0.546257
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) −1.19375 −0.0499569 −0.0249785 0.999688i \(-0.507952\pi\)
−0.0249785 + 0.999688i \(0.507952\pi\)
\(572\) 0.701562 0.0293338
\(573\) 0 0
\(574\) 3.40312 0.142044
\(575\) −10.8062 −0.450652
\(576\) 0 0
\(577\) −8.80625 −0.366609 −0.183304 0.983056i \(-0.558679\pi\)
−0.183304 + 0.983056i \(0.558679\pi\)
\(578\) 9.70156 0.403532
\(579\) 0 0
\(580\) 7.29844 0.303051
\(581\) 13.4031 0.556055
\(582\) 0 0
\(583\) 1.40312 0.0581115
\(584\) 1.29844 0.0537297
\(585\) 0 0
\(586\) −12.8062 −0.529021
\(587\) −35.0156 −1.44525 −0.722625 0.691241i \(-0.757064\pi\)
−0.722625 + 0.691241i \(0.757064\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 40.0000 1.64677
\(591\) 0 0
\(592\) 10.7016 0.439831
\(593\) 16.8062 0.690150 0.345075 0.938575i \(-0.387853\pi\)
0.345075 + 0.938575i \(0.387853\pi\)
\(594\) 0 0
\(595\) −7.29844 −0.299207
\(596\) −15.4031 −0.630937
\(597\) 0 0
\(598\) 4.70156 0.192261
\(599\) −11.2984 −0.461642 −0.230821 0.972996i \(-0.574141\pi\)
−0.230821 + 0.972996i \(0.574141\pi\)
\(600\) 0 0
\(601\) −15.4031 −0.628307 −0.314153 0.949372i \(-0.601721\pi\)
−0.314153 + 0.949372i \(0.601721\pi\)
\(602\) 10.1047 0.411836
\(603\) 0 0
\(604\) −4.70156 −0.191304
\(605\) 28.3875 1.15412
\(606\) 0 0
\(607\) 7.50781 0.304733 0.152366 0.988324i \(-0.451311\pi\)
0.152366 + 0.988324i \(0.451311\pi\)
\(608\) 0.701562 0.0284521
\(609\) 0 0
\(610\) 3.50781 0.142027
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 38.9109 1.57160 0.785799 0.618482i \(-0.212252\pi\)
0.785799 + 0.618482i \(0.212252\pi\)
\(614\) 6.80625 0.274678
\(615\) 0 0
\(616\) −0.701562 −0.0282667
\(617\) 30.9109 1.24443 0.622214 0.782847i \(-0.286233\pi\)
0.622214 + 0.782847i \(0.286233\pi\)
\(618\) 0 0
\(619\) 7.29844 0.293349 0.146674 0.989185i \(-0.453143\pi\)
0.146674 + 0.989185i \(0.453143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 14.5969 0.585281
\(623\) 8.80625 0.352815
\(624\) 0 0
\(625\) −31.2094 −1.24837
\(626\) −22.2094 −0.887665
\(627\) 0 0
\(628\) 20.1047 0.802264
\(629\) 28.9109 1.15275
\(630\) 0 0
\(631\) −7.50781 −0.298881 −0.149441 0.988771i \(-0.547747\pi\)
−0.149441 + 0.988771i \(0.547747\pi\)
\(632\) −9.40312 −0.374036
\(633\) 0 0
\(634\) 7.40312 0.294016
\(635\) 17.8219 0.707239
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 1.89531 0.0750362
\(639\) 0 0
\(640\) 2.70156 0.106789
\(641\) 48.8062 1.92773 0.963865 0.266390i \(-0.0858308\pi\)
0.963865 + 0.266390i \(0.0858308\pi\)
\(642\) 0 0
\(643\) 46.3141 1.82645 0.913224 0.407458i \(-0.133585\pi\)
0.913224 + 0.407458i \(0.133585\pi\)
\(644\) −4.70156 −0.185268
\(645\) 0 0
\(646\) 1.89531 0.0745701
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 10.3875 0.407745
\(650\) −2.29844 −0.0901522
\(651\) 0 0
\(652\) 5.40312 0.211603
