Properties

Label 1638.2.a.v.1.2
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.37228 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.37228 q^{5} -1.00000 q^{7} -1.00000 q^{8} -2.37228 q^{10} -2.37228 q^{11} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -4.37228 q^{17} +1.62772 q^{19} +2.37228 q^{20} +2.37228 q^{22} -3.62772 q^{23} +0.627719 q^{25} +1.00000 q^{26} -1.00000 q^{28} -6.37228 q^{29} -4.74456 q^{31} -1.00000 q^{32} +4.37228 q^{34} -2.37228 q^{35} -4.37228 q^{37} -1.62772 q^{38} -2.37228 q^{40} -8.74456 q^{41} +11.1168 q^{43} -2.37228 q^{44} +3.62772 q^{46} -1.25544 q^{47} +1.00000 q^{49} -0.627719 q^{50} -1.00000 q^{52} -8.74456 q^{53} -5.62772 q^{55} +1.00000 q^{56} +6.37228 q^{58} -2.00000 q^{59} +5.11684 q^{61} +4.74456 q^{62} +1.00000 q^{64} -2.37228 q^{65} +9.48913 q^{67} -4.37228 q^{68} +2.37228 q^{70} +4.74456 q^{71} -8.37228 q^{73} +4.37228 q^{74} +1.62772 q^{76} +2.37228 q^{77} +4.74456 q^{79} +2.37228 q^{80} +8.74456 q^{82} +6.00000 q^{83} -10.3723 q^{85} -11.1168 q^{86} +2.37228 q^{88} +3.25544 q^{89} +1.00000 q^{91} -3.62772 q^{92} +1.25544 q^{94} +3.86141 q^{95} +7.48913 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - q^{5} - 2 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - q^{5} - 2 q^{7} - 2 q^{8} + q^{10} + q^{11} - 2 q^{13} + 2 q^{14} + 2 q^{16} - 3 q^{17} + 9 q^{19} - q^{20} - q^{22} - 13 q^{23} + 7 q^{25} + 2 q^{26} - 2 q^{28} - 7 q^{29} + 2 q^{31} - 2 q^{32} + 3 q^{34} + q^{35} - 3 q^{37} - 9 q^{38} + q^{40} - 6 q^{41} + 5 q^{43} + q^{44} + 13 q^{46} - 14 q^{47} + 2 q^{49} - 7 q^{50} - 2 q^{52} - 6 q^{53} - 17 q^{55} + 2 q^{56} + 7 q^{58} - 4 q^{59} - 7 q^{61} - 2 q^{62} + 2 q^{64} + q^{65} - 4 q^{67} - 3 q^{68} - q^{70} - 2 q^{71} - 11 q^{73} + 3 q^{74} + 9 q^{76} - q^{77} - 2 q^{79} - q^{80} + 6 q^{82} + 12 q^{83} - 15 q^{85} - 5 q^{86} - q^{88} + 18 q^{89} + 2 q^{91} - 13 q^{92} + 14 q^{94} - 21 q^{95} - 8 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.37228 1.06092 0.530458 0.847711i \(-0.322020\pi\)
0.530458 + 0.847711i \(0.322020\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.37228 −0.750181
\(11\) −2.37228 −0.715270 −0.357635 0.933862i \(-0.616417\pi\)
−0.357635 + 0.933862i \(0.616417\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) 0 0
\(19\) 1.62772 0.373424 0.186712 0.982415i \(-0.440217\pi\)
0.186712 + 0.982415i \(0.440217\pi\)
\(20\) 2.37228 0.530458
\(21\) 0 0
\(22\) 2.37228 0.505772
\(23\) −3.62772 −0.756432 −0.378216 0.925717i \(-0.623462\pi\)
−0.378216 + 0.925717i \(0.623462\pi\)
\(24\) 0 0
\(25\) 0.627719 0.125544
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −6.37228 −1.18330 −0.591651 0.806194i \(-0.701524\pi\)
−0.591651 + 0.806194i \(0.701524\pi\)
\(30\) 0 0
\(31\) −4.74456 −0.852149 −0.426074 0.904688i \(-0.640104\pi\)
−0.426074 + 0.904688i \(0.640104\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.37228 0.749840
\(35\) −2.37228 −0.400989
\(36\) 0 0
\(37\) −4.37228 −0.718799 −0.359399 0.933184i \(-0.617018\pi\)
−0.359399 + 0.933184i \(0.617018\pi\)
\(38\) −1.62772 −0.264051
\(39\) 0 0
\(40\) −2.37228 −0.375091
\(41\) −8.74456 −1.36567 −0.682836 0.730572i \(-0.739253\pi\)
−0.682836 + 0.730572i \(0.739253\pi\)
\(42\) 0 0
\(43\) 11.1168 1.69530 0.847651 0.530554i \(-0.178016\pi\)
0.847651 + 0.530554i \(0.178016\pi\)
\(44\) −2.37228 −0.357635
\(45\) 0 0
\(46\) 3.62772 0.534878
\(47\) −1.25544 −0.183124 −0.0915622 0.995799i \(-0.529186\pi\)
−0.0915622 + 0.995799i \(0.529186\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −0.627719 −0.0887728
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −8.74456 −1.20116 −0.600579 0.799565i \(-0.705063\pi\)
−0.600579 + 0.799565i \(0.705063\pi\)
\(54\) 0 0
\(55\) −5.62772 −0.758841
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 6.37228 0.836722
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) 5.11684 0.655145 0.327572 0.944826i \(-0.393769\pi\)
0.327572 + 0.944826i \(0.393769\pi\)
\(62\) 4.74456 0.602560
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.37228 −0.294245
\(66\) 0 0
\(67\) 9.48913 1.15928 0.579641 0.814872i \(-0.303193\pi\)
0.579641 + 0.814872i \(0.303193\pi\)
\(68\) −4.37228 −0.530217
\(69\) 0 0
\(70\) 2.37228 0.283542
\(71\) 4.74456 0.563076 0.281538 0.959550i \(-0.409155\pi\)
0.281538 + 0.959550i \(0.409155\pi\)
\(72\) 0 0
