Properties

Label 1638.2.a.q
Level $1638$
Weight $2$
Character orbit 1638.a
Self dual yes
Analytic conductor $13.079$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + q^{7} + q^{8} + 5 q^{11} - q^{13} + q^{14} + q^{16} + 4 q^{17} + 2 q^{19} + 5 q^{22} - 5 q^{23} - 5 q^{25} - q^{26} + q^{28} - 4 q^{29} + q^{31} + q^{32} + 4 q^{34} + 7 q^{37} + 2 q^{38} + 9 q^{41} - 12 q^{43} + 5 q^{44} - 5 q^{46} + 7 q^{47} + q^{49} - 5 q^{50} - q^{52} + 4 q^{53} + q^{56} - 4 q^{58} + 6 q^{59} + 13 q^{61} + q^{62} + q^{64} + 11 q^{67} + 4 q^{68} + 7 q^{73} + 7 q^{74} + 2 q^{76} + 5 q^{77} - 17 q^{79} + 9 q^{82} - 4 q^{83} - 12 q^{86} + 5 q^{88} - 14 q^{89} - q^{91} - 5 q^{92} + 7 q^{94} + 5 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 0 0 1.00000 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.a.q 1
3.b odd 2 1 182.2.a.b 1
12.b even 2 1 1456.2.a.b 1
15.d odd 2 1 4550.2.a.o 1
21.c even 2 1 1274.2.a.a 1
21.g even 6 2 1274.2.f.u 2
21.h odd 6 2 1274.2.f.m 2
24.f even 2 1 5824.2.a.be 1
24.h odd 2 1 5824.2.a.a 1
39.d odd 2 1 2366.2.a.o 1
39.f even 4 2 2366.2.d.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.b 1 3.b odd 2 1
1274.2.a.a 1 21.c even 2 1
1274.2.f.m 2 21.h odd 6 2
1274.2.f.u 2 21.g even 6 2
1456.2.a.b 1 12.b even 2 1
1638.2.a.q 1 1.a even 1 1 trivial
2366.2.a.o 1 39.d odd 2 1
2366.2.d.i 2 39.f even 4 2
4550.2.a.o 1 15.d odd 2 1
5824.2.a.a 1 24.h odd 2 1
5824.2.a.be 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1638))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} - 5 \) Copy content Toggle raw display
\( T_{17} - 4 \) Copy content Toggle raw display
\( T_{19} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 4 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T + 5 \) Copy content Toggle raw display
$29$ \( T + 4 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T - 7 \) Copy content Toggle raw display
$41$ \( T - 9 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T - 7 \) Copy content Toggle raw display
$53$ \( T - 4 \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T - 13 \) Copy content Toggle raw display
$67$ \( T - 11 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 7 \) Copy content Toggle raw display
$79$ \( T + 17 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 14 \) Copy content Toggle raw display
$97$ \( T - 5 \) Copy content Toggle raw display
show more
show less