Properties

Label 1638.2.a.l.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} -3.00000 q^{10} -3.00000 q^{11} +1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +3.00000 q^{17} -7.00000 q^{19} -3.00000 q^{20} -3.00000 q^{22} -9.00000 q^{23} +4.00000 q^{25} +1.00000 q^{26} +1.00000 q^{28} +9.00000 q^{29} -4.00000 q^{31} +1.00000 q^{32} +3.00000 q^{34} -3.00000 q^{35} -7.00000 q^{37} -7.00000 q^{38} -3.00000 q^{40} -12.0000 q^{41} -1.00000 q^{43} -3.00000 q^{44} -9.00000 q^{46} +1.00000 q^{49} +4.00000 q^{50} +1.00000 q^{52} +6.00000 q^{53} +9.00000 q^{55} +1.00000 q^{56} +9.00000 q^{58} -12.0000 q^{59} -1.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -3.00000 q^{65} +14.0000 q^{67} +3.00000 q^{68} -3.00000 q^{70} -12.0000 q^{71} -7.00000 q^{73} -7.00000 q^{74} -7.00000 q^{76} -3.00000 q^{77} -10.0000 q^{79} -3.00000 q^{80} -12.0000 q^{82} +6.00000 q^{83} -9.00000 q^{85} -1.00000 q^{86} -3.00000 q^{88} +6.00000 q^{89} +1.00000 q^{91} -9.00000 q^{92} +21.0000 q^{95} -10.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −9.00000 −1.87663 −0.938315 0.345782i \(-0.887614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) −9.00000 −1.32698
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 9.00000 1.18176
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) −3.00000 −0.358569
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −7.00000 −0.813733
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) −12.0000 −1.32518
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) −1.00000 −0.107833
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −9.00000 −0.938315
\(93\) 0 0
\(94\) 0 0
\(95\) 21.0000 2.15455
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 9.00000 0.858116
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 27.0000 2.51776
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −1.00000 −0.0905357
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −3.00000 −0.263117
\(131\) 15.0000 1.31056 0.655278 0.755388i \(-0.272551\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(132\) 0 0
\(133\) −7.00000 −0.606977
\(134\) 14.0000 1.20942
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −3.00000 −0.253546
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) −3.00000 −0.250873
\(144\) 0 0
\(145\) −27.0000 −2.24223
\(146\) −7.00000 −0.579324
\(147\) 0 0
\(148\) −7.00000 −0.575396
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) −7.00000 −0.567775
\(153\) 0 0
\(154\) −3.00000 −0.241747
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) −10.0000 −0.795557
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) −9.00000 −0.709299
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −9.00000 −0.690268
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) −3.00000 −0.226134
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 1.00000 0.0741249
\(183\) 0 0
\(184\) −9.00000 −0.663489
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) −9.00000 −0.658145
\(188\) 0 0
\(189\) 0 0
\(190\) 21.0000 1.52350
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) −12.0000 −0.844317
\(203\) 9.00000 0.631676
\(204\) 0 0
\(205\) 36.0000 2.51435
\(206\) −13.0000 −0.905753
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 6.00000 0.410152
\(215\) 3.00000 0.204598
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 11.0000 0.745014
\(219\) 0 0
\(220\) 9.00000 0.606780
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 27.0000 1.78033
\(231\) 0 0
\(232\) 9.00000 0.590879
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 3.00000 0.194461
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −7.00000 −0.445399
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 27.0000 1.69748
\(254\) 2.00000 0.125491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −7.00000 −0.434959
\(260\) −3.00000 −0.186052
\(261\) 0 0
\(262\) 15.0000 0.926703
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −18.0000 −1.10573
\(266\) −7.00000 −0.429198
\(267\) 0 0
\(268\) 14.0000 0.855186
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) −3.00000 −0.177394
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −27.0000 −1.58549
\(291\) 0 0
\(292\) −7.00000 −0.409644
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 36.0000 2.09600
\(296\) −7.00000 −0.406867
\(297\) 0 0
\(298\) 12.0000 0.695141
\(299\) −9.00000 −0.520483
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) 17.0000 0.978240
\(303\) 0 0
\(304\) −7.00000 −0.401478
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) −3.00000 −0.170941
\(309\) 0 0
\(310\) 12.0000 0.681554
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) −27.0000 −1.51171
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) −9.00000 −0.501550
\(323\) −21.0000 −1.16847
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 2.00000 0.110770
\(327\) 0 0
\(328\) −12.0000 −0.662589
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) −3.00000 −0.164153
\(335\) −42.0000 −2.29471
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) −9.00000 −0.488094
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −1.00000 −0.0539164
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 36.0000 1.91068