\(73\) −8.37228 −0.979901 −0.489951 0.871750i \(-0.662985\pi\)
−0.489951 + 0.871750i \(0.662985\pi\)
\(74\) 4.37228 0.508267
\(75\) 0 0
\(76\) 1.62772 0.186712
\(77\) 2.37228 0.270347
\(78\) 0 0
\(79\) 4.74456 0.533805 0.266903 0.963724i \(-0.414000\pi\)
0.266903 + 0.963724i \(0.414000\pi\)
\(80\) 2.37228 0.265229
\(81\) 0 0
\(82\) 8.74456 0.965675
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −10.3723 −1.12503
\(86\) −11.1168 −1.19876
\(87\) 0 0
\(88\) 2.37228 0.252886
\(89\) 3.25544 0.345076 0.172538 0.985003i \(-0.444803\pi\)
0.172538 + 0.985003i \(0.444803\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −3.62772 −0.378216
\(93\) 0 0
\(94\) 1.25544 0.129488
\(95\) 3.86141 0.396172
\(96\) 0 0
\(97\) 7.48913 0.760405 0.380203 0.924903i \(-0.375854\pi\)
0.380203 + 0.924903i \(0.375854\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 0.627719 0.0627719
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) −11.8614 −1.16874 −0.584370 0.811488i \(-0.698658\pi\)
−0.584370 + 0.811488i \(0.698658\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 8.74456 0.849347
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) 0 0
\(109\) −3.62772 −0.347472 −0.173736 0.984792i \(-0.555584\pi\)
−0.173736 + 0.984792i \(0.555584\pi\)
\(110\) 5.62772 0.536582
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −20.0000 −1.88144 −0.940721 0.339182i \(-0.889850\pi\)
−0.940721 + 0.339182i \(0.889850\pi\)
\(114\) 0 0
\(115\) −8.60597 −0.802511
\(116\) −6.37228 −0.591651
\(117\) 0 0
\(118\) 2.00000 0.184115
\(119\) 4.37228 0.400806
\(120\) 0 0
\(121\) −5.37228 −0.488389
\(122\) −5.11684 −0.463257
\(123\) 0 0
\(124\) −4.74456 −0.426074
\(125\) −10.3723 −0.927725
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.37228 0.208063
\(131\) 11.1168 0.971283 0.485642 0.874158i \(-0.338586\pi\)
0.485642 + 0.874158i \(0.338586\pi\)
\(132\) 0 0
\(133\) −1.62772 −0.141141
\(134\) −9.48913 −0.819736
\(135\) 0 0
\(136\) 4.37228 0.374920
\(137\) −1.11684 −0.0954184 −0.0477092 0.998861i \(-0.515192\pi\)
−0.0477092 + 0.998861i \(0.515192\pi\)
\(138\) 0 0
\(139\) 0.744563 0.0631530 0.0315765 0.999501i \(-0.489947\pi\)
0.0315765 + 0.999501i \(0.489947\pi\)
\(140\) −2.37228 −0.200494
\(141\) 0 0
\(142\) −4.74456 −0.398155
\(143\) 2.37228 0.198380
\(144\) 0 0
\(145\) −15.1168 −1.25539
\(146\) 8.37228 0.692895
\(147\) 0 0
\(148\) −4.37228 −0.359399
\(149\) 20.2337 1.65761 0.828804 0.559539i \(-0.189022\pi\)
0.828804 + 0.559539i \(0.189022\pi\)
\(150\) 0 0
\(151\) 19.1168 1.55571 0.777853 0.628446i \(-0.216309\pi\)
0.777853 + 0.628446i \(0.216309\pi\)
\(152\) −1.62772 −0.132025
\(153\) 0 0
\(154\) −2.37228 −0.191164
\(155\) −11.2554 −0.904058
\(156\) 0 0
\(157\) −20.3723 −1.62589 −0.812943 0.582344i \(-0.802136\pi\)
−0.812943 + 0.582344i \(0.802136\pi\)
\(158\) −4.74456 −0.377457
\(159\) 0 0
\(160\) −2.37228 −0.187545
\(161\) 3.62772 0.285904
\(162\) 0 0
\(163\) −18.2337 −1.42817 −0.714086 0.700058i \(-0.753158\pi\)
−0.714086 + 0.700058i \(0.753158\pi\)
\(164\) −8.74456 −0.682836
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) −13.1168 −1.01501 −0.507506 0.861648i \(-0.669432\pi\)
−0.507506 + 0.861648i \(0.669432\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 10.3723 0.795518
\(171\) 0 0
\(172\) 11.1168 0.847651
\(173\) 10.0000 0.760286 0.380143 0.924928i \(-0.375875\pi\)
0.380143 + 0.924928i \(0.375875\pi\)
\(174\) 0 0
\(175\) −0.627719 −0.0474511
\(176\) −2.37228 −0.178817
\(177\) 0 0
\(178\) −3.25544 −0.244005
\(179\) 2.74456 0.205138 0.102569 0.994726i \(-0.467294\pi\)
0.102569 + 0.994726i \(0.467294\pi\)
\(180\) 0 0
\(181\) −23.4891 −1.74593 −0.872966 0.487780i \(-0.837807\pi\)
−0.872966 + 0.487780i \(0.837807\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 3.62772 0.267439
\(185\) −10.3723 −0.762585
\(186\) 0 0
\(187\) 10.3723 0.758496
\(188\) −1.25544 −0.0915622
\(189\) 0 0
\(190\) −3.86141 −0.280136
\(191\) −5.11684 −0.370242 −0.185121 0.982716i \(-0.559268\pi\)
−0.185121 + 0.982716i \(0.559268\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −7.48913 −0.537688
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 11.8614 0.840833 0.420416 0.907331i \(-0.361884\pi\)
0.420416 + 0.907331i \(0.361884\pi\)
\(200\) −0.627719 −0.0443864
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) 6.37228 0.447246
