Properties

Label 1638.2.a.m.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} -3.00000 q^{10} -1.00000 q^{11} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -5.00000 q^{17} -1.00000 q^{19} -3.00000 q^{20} -1.00000 q^{22} +1.00000 q^{23} +4.00000 q^{25} -1.00000 q^{26} +1.00000 q^{28} -7.00000 q^{29} -2.00000 q^{31} +1.00000 q^{32} -5.00000 q^{34} -3.00000 q^{35} +1.00000 q^{37} -1.00000 q^{38} -3.00000 q^{40} -6.00000 q^{41} -3.00000 q^{43} -1.00000 q^{44} +1.00000 q^{46} -8.00000 q^{47} +1.00000 q^{49} +4.00000 q^{50} -1.00000 q^{52} -2.00000 q^{53} +3.00000 q^{55} +1.00000 q^{56} -7.00000 q^{58} +6.00000 q^{59} -5.00000 q^{61} -2.00000 q^{62} +1.00000 q^{64} +3.00000 q^{65} +8.00000 q^{67} -5.00000 q^{68} -3.00000 q^{70} +6.00000 q^{71} -11.0000 q^{73} +1.00000 q^{74} -1.00000 q^{76} -1.00000 q^{77} -14.0000 q^{79} -3.00000 q^{80} -6.00000 q^{82} +2.00000 q^{83} +15.0000 q^{85} -3.00000 q^{86} -1.00000 q^{88} -14.0000 q^{89} -1.00000 q^{91} +1.00000 q^{92} -8.00000 q^{94} +3.00000 q^{95} -10.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −7.00000 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −3.00000 −0.457496 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −7.00000 −0.919145
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −5.00000 −0.606339
\(69\) 0 0
\(70\) −3.00000 −0.358569
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 1.00000 0.116248
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) 15.0000 1.62698
\(86\) −3.00000 −0.323498
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 1.00000 0.104257
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 9.00000 0.886796 0.443398 0.896325i \(-0.353773\pi\)
0.443398 + 0.896325i \(0.353773\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 3.00000 0.286039
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) −7.00000 −0.649934
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −5.00000 −0.458349
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −5.00000 −0.452679
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 3.00000 0.263117
\(131\) 1.00000 0.0873704 0.0436852 0.999045i \(-0.486090\pi\)
0.0436852 + 0.999045i \(0.486090\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −5.00000 −0.428746
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) −3.00000 −0.253546
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 21.0000 1.74396
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) 1.00000 0.0821995
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) 3.00000 0.244137 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) −14.0000 −1.11378
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 2.00000 0.155230
\(167\) −5.00000 −0.386912 −0.193456 0.981109i \(-0.561970\pi\)
−0.193456 + 0.981109i \(0.561970\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 15.0000 1.15045
\(171\) 0 0
\(172\) −3.00000 −0.228748
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −14.0000 −1.04934
\(179\) 8.00000 0.597948 0.298974 0.954261i \(-0.403356\pi\)
0.298974 + 0.954261i \(0.403356\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 1.00000 0.0737210
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 3.00000 0.217643
\(191\) −11.0000 −0.795932 −0.397966 0.917400i \(-0.630284\pi\)
−0.397966 + 0.917400i \(0.630284\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) −7.00000 −0.491304
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) 9.00000 0.627060
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −17.0000 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) −10.0000 −0.683586
\(215\) 9.00000 0.613795
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 15.0000 1.01593
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 5.00000 0.336336
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) −3.00000 −0.197814
\(231\) 0 0
\(232\) −7.00000 −0.459573
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) −5.00000 −0.324102
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) −10.0000 −0.642824
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 1.00000 0.0636285
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) 25.0000 1.57799 0.788993 0.614402i \(-0.210603\pi\)