\(653\) 9.50781 0.372069 0.186035 0.982543i \(-0.440436\pi\)
0.186035 + 0.982543i \(0.440436\pi\)
\(654\) 0 0
\(655\) −19.7172 −0.770414
\(656\) −3.40312 −0.132870
\(657\) 0 0
\(658\) −8.00000 −0.311872
\(659\) 35.0156 1.36401 0.682007 0.731345i \(-0.261107\pi\)
0.682007 + 0.731345i \(0.261107\pi\)
\(660\) 0 0
\(661\) −50.4187 −1.96106 −0.980531 0.196365i \(-0.937086\pi\)
−0.980531 + 0.196365i \(0.937086\pi\)
\(662\) −32.2094 −1.25185
\(663\) 0 0
\(664\) −13.4031 −0.520142
\(665\) 1.89531 0.0734971
\(666\) 0 0
\(667\) 12.7016 0.491806
\(668\) −3.29844 −0.127620
\(669\) 0 0
\(670\) 14.5969 0.563927
\(671\) 0.910935 0.0351662
\(672\) 0 0
\(673\) 42.9109 1.65409 0.827047 0.562132i \(-0.190019\pi\)
0.827047 + 0.562132i \(0.190019\pi\)
\(674\) 29.5078 1.13660
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) −8.80625 −0.337953
\(680\) 7.29844 0.279882
\(681\) 0 0
\(682\) 0 0
\(683\) −11.5078 −0.440334 −0.220167 0.975462i \(-0.570660\pi\)
−0.220167 + 0.975462i \(0.570660\pi\)
\(684\) 0 0
\(685\) −50.5234 −1.93040
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −10.1047 −0.385238
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) 49.6125 1.88735 0.943674 0.330876i \(-0.107344\pi\)
0.943674 + 0.330876i \(0.107344\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −18.3875 −0.697478
\(696\) 0 0
\(697\) −9.19375 −0.348238
\(698\) −30.0000 −1.13552
\(699\) 0 0
\(700\) 2.29844 0.0868728
\(701\) −3.19375 −0.120626 −0.0603132 0.998180i \(-0.519210\pi\)
−0.0603132 + 0.998180i \(0.519210\pi\)
\(702\) 0 0
\(703\) −7.50781 −0.283162
\(704\) 0.701562 0.0264411
\(705\) 0 0
\(706\) 20.8062 0.783053
\(707\) 3.40312 0.127988
\(708\) 0 0
\(709\) 51.6125 1.93835 0.969174 0.246377i \(-0.0792402\pi\)
0.969174 + 0.246377i \(0.0792402\pi\)
\(710\) 21.6125 0.811103
\(711\) 0 0
\(712\) −8.80625 −0.330028
\(713\) 0 0
\(714\) 0 0
\(715\) −1.89531 −0.0708807
\(716\) −14.8062 −0.553335
\(717\) 0 0
\(718\) 26.8062 1.00040
\(719\) 31.0156 1.15669 0.578344 0.815793i \(-0.303699\pi\)
0.578344 + 0.815793i \(0.303699\pi\)
\(720\) 0 0
\(721\) −3.29844 −0.122840
\(722\) 18.5078 0.688789
\(723\) 0 0
\(724\) 8.80625 0.327282
\(725\) −6.20937 −0.230610
\(726\) 0 0
\(727\) −22.1047 −0.819817 −0.409909 0.912127i \(-0.634439\pi\)
−0.409909 + 0.912127i \(0.634439\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) −3.50781 −0.129830
\(731\) −27.2984 −1.00967
\(732\) 0 0
\(733\) 20.5969 0.760763 0.380381 0.924830i \(-0.375793\pi\)
0.380381 + 0.924830i \(0.375793\pi\)
\(734\) 29.6125 1.09302
\(735\) 0 0
\(736\) 4.70156 0.173302
\(737\) 3.79063 0.139630
\(738\) 0 0
\(739\) 40.2094 1.47913 0.739563 0.673088i \(-0.235032\pi\)
0.739563 + 0.673088i \(0.235032\pi\)
\(740\) −28.9109 −1.06279
\(741\) 0 0
\(742\) −2.00000 −0.0734223
\(743\) −23.0156 −0.844361 −0.422181 0.906512i \(-0.638735\pi\)