\(204\) 0 0
\(205\) −20.7446 −1.44886
\(206\) 11.8614 0.826423
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −3.86141 −0.267099
\(210\) 0 0
\(211\) −17.6277 −1.21354 −0.606771 0.794877i \(-0.707536\pi\)
−0.606771 + 0.794877i \(0.707536\pi\)
\(212\) −8.74456 −0.600579
\(213\) 0 0
\(214\) 2.00000 0.136717
\(215\) 26.3723 1.79857
\(216\) 0 0
\(217\) 4.74456 0.322082
\(218\) 3.62772 0.245700
\(219\) 0 0
\(220\) −5.62772 −0.379421
\(221\) 4.37228 0.294111
\(222\) 0 0
\(223\) −17.4891 −1.17116 −0.585579 0.810615i \(-0.699133\pi\)
−0.585579 + 0.810615i \(0.699133\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 20.0000 1.33038
\(227\) −11.4891 −0.762560 −0.381280 0.924460i \(-0.624517\pi\)
−0.381280 + 0.924460i \(0.624517\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 8.60597 0.567461
\(231\) 0 0
\(232\) 6.37228 0.418361
\(233\) 1.48913 0.0975558 0.0487779 0.998810i \(-0.484467\pi\)
0.0487779 + 0.998810i \(0.484467\pi\)
\(234\) 0 0
\(235\) −2.97825 −0.194280
\(236\) −2.00000 −0.130189
\(237\) 0 0
\(238\) −4.37228 −0.283413
\(239\) 5.48913 0.355062 0.177531 0.984115i \(-0.443189\pi\)
0.177531 + 0.984115i \(0.443189\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 5.37228 0.345343
\(243\) 0 0
\(244\) 5.11684 0.327572
\(245\) 2.37228 0.151559
\(246\) 0 0
\(247\) −1.62772 −0.103569
\(248\) 4.74456 0.301280
\(249\) 0 0
\(250\) 10.3723 0.656001
\(251\) 13.6277 0.860174 0.430087 0.902787i \(-0.358483\pi\)
0.430087 + 0.902787i \(0.358483\pi\)
\(252\) 0 0
\(253\) 8.60597 0.541053
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −11.4891 −0.716672 −0.358336 0.933593i \(-0.616656\pi\)
−0.358336 + 0.933593i \(0.616656\pi\)
\(258\) 0 0
\(259\) 4.37228 0.271680
\(260\) −2.37228 −0.147123
\(261\) 0 0
\(262\) −11.1168 −0.686801
\(263\) −9.25544 −0.570715 −0.285357 0.958421i \(-0.592112\pi\)
−0.285357 + 0.958421i \(0.592112\pi\)
\(264\) 0 0
\(265\) −20.7446 −1.27433
\(266\) 1.62772 0.0998018
\(267\) 0 0
\(268\) 9.48913 0.579641
\(269\) −0.510875 −0.0311486 −0.0155743 0.999879i \(-0.504958\pi\)
−0.0155743 + 0.999879i \(0.504958\pi\)
\(270\) 0 0
\(271\) 30.2337 1.83657 0.918283 0.395925i \(-0.129576\pi\)
0.918283 + 0.395925i \(0.129576\pi\)
\(272\) −4.37228 −0.265108
\(273\) 0 0
\(274\) 1.11684 0.0674710
\(275\) −1.48913 −0.0897976
\(276\) 0 0
\(277\) 26.7446 1.60693 0.803463 0.595355i \(-0.202989\pi\)
0.803463 + 0.595355i \(0.202989\pi\)
\(278\) −0.744563 −0.0446559
\(279\) 0 0
\(280\) 2.37228 0.141771
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 14.9783 0.890365 0.445182 0.895440i \(-0.353139\pi\)
0.445182 + 0.895440i \(0.353139\pi\)
\(284\) 4.74456 0.281538
\(285\) 0 0
\(286\) −2.37228 −0.140276
\(287\) 8.74456 0.516175
\(288\) 0 0
\(289\) 2.11684 0.124520
\(290\) 15.1168 0.887692
\(291\) 0 0
\(292\) −8.37228 −0.489951
\(293\) 28.7446 1.67928 0.839638 0.543147i \(-0.182767\pi\)
0.839638 + 0.543147i \(0.182767\pi\)
\(294\) 0 0
\(295\) −4.74456 −0.276239
\(296\) 4.37228 0.254134
\(297\) 0 0
\(298\) −20.2337 −1.17211
\(299\) 3.62772 0.209796
\(300\) 0 0
\(301\) −11.1168 −0.640764
\(302\) −19.1168 −1.10005
\(303\) 0 0
\(304\) 1.62772 0.0933561
\(305\) 12.1386 0.695054
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 2.37228 0.135173
\(309\) 0 0
\(310\) 11.2554 0.639266
\(311\) −17.4891 −0.991717 −0.495859 0.868403i \(-0.665147\pi\)
−0.495859 + 0.868403i \(0.665147\pi\)
\(312\) 0 0
\(313\) 12.9783 0.733574 0.366787 0.930305i \(-0.380458\pi\)
0.366787 + 0.930305i \(0.380458\pi\)
\(314\) 20.3723 1.14967
\(315\) 0 0
\(316\) 4.74456 0.266903
\(317\) 28.9783 1.62758 0.813790 0.581159i \(-0.197400\pi\)
0.813790 + 0.581159i \(0.197400\pi\)
\(318\) 0 0
\(319\) 15.1168 0.846381
\(320\) 2.37228 0.132615
\(321\) 0 0
\(322\) −3.62772 −0.202165
\(323\) −7.11684 −0.395992
\(324\) 0 0
\(325\) −0.627719 −0.0348196
\(326\) 18.2337 1.00987
\(327\) 0 0
\(328\) 8.74456 0.482838
\(329\) 1.25544 0.0692145
\(330\) 0 0
\(331\) 16.7446 0.920364 0.460182 0.887824i \(-0.347784\pi\)
0.460182 + 0.887824i \(0.347784\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) 13.1168 0.717722
\(335\) 22.5109 1.22990
\(336\) 0 0
\(337\) −1.86141 −0.101397 −0.0506986 0.998714i \(-0.516145\pi\)
−0.0506986 + 0.998714i \(0.516145\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) −10.3723 −0.562516
\(341\) 11.2554 0.609516