0.788993 + 0.614402i \(0.210603\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) 1.00000 0.0617802
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) −1.00000 −0.0613139
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) 10.0000 0.599760
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 1.00000 0.0591312
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 21.0000 1.23316
\(291\) 0 0
\(292\) −11.0000 −0.643726
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) −18.0000 −1.04800
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) −4.00000 −0.231714
\(299\) −1.00000 −0.0578315
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 3.00000 0.172631
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 15.0000 0.858898
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 0 0
\(310\) 6.00000 0.340777
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −14.0000 −0.787562
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) 7.00000 0.391925
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 1.00000 0.0557278
\(323\) 5.00000 0.278207
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 10.0000 0.553849
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −30.0000 −1.64895 −0.824475 0.565899i \(-0.808529\pi\)
−0.824475 + 0.565899i \(0.808529\pi\)
\(332\) 2.00000 0.109764
\(333\) 0 0
\(334\) −5.00000 −0.273588
\(335\) −24.0000 −1.31126
\(336\) 0 0
\(337\) −9.00000 −0.490261 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) 15.0000 0.813489
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −3.00000 −0.161749
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −18.0000 −0.955341
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) 8.00000 0.422813
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) −1.00000 −0.0524142
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 1.00000 0.0521286
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) −2.00000 −0.103835
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 5.00000 0.258544
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) 7.00000 0.360518
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 3.00000 0.153897
\(381\) 0 0
\(382\) −11.0000 −0.562809
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 0 0
\(385\) 3.00000 0.152894
\(386\) 22.0000 1.11977
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 0 0
\(391\) −5.00000 −0.252861
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 42.0000 2.11325
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −17.0000 −0.852133
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −7.00000 −0.347404
\(407\) −1.00000 −0.0495682
\(408\) 0 0
\(409\) 39.0000 1.92843 0.964213 0.265129i \(-0.0854146\pi\)
0.964213 + 0.265129i \(0.0854146\pi\)
\(410\) 18.0000 0.888957
\(411\) 0 0
\(412\) 9.00000 0.443398
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 1.00000 0.0489116
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) −17.0000 −0.827547
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) −5.00000 −0.241967
\(428\) −10.0000 −0.483368
\(429\) 0 0
\(430\) 9.00000 0.434019
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 15.0000 0.718370
\(437\) −1.00000 −0.0478365
\(438\) 0 0
\(439\) 1.00000 0.0477274 0.0238637 0.999715i \(-0.492403\pi\)
0.0238637 + 0.999715i \(0.492403\pi\)
\(440\) 3.00000 0.143019
\(441\) 0 0
\(442\) 5.00000 0.237826
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 0 0
\(445\) 42.0000 1.99099
\(446\) −24.0000 −1.13643
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 39.0000 1.84052 0.920262 0.391303i \(-0.127976\pi\)
0.920262 + 0.391303i \(0.127976\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) −4.00000 −0.188144
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) −3.00000 −0.139876
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −33.0000 −1.53364 −0.766820 0.641862i \(-0.778162\pi\)
−0.766820 + 0.641862i \(0.778162\pi\)
\(464\) −7.00000 −0.324967
\(465\) 0 0
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 24.0000 1.10704
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 3.00000 0.137940
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) −5.00000 −0.229175
\(477\) 0 0
\(478\) 24.0000 1.09773
\(479\) 25.0000 1.14228 0.571140 0.820853i \(-0.306501\pi\)