−0.422181 + 0.906512i \(0.638735\pi\)
\(744\) 0 0
\(745\) 41.6125 1.52456
\(746\) 19.4031 0.710399
\(747\) 0 0
\(748\) 1.89531 0.0692995
\(749\) 5.40312 0.197426
\(750\) 0 0
\(751\) 34.8062 1.27010 0.635049 0.772472i \(-0.280980\pi\)
0.635049 + 0.772472i \(0.280980\pi\)
\(752\) 8.00000 0.291730
\(753\) 0 0
\(754\) 2.70156 0.0983851
\(755\) 12.7016 0.462257
\(756\) 0 0
\(757\) 30.4187 1.10559 0.552794 0.833318i \(-0.313562\pi\)
0.552794 + 0.833318i \(0.313562\pi\)
\(758\) 17.6125 0.639715
\(759\) 0 0
\(760\) −1.89531 −0.0687503
\(761\) −32.5969 −1.18164 −0.590818 0.806805i \(-0.701195\pi\)
−0.590818 + 0.806805i \(0.701195\pi\)
\(762\) 0 0
\(763\) 9.29844 0.336626
\(764\) −12.7016 −0.459526
\(765\) 0 0
\(766\) 16.9109 0.611017
\(767\) 14.8062 0.534623
\(768\) 0 0
\(769\) 50.9109 1.83590 0.917948 0.396702i \(-0.129845\pi\)
0.917948 + 0.396702i \(0.129845\pi\)
\(770\) 1.89531 0.0683024
\(771\) 0 0
\(772\) 11.4031 0.410407
\(773\) 28.3141 1.01839 0.509193 0.860652i \(-0.329944\pi\)
0.509193 + 0.860652i \(0.329944\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.80625 0.316126
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) 2.38750 0.0855412
\(780\) 0 0
\(781\) 5.61250 0.200831
\(782\) 12.7016 0.454207
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −54.3141 −1.93855
\(786\) 0 0
\(787\) 20.9109 0.745394 0.372697 0.927953i \(-0.378433\pi\)
0.372697 + 0.927953i \(0.378433\pi\)
\(788\) 3.40312 0.121231
\(789\) 0 0
\(790\) 25.4031 0.903803
\(791\) −4.80625 −0.170891
\(792\) 0 0
\(793\) 1.29844 0.0461089
\(794\) −0.806248 −0.0286127
\(795\) 0 0
\(796\) 22.1047 0.783480
\(797\) 40.5969 1.43802 0.719008 0.695002i \(-0.244597\pi\)
0.719008 + 0.695002i \(0.244597\pi\)
\(798\) 0 0
\(799\) 21.6125 0.764595
\(800\) −2.29844 −0.0812621
\(801\) 0 0
\(802\) 4.80625 0.169715
\(803\) −0.910935 −0.0321462
\(804\) 0 0
\(805\) 12.7016 0.447671
\(806\) 0 0
\(807\) 0 0
\(808\) −3.40312 −0.119721
\(809\) 11.6125 0.408274 0.204137 0.978942i \(-0.434561\pi\)
0.204137 + 0.978942i \(0.434561\pi\)
\(810\) 0 0
\(811\) −21.8953 −0.768848 −0.384424 0.923157i \(-0.625600\pi\)
−0.384424 + 0.923157i \(0.625600\pi\)
\(812\) −2.70156 −0.0948062
\(813\) 0 0
\(814\) −7.50781 −0.263149
\(815\) −14.5969 −0.511306
\(816\) 0 0
\(817\) 7.08907 0.248015
\(818\) −5.29844 −0.185256
\(819\) 0 0
\(820\) 9.19375 0.321060
\(821\) −28.5969 −0.998038 −0.499019 0.866591i \(-0.666306\pi\)
−0.499019 + 0.866591i \(0.666306\pi\)
\(822\) 0 0
\(823\) 5.19375 0.181043 0.0905214 0.995895i \(-0.471147\pi\)
0.0905214 + 0.995895i \(0.471147\pi\)
\(824\) 3.29844 0.114907
\(825\) 0 0
\(826\) −14.8062 −0.515175
\(827\) −52.9109 −1.83989 −0.919947 0.392043i \(-0.871768\pi\)
−0.919947 + 0.392043i \(0.871768\pi\)
\(828\) 0 0
\(829\) −36.3141 −1.26124 −0.630620 0.776092i \(-0.717199\pi\)
−0.630620 + 0.776092i \(0.717199\pi\)