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −11.1168 −0.599380
\(345\) 0 0
\(346\) −10.0000 −0.537603
\(347\) −25.7228 −1.38087 −0.690436 0.723393i \(-0.742582\pi\)
−0.690436 + 0.723393i \(0.742582\pi\)
\(348\) 0 0
\(349\) −22.7446 −1.21749 −0.608744 0.793367i \(-0.708326\pi\)
−0.608744 + 0.793367i \(0.708326\pi\)
\(350\) 0.627719 0.0335530
\(351\) 0 0
\(352\) 2.37228 0.126443
\(353\) 4.74456 0.252528 0.126264 0.991997i \(-0.459701\pi\)
0.126264 + 0.991997i \(0.459701\pi\)
\(354\) 0 0
\(355\) 11.2554 0.597377
\(356\) 3.25544 0.172538
\(357\) 0 0
\(358\) −2.74456 −0.145055
\(359\) 3.25544 0.171815 0.0859077 0.996303i \(-0.472621\pi\)
0.0859077 + 0.996303i \(0.472621\pi\)
\(360\) 0 0
\(361\) −16.3505 −0.860554
\(362\) 23.4891 1.23456
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) −19.8614 −1.03959
\(366\) 0 0
\(367\) 2.51087 0.131067 0.0655333 0.997850i \(-0.479125\pi\)
0.0655333 + 0.997850i \(0.479125\pi\)
\(368\) −3.62772 −0.189108
\(369\) 0 0
\(370\) 10.3723 0.539229
\(371\) 8.74456 0.453995
\(372\) 0 0
\(373\) −15.4891 −0.801997 −0.400998 0.916079i \(-0.631337\pi\)
−0.400998 + 0.916079i \(0.631337\pi\)
\(374\) −10.3723 −0.536338
\(375\) 0 0
\(376\) 1.25544 0.0647442
\(377\) 6.37228 0.328189
\(378\) 0 0
\(379\) −28.7446 −1.47651 −0.738255 0.674522i \(-0.764350\pi\)
−0.738255 + 0.674522i \(0.764350\pi\)
\(380\) 3.86141 0.198086
\(381\) 0 0
\(382\) 5.11684 0.261801
\(383\) −6.60597 −0.337549 −0.168775 0.985655i \(-0.553981\pi\)
−0.168775 + 0.985655i \(0.553981\pi\)
\(384\) 0 0
\(385\) 5.62772 0.286815
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 7.48913 0.380203
\(389\) −3.25544 −0.165057 −0.0825286 0.996589i \(-0.526300\pi\)
−0.0825286 + 0.996589i \(0.526300\pi\)
\(390\) 0 0
\(391\) 15.8614 0.802146
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 11.2554 0.566323
\(396\) 0 0
\(397\) 5.25544 0.263763 0.131881 0.991265i \(-0.457898\pi\)
0.131881 + 0.991265i \(0.457898\pi\)
\(398\) −11.8614 −0.594559
\(399\) 0 0
\(400\) 0.627719 0.0313859
\(401\) 35.4891 1.77224 0.886121 0.463454i \(-0.153390\pi\)
0.886121 + 0.463454i \(0.153390\pi\)
\(402\) 0 0
\(403\) 4.74456 0.236343
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −6.37228 −0.316251
\(407\) 10.3723 0.514135
\(408\) 0 0
\(409\) 25.8614 1.27876 0.639382 0.768889i \(-0.279190\pi\)
0.639382 + 0.768889i \(0.279190\pi\)
\(410\) 20.7446 1.02450
\(411\) 0 0
\(412\) −11.8614 −0.584370
\(413\) 2.00000 0.0984136
\(414\) 0 0
\(415\) 14.2337 0.698704
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 3.86141 0.188868
\(419\) 3.86141 0.188642 0.0943210 0.995542i \(-0.469932\pi\)
0.0943210 + 0.995542i \(0.469932\pi\)
\(420\) 0 0
\(421\) −7.48913 −0.364998 −0.182499 0.983206i \(-0.558419\pi\)
−0.182499 + 0.983206i \(0.558419\pi\)
\(422\) 17.6277 0.858104
\(423\) 0 0
\(424\) 8.74456 0.424674
\(425\) −2.74456 −0.133131
\(426\) 0 0
\(427\) −5.11684 −0.247621
\(428\) −2.00000 −0.0966736
\(429\) 0 0
\(430\) −26.3723 −1.27178
\(431\) 32.7446 1.57725 0.788625 0.614874i \(-0.210793\pi\)
0.788625 + 0.614874i \(0.210793\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) −4.74456 −0.227746
\(435\) 0 0
\(436\) −3.62772 −0.173736
\(437\) −5.90491 −0.282470
\(438\) 0 0
\(439\) 9.62772 0.459506 0.229753 0.973249i \(-0.426208\pi\)
0.229753 + 0.973249i \(0.426208\pi\)
\(440\) 5.62772 0.268291
\(441\) 0 0
\(442\) −4.37228 −0.207968
\(443\) −16.9783 −0.806661 −0.403331 0.915054i \(-0.632148\pi\)
−0.403331 + 0.915054i \(0.632148\pi\)
\(444\) 0 0
\(445\) 7.72281 0.366096
\(446\) 17.4891 0.828134
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 0.372281 0.0175690 0.00878452 0.999961i \(-0.497204\pi\)
0.00878452 + 0.999961i \(0.497204\pi\)
\(450\) 0 0
\(451\) 20.7446 0.976823
\(452\) −20.0000 −0.940721
\(453\) 0 0
\(454\) 11.4891 0.539211
\(455\) 2.37228 0.111214
\(456\) 0 0
\(457\) 12.2337 0.572268 0.286134 0.958190i \(-0.407630\pi\)
0.286134 + 0.958190i \(0.407630\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) −8.60597 −0.401255
\(461\) 36.6060 1.70491 0.852455 0.522801i \(-0.175113\pi\)
0.852455 + 0.522801i \(0.175113\pi\)
\(462\) 0 0
\(463\) −17.3505 −0.806348 −0.403174 0.915123i \(-0.632093\pi\)
−0.403174 + 0.915123i \(0.632093\pi\)
\(464\) −6.37228 −0.295826
\(465\) 0 0
\(466\) −1.48913 −0.0689824
\(467\) 34.0951 1.57773 0.788866 0.614565i \(-0.210668\pi\)