0.571140 + 0.820853i \(0.306501\pi\)
\(480\) 0 0
\(481\) −1.00000 −0.0455961
\(482\) 6.00000 0.273293
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) 30.0000 1.36223
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −5.00000 −0.226339
\(489\) 0 0
\(490\) −3.00000 −0.135526
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) 35.0000 1.57632
\(494\) 1.00000 0.0449921
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) 25.0000 1.11580
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) −1.00000 −0.0444554
\(507\) 0 0
\(508\) 12.0000 0.532414
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) −11.0000 −0.486611
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −22.0000 −0.970378
\(515\) −27.0000 −1.18976
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 1.00000 0.0439375
\(519\) 0 0
\(520\) 3.00000 0.131559
\(521\) −19.0000 −0.832405 −0.416203 0.909272i \(-0.636639\pi\)
−0.416203 + 0.909272i \(0.636639\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 1.00000 0.0436852
\(525\) 0 0
\(526\) 0 0
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) −1.00000 −0.0433555
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 30.0000 1.29701
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) −10.0000 −0.431131
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) −33.0000 −1.41878 −0.709390 0.704816i \(-0.751030\pi\)
−0.709390 + 0.704816i \(0.751030\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) −5.00000 −0.214373
\(545\) −45.0000 −1.92759
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 3.00000 0.128154
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 7.00000 0.298210
\(552\) 0 0
\(553\) −14.0000 −0.595341
\(554\) −16.0000 −0.679775
\(555\) 0 0
\(556\) 10.0000 0.424094
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) −3.00000 −0.126773
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 25.0000 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 1.00000 0.0418121
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 21.0000 0.871978
\(581\) 2.00000 0.0829740
\(582\) 0 0
\(583\) 2.00000 0.0828315
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 2.00000 0.0824086
\(590\) −18.0000 −0.741048
\(591\) 0 0
\(592\) 1.00000 0.0410997
\(593\) −32.0000 −1.31408 −0.657041 0.753855i \(-0.728192\pi\)
−0.657041 + 0.753855i \(0.728192\pi\)
\(594\) 0 0
\(595\) 15.0000 0.614940
\(596\) −4.00000 −0.163846
\(597\) 0 0
\(598\) −1.00000 −0.0408930
\(599\) −45.0000 −1.83865 −0.919325 0.393499i \(-0.871265\pi\)
−0.919325 + 0.393499i \(0.871265\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) −3.00000 −0.122271
\(603\) 0 0
\(604\) 3.00000 0.122068
\(605\) 30.0000 1.21967
\(606\) 0 0
\(607\) −11.0000 −0.446476 −0.223238 0.974764i \(-0.571663\pi\)
−0.223238 + 0.974764i \(0.571663\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 15.0000 0.607332
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 31.0000 1.25208 0.626039 0.779792i \(-0.284675\pi\)
0.626039 + 0.779792i \(0.284675\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) 21.0000 0.845428 0.422714 0.906263i \(-0.361077\pi\)
0.422714 + 0.906263i \(0.361077\pi\)
\(618\) 0 0
\(619\) −21.0000 −0.844061 −0.422031 0.906582i \(-0.638683\pi\)
−0.422031 + 0.906582i \(0.638683\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) −8.00000 −0.320771
\(623\) −14.0000 −0.560898
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) 7.00000 0.279330
\(629\) −5.00000 −0.199363
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) −14.0000 −0.556890
\(633\) 0 0
\(634\) −26.0000 −1.03259
\(635\) −36.0000 −1.42862
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 7.00000 0.277133
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 45.0000 1.77463 0.887313 0.461167i \(-0.152569\pi\)
0.887313 + 0.461167i \(0.152569\pi\)
\(644\) 1.00000 0.0394055
\(645\) 0 0
\(646\) 5.00000 0.196722
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 10.0000 0.391630
\(653\) −45.0000 −1.76099 −0.880493 0.474059i \(-0.842788\pi\)
−0.880493 + 0.474059i \(0.842788\pi\)
\(654\) 0 0
\(655\) −3.00000 −0.117220
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −8.00000 −0.311872