\(830\) 36.2094 1.25685
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) 2.70156 0.0936036
\(834\) 0 0
\(835\) 8.91093 0.308376
\(836\) −0.492189 −0.0170227
\(837\) 0 0
\(838\) 34.1047 1.17813
\(839\) −34.8062 −1.20165 −0.600823 0.799382i \(-0.705160\pi\)
−0.600823 + 0.799382i \(0.705160\pi\)
\(840\) 0 0
\(841\) −21.7016 −0.748330
\(842\) −19.6125 −0.675891
\(843\) 0 0
\(844\) −24.7016 −0.850263
\(845\) −2.70156 −0.0929366
\(846\) 0 0
\(847\) −10.5078 −0.361053
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) −6.20937 −0.212980
\(851\) −50.3141 −1.72474
\(852\) 0 0
\(853\) −22.2094 −0.760434 −0.380217 0.924897i \(-0.624151\pi\)
−0.380217 + 0.924897i \(0.624151\pi\)
\(854\) −1.29844 −0.0444316
\(855\) 0 0
\(856\) −5.40312 −0.184675
\(857\) 16.8062 0.574091 0.287045 0.957917i \(-0.407327\pi\)
0.287045 + 0.957917i \(0.407327\pi\)
\(858\) 0 0
\(859\) 38.8062 1.32405 0.662026 0.749481i \(-0.269697\pi\)
0.662026 + 0.749481i \(0.269697\pi\)
\(860\) 27.2984 0.930869
\(861\) 0 0
\(862\) −12.2094 −0.415853
\(863\) 22.5969 0.769207 0.384603 0.923082i \(-0.374338\pi\)
0.384603 + 0.923082i \(0.374338\pi\)
\(864\) 0 0
\(865\) −48.6281 −1.65341
\(866\) −14.2094 −0.482854
\(867\) 0 0
\(868\) 0 0
\(869\) 6.59688 0.223784
\(870\) 0 0
\(871\) 5.40312 0.183078
\(872\) −9.29844 −0.314885
\(873\) 0 0
\(874\) −3.29844 −0.111571
\(875\) 7.29844 0.246732
\(876\) 0 0
\(877\) 0.387503 0.0130850 0.00654252 0.999979i \(-0.497917\pi\)
0.00654252 + 0.999979i \(0.497917\pi\)
\(878\) 0.492189 0.0166106
\(879\) 0 0
\(880\) −1.89531 −0.0638910
\(881\) 8.31406 0.280108 0.140054 0.990144i \(-0.455272\pi\)
0.140054 + 0.990144i \(0.455272\pi\)
\(882\) 0 0
\(883\) 13.8953 0.467615 0.233807 0.972283i \(-0.424882\pi\)
0.233807 + 0.972283i \(0.424882\pi\)
\(884\) 2.70156 0.0908634
\(885\) 0 0
\(886\) 0.209373 0.00703401
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) −6.59688 −0.221252
\(890\) 23.7906 0.797464
\(891\) 0 0
\(892\) 9.40312 0.314840
\(893\) −5.61250 −0.187815
\(894\) 0 0
\(895\) 40.0000 1.33705
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −7.89531 −0.263470
\(899\) 0 0
\(900\) 0 0
\(901\) 5.40312 0.180004
\(902\) 2.38750 0.0794952
\(903\) 0 0
\(904\) 4.80625 0.159853
\(905\) −23.7906 −0.790827
\(906\) 0 0
\(907\) −25.6125 −0.850449 −0.425225 0.905088i \(-0.639805\pi\)
−0.425225 + 0.905088i \(0.639805\pi\)
\(908\) −21.4031 −0.710288
\(909\) 0 0
\(910\) 2.70156 0.0895559
\(911\) −40.9109 −1.35544 −0.677720 0.735320i \(-0.737032\pi\)
−0.677720 + 0.735320i \(0.737032\pi\)
\(912\) 0 0
\(913\) 9.40312 0.311198
\(914\) −0.596876 −0.0197429
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 7.29844 0.241016
\(918\) 0 0
\(919\) −14.5969 −0.481507 −0.240753 0.970586i \(-0.577394\pi\)
−0.240753 + 0.970586i \(0.577394\pi\)
\(920\) −12.7016 −0.418758