0.788866 + 0.614565i \(0.210668\pi\)
\(468\) 0 0
\(469\) −9.48913 −0.438167
\(470\) 2.97825 0.137376
\(471\) 0 0
\(472\) 2.00000 0.0920575
\(473\) −26.3723 −1.21260
\(474\) 0 0
\(475\) 1.02175 0.0468811
\(476\) 4.37228 0.200403
\(477\) 0 0
\(478\) −5.48913 −0.251067
\(479\) −39.3505 −1.79797 −0.898986 0.437978i \(-0.855695\pi\)
−0.898986 + 0.437978i \(0.855695\pi\)
\(480\) 0 0
\(481\) 4.37228 0.199359
\(482\) 6.00000 0.273293
\(483\) 0 0
\(484\) −5.37228 −0.244195
\(485\) 17.7663 0.806727
\(486\) 0 0
\(487\) −32.4674 −1.47124 −0.735619 0.677396i \(-0.763108\pi\)
−0.735619 + 0.677396i \(0.763108\pi\)
\(488\) −5.11684 −0.231629
\(489\) 0 0
\(490\) −2.37228 −0.107169
\(491\) −25.2554 −1.13976 −0.569881 0.821727i \(-0.693011\pi\)
−0.569881 + 0.821727i \(0.693011\pi\)
\(492\) 0 0
\(493\) 27.8614 1.25481
\(494\) 1.62772 0.0732345
\(495\) 0 0
\(496\) −4.74456 −0.213037
\(497\) −4.74456 −0.212823
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) −10.3723 −0.463863
\(501\) 0 0
\(502\) −13.6277 −0.608235
\(503\) −21.4891 −0.958153 −0.479076 0.877773i \(-0.659028\pi\)
−0.479076 + 0.877773i \(0.659028\pi\)
\(504\) 0 0
\(505\) 4.74456 0.211130
\(506\) −8.60597 −0.382582
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 26.0951 1.15664 0.578322 0.815808i \(-0.303708\pi\)
0.578322 + 0.815808i \(0.303708\pi\)
\(510\) 0 0
\(511\) 8.37228 0.370368
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 11.4891 0.506764
\(515\) −28.1386 −1.23993
\(516\) 0 0
\(517\) 2.97825 0.130983
\(518\) −4.37228 −0.192107
\(519\) 0 0
\(520\) 2.37228 0.104031
\(521\) 28.3723 1.24301 0.621506 0.783409i \(-0.286521\pi\)
0.621506 + 0.783409i \(0.286521\pi\)
\(522\) 0 0
\(523\) 2.23369 0.0976724 0.0488362 0.998807i \(-0.484449\pi\)
0.0488362 + 0.998807i \(0.484449\pi\)
\(524\) 11.1168 0.485642
\(525\) 0 0
\(526\) 9.25544 0.403556
\(527\) 20.7446 0.903647
\(528\) 0 0
\(529\) −9.83966 −0.427811
\(530\) 20.7446 0.901086
\(531\) 0 0
\(532\) −1.62772 −0.0705706
\(533\) 8.74456 0.378769
\(534\) 0 0
\(535\) −4.74456 −0.205125
\(536\) −9.48913 −0.409868
\(537\) 0 0
\(538\) 0.510875 0.0220254
\(539\) −2.37228 −0.102181
\(540\) 0 0
\(541\) 23.3505 1.00392 0.501959 0.864891i \(-0.332613\pi\)
0.501959 + 0.864891i \(0.332613\pi\)
\(542\) −30.2337 −1.29865
\(543\) 0 0
\(544\) 4.37228 0.187460
\(545\) −8.60597 −0.368639
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −1.11684 −0.0477092
\(549\) 0 0
\(550\) 1.48913 0.0634965
\(551\) −10.3723 −0.441874
\(552\) 0 0
\(553\) −4.74456 −0.201759
\(554\) −26.7446 −1.13627
\(555\) 0 0
\(556\) 0.744563 0.0315765
\(557\) −11.4891 −0.486810 −0.243405 0.969925i \(-0.578264\pi\)
−0.243405 + 0.969925i \(0.578264\pi\)
\(558\) 0 0
\(559\) −11.1168 −0.470192
\(560\) −2.37228 −0.100247
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 11.1168 0.468519 0.234260 0.972174i \(-0.424733\pi\)
0.234260 + 0.972174i \(0.424733\pi\)
\(564\) 0 0
\(565\) −47.4456 −1.99605
\(566\) −14.9783 −0.629583
\(567\) 0 0
\(568\) −4.74456 −0.199077
\(569\) −12.7446 −0.534280 −0.267140 0.963658i \(-0.586079\pi\)
−0.267140 + 0.963658i \(0.586079\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 2.37228 0.0991901
\(573\) 0 0
\(574\) −8.74456 −0.364991
\(575\) −2.27719 −0.0949653
\(576\) 0 0
\(577\) −0.510875 −0.0212680 −0.0106340 0.999943i \(-0.503385\pi\)
−0.0106340 + 0.999943i \(0.503385\pi\)
\(578\) −2.11684 −0.0880491
\(579\) 0 0
\(580\) −15.1168 −0.627693
\(581\) −6.00000 −0.248922
\(582\) 0 0
\(583\) 20.7446 0.859152
\(584\) 8.37228 0.346447
\(585\) 0 0
\(586\) −28.7446 −1.18743
\(587\) 27.4891 1.13460 0.567299 0.823512i \(-0.307988\pi\)
0.567299 + 0.823512i \(0.307988\pi\)
\(588\) 0 0
\(589\) −7.72281 −0.318213
\(590\) 4.74456 0.195331
\(591\) 0 0
\(592\) −4.37228 −0.179700
\(593\) 4.00000 0.164260 0.0821302 0.996622i \(-0.473828\pi\)
0.0821302 + 0.996622i \(0.473828\pi\)
\(594\) 0 0
\(595\) 10.3723 0.425222
\(596\) 20.2337 0.828804
\(597\) 0 0
\(598\) −3.62772 −0.148348
\(599\) 21.1168 0.862811 0.431405 0.902158i \(-0.358018\pi\)
0.431405 + 0.902158i \(0.358018\pi\)
\(600\) 0 0
\(601\) −42.4674 −1.73228 −0.866140 0.499801i \(-0.833406\pi\)
−0.866140 + 0.499801i \(0.833406\pi\)
\(602\) 11.1168 0.453089
\(603\) 0 0
\(604\) 19.1168 0.777853
\(605\) −12.7446 −0.518140
\(606\) 0 0
\(607\) 19.1168 0.775929 0.387964 0.921674i \(-0.373178\pi\)