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) 4.00000 0.155582 0.0777910 0.996970i \(-0.475213\pi\)
0.0777910 + 0.996970i \(0.475213\pi\)
\(662\) −30.0000 −1.16598
\(663\) 0 0
\(664\) 2.00000 0.0776151
\(665\) 3.00000 0.116335
\(666\) 0 0
\(667\) −7.00000 −0.271041
\(668\) −5.00000 −0.193456
\(669\) 0 0
\(670\) −24.0000 −0.927201
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) 27.0000 1.04077 0.520387 0.853931i \(-0.325788\pi\)
0.520387 + 0.853931i \(0.325788\pi\)
\(674\) −9.00000 −0.346667
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 15.0000 0.575224
\(681\) 0 0
\(682\) 2.00000 0.0765840
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −3.00000 −0.114374
\(689\) 2.00000 0.0761939
\(690\) 0 0
\(691\) 24.0000 0.913003 0.456502 0.889723i \(-0.349102\pi\)
0.456502 + 0.889723i \(0.349102\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −16.0000 −0.607352
\(695\) −30.0000 −1.13796
\(696\) 0 0
\(697\) 30.0000 1.13633
\(698\) −28.0000 −1.05982
\(699\) 0 0
\(700\) 4.00000 0.151186
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −1.00000 −0.0377157
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) −18.0000 −0.675528
\(711\) 0 0
\(712\) −14.0000 −0.524672
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) 8.00000 0.298974
\(717\) 0 0
\(718\) 10.0000 0.373197
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) 9.00000 0.335178
\(722\) −18.0000 −0.669891
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) −28.0000 −1.03989
\(726\) 0 0
\(727\) −43.0000 −1.59478 −0.797391 0.603463i \(-0.793787\pi\)
−0.797391 + 0.603463i \(0.793787\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) 33.0000 1.22138
\(731\) 15.0000 0.554795
\(732\) 0 0
\(733\) 8.00000 0.295487 0.147743 0.989026i \(-0.452799\pi\)
0.147743 + 0.989026i \(0.452799\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) −3.00000 −0.110282
\(741\) 0 0
\(742\) −2.00000 −0.0734223
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) 5.00000 0.182818
\(749\) −10.0000 −0.365392
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 7.00000 0.254925
\(755\) −9.00000 −0.327544
\(756\) 0 0
\(757\) 12.0000 0.436147 0.218074 0.975932i \(-0.430023\pi\)
0.218074 + 0.975932i \(0.430023\pi\)
\(758\) −10.0000 −0.363216
\(759\) 0 0
\(760\) 3.00000 0.108821
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 15.0000 0.543036
\(764\) −11.0000 −0.397966
\(765\) 0 0
\(766\) 15.0000 0.541972
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) −25.0000 −0.901523 −0.450762 0.892644i \(-0.648848\pi\)
−0.450762 + 0.892644i \(0.648848\pi\)
\(770\) 3.00000 0.108112
\(771\) 0 0
\(772\) 22.0000 0.791797
\(773\) −1.00000 −0.0359675 −0.0179838 0.999838i \(-0.505725\pi\)
−0.0179838 + 0.999838i \(0.505725\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) 22.0000 0.788738
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) −5.00000 −0.178800
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −21.0000 −0.749522
\(786\) 0 0
\(787\) −37.0000 −1.31891 −0.659454 0.751745i \(-0.729212\pi\)
−0.659454 + 0.751745i \(0.729212\pi\)
\(788\) 18.0000 0.641223
\(789\) 0 0
\(790\) 42.0000 1.49429
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 5.00000 0.177555
\(794\) 0 0
\(795\) 0 0
\(796\) −17.0000 −0.602549
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) −14.0000 −0.494357
\(803\) 11.0000 0.388182
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 2.00000 0.0704470
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −5.00000 −0.175574 −0.0877869 0.996139i \(-0.527979\pi\)
−0.0877869 + 0.996139i \(0.527979\pi\)
\(812\) −7.00000 −0.245652
\(813\) 0 0
\(814\) −1.00000 −0.0350500
\(815\) −30.0000 −1.05085
\(816\) 0 0
\(817\) 3.00000 0.104957
\(818\) 39.0000 1.36360
\(819\) 0 0
\(820\) 18.0000 0.628587
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 0 0
\(823\) 18.0000 0.627441 0.313720 0.949515i \(-0.398425\pi\)
0.313720 + 0.949515i \(0.398425\pi\)
\(824\) 9.00000 0.313530
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) −33.0000 −1.14752 −0.573761 0.819023i \(-0.694516\pi\)
−0.573761 + 0.819023i \(0.694516\pi\)
\(828\) 0 0
\(829\) 51.0000 1.77130 0.885652 0.464350i \(-0.153712\pi\)
0.885652 + 0.464350i \(0.153712\pi\)
\(830\) −6.00000 −0.208263