\(921\) 0 0
\(922\) −20.3141 −0.669008
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) 24.5969 0.808740
\(926\) 34.3141 1.12763
\(927\) 0 0
\(928\) 2.70156 0.0886831
\(929\) −33.0156 −1.08321 −0.541604 0.840634i \(-0.682183\pi\)
−0.541604 + 0.840634i \(0.682183\pi\)
\(930\) 0 0
\(931\) −0.701562 −0.0229928
\(932\) 18.2094 0.596468
\(933\) 0 0
\(934\) −4.49219 −0.146989
\(935\) −5.12031 −0.167452
\(936\) 0 0
\(937\) 28.8062 0.941059 0.470530 0.882384i \(-0.344063\pi\)
0.470530 + 0.882384i \(0.344063\pi\)
\(938\) −5.40312 −0.176418
\(939\) 0 0
\(940\) −21.6125 −0.704922
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) 0 0
\(943\) 16.0000 0.521032
\(944\) 14.8062 0.481902
\(945\) 0 0
\(946\) 7.08907 0.230485
\(947\) −4.49219 −0.145977 −0.0729883 0.997333i \(-0.523254\pi\)
−0.0729883 + 0.997333i \(0.523254\pi\)
\(948\) 0 0
\(949\) −1.29844 −0.0421491
\(950\) 1.61250 0.0523163
\(951\) 0 0
\(952\) −2.70156 −0.0875581
\(953\) 39.8219 1.28996 0.644978 0.764201i \(-0.276866\pi\)
0.644978 + 0.764201i \(0.276866\pi\)
\(954\) 0 0
\(955\) 34.3141 1.11038
\(956\) −16.0000 −0.517477
\(957\) 0 0
\(958\) 7.50781 0.242566
\(959\) 18.7016 0.603905
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −10.7016 −0.345032
\(963\) 0 0
\(964\) −24.8062 −0.798955
\(965\) −30.8062 −0.991688
\(966\) 0 0
\(967\) −51.7172 −1.66311 −0.831556 0.555441i \(-0.812550\pi\)
−0.831556 + 0.555441i \(0.812550\pi\)
\(968\) 10.5078 0.337734
\(969\) 0 0
\(970\) −23.7906 −0.763871
\(971\) −54.8062 −1.75882 −0.879408 0.476069i \(-0.842061\pi\)
−0.879408 + 0.476069i \(0.842061\pi\)
\(972\) 0 0
\(973\) 6.80625 0.218198
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 1.29844 0.0415620
\(977\) 41.7172 1.33465 0.667325 0.744766i \(-0.267439\pi\)
0.667325 + 0.744766i \(0.267439\pi\)
\(978\) 0 0
\(979\) 6.17813 0.197454
\(980\) −2.70156 −0.0862982
\(981\) 0 0
\(982\) 26.5969 0.848740
\(983\) 38.1047 1.21535 0.607675 0.794186i \(-0.292102\pi\)
0.607675 + 0.794186i \(0.292102\pi\)
\(984\) 0 0
\(985\) −9.19375 −0.292937
\(986\) 7.29844 0.232430
\(987\) 0 0
\(988\) −0.701562 −0.0223197
\(989\) 47.5078 1.51066
\(990\) 0 0
\(991\) −38.5969 −1.22607 −0.613035 0.790056i \(-0.710052\pi\)
−0.613035 + 0.790056i \(0.710052\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) −59.7172 −1.89316
\(996\) 0 0
\(997\) −12.8062 −0.405578 −0.202789 0.979222i \(-0.565001\pi\)
−0.202789 + 0.979222i \(0.565001\pi\)
\(998\) 1.19375 0.0377875
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.w.1.1 2
3.2 odd 2 546.2.a.i.1.2 2
12.11 even 2 4368.2.a.bg.1.2 2
21.20 even 2 3822.2.a.bt.1.1 2
39.38 odd 2 7098.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.i.1.2 2 3.2 odd 2
1638.2.a.w.1.1 2 1.1 even 1 trivial
3822.2.a.bt.1.1 2 21.20 even 2
4368.2.a.bg.1.2 2 12.11 even 2
7098.2.a.bh.1.1 2 39.38 odd 2