0.387964 + 0.921674i \(0.373178\pi\)
\(608\) −1.62772 −0.0660127
\(609\) 0 0
\(610\) −12.1386 −0.491477
\(611\) 1.25544 0.0507896
\(612\) 0 0
\(613\) −6.13859 −0.247935 −0.123968 0.992286i \(-0.539562\pi\)
−0.123968 + 0.992286i \(0.539562\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) −2.37228 −0.0955819
\(617\) −9.39403 −0.378189 −0.189095 0.981959i \(-0.560555\pi\)
−0.189095 + 0.981959i \(0.560555\pi\)
\(618\) 0 0
\(619\) 11.1168 0.446824 0.223412 0.974724i \(-0.428281\pi\)
0.223412 + 0.974724i \(0.428281\pi\)
\(620\) −11.2554 −0.452029
\(621\) 0 0
\(622\) 17.4891 0.701250
\(623\) −3.25544 −0.130426
\(624\) 0 0
\(625\) −27.7446 −1.10978
\(626\) −12.9783 −0.518715
\(627\) 0 0
\(628\) −20.3723 −0.812943
\(629\) 19.1168 0.762238
\(630\) 0 0
\(631\) 16.6060 0.661073 0.330537 0.943793i \(-0.392770\pi\)
0.330537 + 0.943793i \(0.392770\pi\)
\(632\) −4.74456 −0.188729
\(633\) 0 0
\(634\) −28.9783 −1.15087
\(635\) −18.9783 −0.753129
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) −15.1168 −0.598482
\(639\) 0 0
\(640\) −2.37228 −0.0937727
\(641\) −18.2337 −0.720187 −0.360094 0.932916i \(-0.617255\pi\)
−0.360094 + 0.932916i \(0.617255\pi\)
\(642\) 0 0
\(643\) −0.138593 −0.00546559 −0.00273279 0.999996i \(-0.500870\pi\)
−0.00273279 + 0.999996i \(0.500870\pi\)
\(644\) 3.62772 0.142952
\(645\) 0 0
\(646\) 7.11684 0.280008
\(647\) −21.4891 −0.844825 −0.422412 0.906404i \(-0.638817\pi\)
−0.422412 + 0.906404i \(0.638817\pi\)
\(648\) 0 0
\(649\) 4.74456 0.186240
\(650\) 0.627719 0.0246212
\(651\) 0 0
\(652\) −18.2337 −0.714086
\(653\) −8.13859 −0.318488 −0.159244 0.987239i \(-0.550906\pi\)
−0.159244 + 0.987239i \(0.550906\pi\)
\(654\) 0 0
\(655\) 26.3723 1.03045
\(656\) −8.74456 −0.341418
\(657\) 0 0
\(658\) −1.25544 −0.0489420
\(659\) −9.25544 −0.360541 −0.180270 0.983617i \(-0.557697\pi\)
−0.180270 + 0.983617i \(0.557697\pi\)
\(660\) 0 0
\(661\) 10.7446 0.417915 0.208958 0.977925i \(-0.432993\pi\)
0.208958 + 0.977925i \(0.432993\pi\)
\(662\) −16.7446 −0.650796
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) −3.86141 −0.149739
\(666\) 0 0
\(667\) 23.1168 0.895088
\(668\) −13.1168 −0.507506
\(669\) 0 0
\(670\) −22.5109 −0.869671
\(671\) −12.1386 −0.468605
\(672\) 0 0
\(673\) 16.0951 0.620420 0.310210 0.950668i \(-0.399601\pi\)
0.310210 + 0.950668i \(0.399601\pi\)
\(674\) 1.86141 0.0716987
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −35.4891 −1.36396 −0.681979 0.731372i \(-0.738880\pi\)
−0.681979 + 0.731372i \(0.738880\pi\)
\(678\) 0 0
\(679\) −7.48913 −0.287406
\(680\) 10.3723 0.397759
\(681\) 0 0
\(682\) −11.2554 −0.430993
\(683\) −11.1168 −0.425374 −0.212687 0.977120i \(-0.568222\pi\)
−0.212687 + 0.977120i \(0.568222\pi\)
\(684\) 0 0
\(685\) −2.64947 −0.101231
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 11.1168 0.423826
\(689\) 8.74456 0.333141
\(690\) 0 0
\(691\) 45.4891 1.73049 0.865244 0.501351i \(-0.167163\pi\)
0.865244 + 0.501351i \(0.167163\pi\)
\(692\) 10.0000 0.380143
\(693\) 0 0
\(694\) 25.7228 0.976425
\(695\) 1.76631 0.0670000
\(696\) 0 0
\(697\) 38.2337 1.44820
\(698\) 22.7446 0.860894
\(699\) 0 0
\(700\) −0.627719 −0.0237255
\(701\) −31.7228 −1.19815 −0.599077 0.800691i \(-0.704466\pi\)
−0.599077 + 0.800691i \(0.704466\pi\)
\(702\) 0 0
\(703\) −7.11684 −0.268417
\(704\) −2.37228 −0.0894087
\(705\) 0 0
\(706\) −4.74456 −0.178564
\(707\) −2.00000 −0.0752177
\(708\) 0 0
\(709\) −28.5109 −1.07075 −0.535374 0.844615i \(-0.679829\pi\)
−0.535374 + 0.844615i \(0.679829\pi\)
\(710\) −11.2554 −0.422409
\(711\) 0 0
\(712\) −3.25544 −0.122003
\(713\) 17.2119 0.644592
\(714\) 0 0
\(715\) 5.62772 0.210465
\(716\) 2.74456 0.102569
\(717\) 0 0
\(718\) −3.25544 −0.121492
\(719\) 45.4891 1.69646 0.848229 0.529630i \(-0.177669\pi\)
0.848229 + 0.529630i \(0.177669\pi\)
\(720\) 0 0
\(721\) 11.8614 0.441742
\(722\) 16.3505 0.608504
\(723\) 0 0
\(724\) −23.4891 −0.872966
\(725\) −4.00000 −0.148556
\(726\) 0 0
\(727\) 46.0951 1.70957 0.854786 0.518980i \(-0.173688\pi\)
0.854786 + 0.518980i \(0.173688\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) 19.8614 0.735104
\(731\) −48.6060 −1.79776
\(732\) 0 0
\(733\) −30.7446 −1.13558 −0.567788 0.823175i \(-0.692201\pi\)
−0.567788 + 0.823175i \(0.692201\pi\)
\(734\) −2.51087 −0.0926781
\(735\) 0 0
\(736\) 3.62772 0.133719
\(737\) −22.5109 −0.829199