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −5.00000 −0.173240
\(834\) 0 0
\(835\) 15.0000 0.519096
\(836\) 1.00000 0.0345857
\(837\) 0 0
\(838\) −21.0000 −0.725433
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) −17.0000 −0.585164
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) −20.0000 −0.685994
\(851\) 1.00000 0.0342796
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) −5.00000 −0.171096
\(855\) 0 0
\(856\) −10.0000 −0.341793
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 9.00000 0.306897
\(861\) 0 0
\(862\) 30.0000 1.02180
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) −22.0000 −0.747590
\(867\) 0 0
\(868\) −2.00000 −0.0678844
\(869\) 14.0000 0.474917
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 15.0000 0.507964
\(873\) 0 0
\(874\) −1.00000 −0.0338255
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 1.00000 0.0337484
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) −15.0000 −0.504790 −0.252395 0.967624i \(-0.581218\pi\)
−0.252395 + 0.967624i \(0.581218\pi\)
\(884\) 5.00000 0.168168
\(885\) 0 0
\(886\) −6.00000 −0.201574
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 0 0
\(889\) 12.0000 0.402467
\(890\) 42.0000 1.40784
\(891\) 0 0
\(892\) −24.0000 −0.803579
\(893\) 8.00000 0.267710
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 39.0000 1.30145
\(899\) 14.0000 0.466926
\(900\) 0 0
\(901\) 10.0000 0.333148
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) −4.00000 −0.133038
\(905\) −66.0000 −2.19391
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 18.0000 0.597351
\(909\) 0 0
\(910\) 3.00000 0.0994490
\(911\) 23.0000 0.762024 0.381012 0.924570i \(-0.375576\pi\)
0.381012 + 0.924570i \(0.375576\pi\)
\(912\) 0 0
\(913\) −2.00000 −0.0661903
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) 1.00000 0.0330229
\(918\) 0 0
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) −3.00000 −0.0989071
\(921\) 0 0
\(922\) 15.0000 0.493999
\(923\) −6.00000 −0.197492
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) −33.0000 −1.08445
\(927\) 0 0
\(928\) −7.00000 −0.229786
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) −27.0000 −0.883467
\(935\) −15.0000 −0.490552
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) 24.0000 0.782794
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) −6.00000 −0.195387
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) −41.0000 −1.33232 −0.666160 0.745808i \(-0.732063\pi\)
−0.666160 + 0.745808i \(0.732063\pi\)
\(948\) 0 0
\(949\) 11.0000 0.357075
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) −5.00000 −0.162051
\(953\) 12.0000 0.388718 0.194359 0.980930i \(-0.437737\pi\)
0.194359 + 0.980930i \(0.437737\pi\)
\(954\) 0 0
\(955\) 33.0000 1.06785
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 25.0000 0.807713
\(959\) 3.00000 0.0968751
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −1.00000 −0.0322413
\(963\) 0 0
\(964\) 6.00000 0.193247
\(965\) −66.0000 −2.12462
\(966\) 0 0
\(967\) 17.0000 0.546683 0.273342 0.961917i \(-0.411871\pi\)
0.273342 + 0.961917i \(0.411871\pi\)
\(968\) −10.0000 −0.321412
\(969\) 0 0
\(970\) 30.0000 0.963242
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) −32.0000 −1.02535
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) −43.0000 −1.37569 −0.687846 0.725857i \(-0.741444\pi\)
−0.687846 + 0.725857i \(0.741444\pi\)
\(978\) 0 0
\(979\) 14.0000 0.447442
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) −4.00000 −0.127645
\(983\) −43.0000 −1.37149 −0.685744 0.727843i \(-0.740523\pi\)
−0.685744 + 0.727843i \(0.740523\pi\)
\(984\) 0 0
\(985\) −54.0000 −1.72058
\(986\) 35.0000 1.11463
\(987\) 0 0
\(988\) 1.00000 0.0318142
\(989\) −3.00000 −0.0953945
\(990\) 0 0
\(991\) 62.0000 1.96949 0.984747 0.173990i \(-0.0556660\pi\)
0.984747 + 0.173990i \(0.0556660\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 51.0000 1.61681
\(996\) 0 0
\(997\) 18.0000 0.570066 0.285033 0.958518i \(-0.407995\pi\)
0.285033 + 0.958518i \(0.407995\pi\)
\(998\) −8.00000 −0.253236
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.m.1.1 yes 1
3.2 odd 2 1638.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.a.i.1.1 1 3.2 odd 2
1638.2.a.m.1.1 yes 1 1.1 even 1 trivial