\(738\) 0 0
\(739\) 31.7228 1.16694 0.583471 0.812134i \(-0.301694\pi\)
0.583471 + 0.812134i \(0.301694\pi\)
\(740\) −10.3723 −0.381293
\(741\) 0 0
\(742\) −8.74456 −0.321023
\(743\) −44.4674 −1.63135 −0.815675 0.578511i \(-0.803634\pi\)
−0.815675 + 0.578511i \(0.803634\pi\)
\(744\) 0 0
\(745\) 48.0000 1.75858
\(746\) 15.4891 0.567097
\(747\) 0 0
\(748\) 10.3723 0.379248
\(749\) 2.00000 0.0730784
\(750\) 0 0
\(751\) −10.9783 −0.400602 −0.200301 0.979734i \(-0.564192\pi\)
−0.200301 + 0.979734i \(0.564192\pi\)
\(752\) −1.25544 −0.0457811
\(753\) 0 0
\(754\) −6.37228 −0.232065
\(755\) 45.3505 1.65047
\(756\) 0 0
\(757\) −43.2119 −1.57056 −0.785282 0.619138i \(-0.787482\pi\)
−0.785282 + 0.619138i \(0.787482\pi\)
\(758\) 28.7446 1.04405
\(759\) 0 0
\(760\) −3.86141 −0.140068
\(761\) 46.9783 1.70296 0.851480 0.524387i \(-0.175705\pi\)
0.851480 + 0.524387i \(0.175705\pi\)
\(762\) 0 0
\(763\) 3.62772 0.131332
\(764\) −5.11684 −0.185121
\(765\) 0 0
\(766\) 6.60597 0.238683
\(767\) 2.00000 0.0722158
\(768\) 0 0
\(769\) −19.6277 −0.707794 −0.353897 0.935284i \(-0.615144\pi\)
−0.353897 + 0.935284i \(0.615144\pi\)
\(770\) −5.62772 −0.202809
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) 34.0951 1.22632 0.613158 0.789961i \(-0.289899\pi\)
0.613158 + 0.789961i \(0.289899\pi\)
\(774\) 0 0
\(775\) −2.97825 −0.106982
\(776\) −7.48913 −0.268844
\(777\) 0 0
\(778\) 3.25544 0.116713
\(779\) −14.2337 −0.509975
\(780\) 0 0
\(781\) −11.2554 −0.402751
\(782\) −15.8614 −0.567203
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −48.3288 −1.72493
\(786\) 0 0
\(787\) 27.1168 0.966611 0.483306 0.875452i \(-0.339436\pi\)
0.483306 + 0.875452i \(0.339436\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) −11.2554 −0.400450
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) −5.11684 −0.181704
\(794\) −5.25544 −0.186508
\(795\) 0 0
\(796\) 11.8614 0.420416
\(797\) −49.7228 −1.76127 −0.880636 0.473793i \(-0.842884\pi\)
−0.880636 + 0.473793i \(0.842884\pi\)
\(798\) 0 0
\(799\) 5.48913 0.194191
\(800\) −0.627719 −0.0221932
\(801\) 0 0
\(802\) −35.4891 −1.25316
\(803\) 19.8614 0.700894
\(804\) 0 0
\(805\) 8.60597 0.303321
\(806\) −4.74456 −0.167120
\(807\) 0 0
\(808\) −2.00000 −0.0703598
\(809\) −32.7446 −1.15124 −0.575619 0.817718i \(-0.695239\pi\)
−0.575619 + 0.817718i \(0.695239\pi\)
\(810\) 0 0
\(811\) 3.11684 0.109447 0.0547236 0.998502i \(-0.482572\pi\)
0.0547236 + 0.998502i \(0.482572\pi\)
\(812\) 6.37228 0.223623
\(813\) 0 0
\(814\) −10.3723 −0.363548
\(815\) −43.2554 −1.51517
\(816\) 0 0
\(817\) 18.0951 0.633067
\(818\) −25.8614 −0.904223
\(819\) 0 0
\(820\) −20.7446 −0.724432
\(821\) 53.7228 1.87494 0.937470 0.348067i \(-0.113162\pi\)
0.937470 + 0.348067i \(0.113162\pi\)
\(822\) 0 0
\(823\) −31.7228 −1.10579 −0.552894 0.833252i \(-0.686477\pi\)
−0.552894 + 0.833252i \(0.686477\pi\)
\(824\) 11.8614 0.413212
\(825\) 0 0
\(826\) −2.00000 −0.0695889
\(827\) −34.3723 −1.19524 −0.597621 0.801779i \(-0.703887\pi\)
−0.597621 + 0.801779i \(0.703887\pi\)
\(828\) 0 0
\(829\) −24.3723 −0.846484 −0.423242 0.906017i \(-0.639108\pi\)
−0.423242 + 0.906017i \(0.639108\pi\)
\(830\) −14.2337 −0.494059
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −4.37228 −0.151491
\(834\) 0 0
\(835\) −31.1168 −1.07684
\(836\) −3.86141 −0.133550
\(837\) 0 0
\(838\) −3.86141 −0.133390
\(839\) 1.25544 0.0433425 0.0216713 0.999765i \(-0.493101\pi\)
0.0216713 + 0.999765i \(0.493101\pi\)
\(840\) 0 0
\(841\) 11.6060 0.400206
\(842\) 7.48913 0.258092
\(843\) 0 0
\(844\) −17.6277 −0.606771
\(845\) 2.37228 0.0816090
\(846\) 0 0
\(847\) 5.37228 0.184594
\(848\) −8.74456 −0.300290
\(849\) 0 0
\(850\) 2.74456 0.0941377
\(851\) 15.8614 0.543722
\(852\) 0 0
\(853\) −39.2119 −1.34259 −0.671296 0.741190i \(-0.734262\pi\)
−0.671296 + 0.741190i \(0.734262\pi\)
\(854\) 5.11684 0.175095
\(855\) 0 0
\(856\) 2.00000 0.0683586
\(857\) 0.978251 0.0334164 0.0167082 0.999860i \(-0.494681\pi\)
0.0167082 + 0.999860i \(0.494681\pi\)
\(858\) 0 0
\(859\) −0.744563 −0.0254041 −0.0127021 0.999919i \(-0.504043\pi\)
−0.0127021 + 0.999919i \(0.504043\pi\)
\(860\) 26.3723 0.899287
\(861\) 0 0
\(862\) −32.7446 −1.11528
\(863\) 18.9783 0.646027 0.323014 0.946394i \(-0.395304\pi\)
0.323014 + 0.946394i \(0.395304\pi\)
\(864\) 0 0
\(865\) 23.7228 0.806600
\(866\) −10.0000 −0.339814
\(867\) 0 0
\(868\) 4.74456 0.161041
\(869\) −11.2554 −0.381815
\(870\) 0 0
\(871\) −9.48913 −0.321527
\(872\) 3.62772 0.122850
\(873\) 0 0
\(874\) 5.90491 0.199736
\(875\) 10.3723 0.350647
\(876\) 0 0
\(877\) −52.9783 −1.78895 −0.894474 0.447120i \(-0.852450\pi\)
−0.894474 + 0.447120i \(0.852450\pi\)
\(878\) −9.62772 −0.324920
\(879\) 0 0
\(880\) −5.62772 −0.189710
\(881\) 14.1386 0.476341 0.238171 0.971223i \(-0.423452\pi\)
0.238171 + 0.971223i \(0.423452\pi\)
\(882\) 0 0
\(883\) −30.3723 −1.02211 −0.511054 0.859548i \(-0.670745\pi\)
−0.511054 + 0.859548i \(0.670745\pi\)
\(884\) 4.37228 0.147056
\(885\) 0 0
\(886\) 16.9783 0.570395
\(887\) −53.2119 −1.78668 −0.893341 0.449379i \(-0.851645\pi\)
−0.893341 + 0.449379i \(0.851645\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −7.72281 −0.258869
\(891\) 0 0
\(892\) −17.4891 −0.585579
\(893\) −2.04350 −0.0683831
\(894\) 0 0
\(895\) 6.51087 0.217635
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −0.372281 −0.0124232
\(899\) 30.2337 1.00835
\(900\) 0 0
\(901\) 38.2337 1.27375
\(902\) −20.7446 −0.690718
\(903\) 0 0
\(904\) 20.0000 0.665190
\(905\) −55.7228 −1.85229
\(906\) 0 0
\(907\) −57.9565 −1.92441 −0.962207 0.272319i \(-0.912209\pi\)
−0.962207 + 0.272319i \(0.912209\pi\)
\(908\) −11.4891 −0.381280
\(909\) 0 0
\(910\) −2.37228 −0.0786404
\(911\) −22.8832 −0.758153 −0.379076 0.925365i \(-0.623758\pi\)
−0.379076 + 0.925365i \(0.623758\pi\)
\(912\) 0 0
\(913\) −14.2337 −0.471066
\(914\) −12.2337 −0.404654
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) −11.1168 −0.367111
\(918\) 0 0
\(919\) −49.2119 −1.62335 −0.811676 0.584108i \(-0.801444\pi\)
−0.811676 + 0.584108i \(0.801444\pi\)
\(920\) 8.60597 0.283730
\(921\) 0 0
\(922\) −36.6060 −1.20555
\(923\) −4.74456 −0.156169
\(924\) 0 0
\(925\) −2.74456 −0.0902407
\(926\) 17.3505 0.570174
\(927\) 0 0
\(928\) 6.37228 0.209180
\(929\) −15.2554 −0.500515 −0.250257 0.968179i \(-0.580515\pi\)
−0.250257 + 0.968179i \(0.580515\pi\)
\(930\) 0 0
\(931\) 1.62772 0.0533463
\(932\) 1.48913 0.0487779
\(933\) 0 0
\(934\) −34.0951 −1.11563
\(935\) 24.6060 0.804701
\(936\) 0 0
\(937\) 24.5109 0.800735 0.400368 0.916355i \(-0.368882\pi\)
0.400368 + 0.916355i \(0.368882\pi\)
\(938\) 9.48913 0.309831
\(939\) 0 0
\(940\) −2.97825 −0.0971398
\(941\) −24.7446 −0.806650 −0.403325 0.915057i \(-0.632146\pi\)
−0.403325 + 0.915057i \(0.632146\pi\)
\(942\) 0 0
\(943\) 31.7228 1.03304
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 26.3723 0.857437
\(947\) 8.13859 0.264469 0.132234 0.991218i \(-0.457785\pi\)
0.132234 + 0.991218i \(0.457785\pi\)
\(948\) 0 0
\(949\) 8.37228 0.271776
\(950\) −1.02175 −0.0331499
\(951\) 0 0
\(952\) −4.37228 −0.141706
\(953\) 45.4891 1.47354 0.736769 0.676145i \(-0.236351\pi\)
0.736769 + 0.676145i \(0.236351\pi\)
\(954\) 0 0
\(955\) −12.1386 −0.392796
\(956\) 5.48913 0.177531
\(957\) 0 0
\(958\) 39.3505 1.27136
\(959\) 1.11684 0.0360648
\(960\) 0 0
\(961\) −8.48913 −0.273843
\(962\) −4.37228 −0.140968
\(963\) 0 0
\(964\) −6.00000 −0.193247
\(965\) 4.74456 0.152733
\(966\) 0 0
\(967\) 24.8832 0.800188 0.400094 0.916474i \(-0.368977\pi\)
0.400094 + 0.916474i \(0.368977\pi\)
\(968\) 5.37228 0.172672
\(969\) 0 0
\(970\) −17.7663 −0.570442
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −0.744563 −0.0238696
\(974\) 32.4674 1.04032
\(975\) 0 0
\(976\) 5.11684 0.163786
\(977\) 25.1168 0.803559 0.401780 0.915736i \(-0.368392\pi\)
0.401780 + 0.915736i \(0.368392\pi\)
\(978\) 0 0
\(979\) −7.72281 −0.246822
\(980\) 2.37228 0.0757797
\(981\) 0 0
\(982\) 25.2554 0.805933
\(983\) −35.3505 −1.12751 −0.563753 0.825943i \(-0.690643\pi\)
−0.563753 + 0.825943i \(0.690643\pi\)
\(984\) 0 0
\(985\) −14.2337 −0.453523
\(986\) −27.8614 −0.887288
\(987\) 0 0
\(988\) −1.62772 −0.0517846
\(989\) −40.3288 −1.28238
\(990\) 0 0
\(991\) 14.2337 0.452148 0.226074 0.974110i \(-0.427411\pi\)
0.226074 + 0.974110i \(0.427411\pi\)
\(992\) 4.74456 0.150640
\(993\) 0 0
\(994\) 4.74456 0.150488
\(995\) 28.1386 0.892053
\(996\) 0 0
\(997\) 20.5109 0.649586 0.324793 0.945785i \(-0.394705\pi\)
0.324793 + 0.945785i \(0.394705\pi\)
\(998\) 20.0000 0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.v.1.2 2
3.2 odd 2 1638.2.a.x.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.a.v.1.2 2 1.1 even 1 trivial
1638.2.a.x.1.1 yes 2 3.2 odd 2