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) 21.0000 1.09919
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −9.00000 −0.469157
\(369\) 0 0
\(370\) 21.0000 1.09174
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) −9.00000 −0.465379
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 21.0000 1.07728
\(381\) 0 0
\(382\) 15.0000 0.767467
\(383\) 21.0000 1.07305 0.536525 0.843884i \(-0.319737\pi\)
0.536525 + 0.843884i \(0.319737\pi\)
\(384\) 0 0
\(385\) 9.00000 0.458682
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −27.0000 −1.36545
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 12.0000 0.604551
\(395\) 30.0000 1.50946
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −7.00000 −0.350878
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) 9.00000 0.446663
\(407\) 21.0000 1.04093
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 36.0000 1.77791
\(411\) 0 0
\(412\) −13.0000 −0.640464
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 21.0000 1.02714
\(419\) −3.00000 −0.146560 −0.0732798 0.997311i \(-0.523347\pi\)
−0.0732798 + 0.997311i \(0.523347\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 5.00000 0.243396
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 3.00000 0.144673
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) 63.0000 3.01370
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 26.0000 1.23114
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 18.0000 0.846649
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −28.0000 −1.30978 −0.654892 0.755722i \(-0.727286\pi\)
−0.654892 + 0.755722i \(0.727286\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) 27.0000 1.25888
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 0 0
\(463\) 41.0000 1.90543 0.952716 0.303863i \(-0.0982765\pi\)
0.952716 + 0.303863i \(0.0982765\pi\)
\(464\) 9.00000 0.417815
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) 0 0
\(469\) 14.0000 0.646460
\(470\) 0 0
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) 3.00000 0.137940
\(474\) 0 0
\(475\) −28.0000 −1.28473
\(476\) 3.00000 0.137505
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) 15.0000 0.685367 0.342684 0.939451i \(-0.388664\pi\)
0.342684 + 0.939451i \(0.388664\pi\)
\(480\) 0 0
\(481\) −7.00000 −0.319173
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 30.0000 1.36223
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −1.00000 −0.0452679
\(489\) 0 0
\(490\) −3.00000 −0.135526
\(491\) −30.0000 −1.35388 −0.676941 0.736038i \(-0.736695\pi\)
−0.676941 + 0.736038i \(0.736695\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) −7.00000 −0.314945
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) −21.0000 −0.937276
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 27.0000 1.20030
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) −9.00000 −0.398918 −0.199459 0.979906i \(-0.563918\pi\)
−0.199459 + 0.979906i \(0.563918\pi\)
\(510\) 0 0
\(511\) −7.00000 −0.309662
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 39.0000 1.71855
\(516\) 0 0
\(517\) 0 0
\(518\) −7.00000 −0.307562
\(519\) 0 0
\(520\) −3.00000 −0.131559
\(521\) 33.0000 1.44576 0.722878 0.690976i \(-0.242819\pi\)
0.722878 + 0.690976i \(0.242819\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 15.0000 0.655278
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) −18.0000 −0.781870
\(531\) 0 0
\(532\) −7.00000 −0.303488
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −18.0000 −0.778208
\(536\) 14.0000 0.604708
\(537\) 0 0
\(538\) −6.00000 −0.258678
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) 3.00000 0.128624
\(545\) −33.0000 −1.41356
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −9.00000 −0.384461
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) −63.0000 −2.68389
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) −3.00000 −0.126773
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 15.0000 0.632175 0.316087 0.948730i \(-0.397631\pi\)
0.316087 + 0.948730i \(0.397631\pi\)
\(564\) 0 0
\(565\) −54.0000 −2.27180
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) −3.00000 −0.125436
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) −36.0000 −1.50130
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) −27.0000 −1.12111
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) −7.00000 −0.289662
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) 28.0000 1.15372
\(590\) 36.0000 1.48210
\(591\) 0 0
\(592\) −7.00000 −0.287698
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −9.00000 −0.368964
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) −9.00000 −0.368037
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) −1.00000 −0.0407570
\(603\) 0 0
\(604\) 17.0000 0.691720
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) 23.0000 0.933541 0.466771 0.884378i \(-0.345417\pi\)
0.466771 + 0.884378i \(0.345417\pi\)
\(608\) −7.00000 −0.283887
\(609\) 0 0
\(610\) 3.00000 0.121466
\(611\) 0 0
\(612\) 0 0
\(613\) 11.0000 0.444286 0.222143 0.975014i \(-0.428695\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) 17.0000 0.683288 0.341644 0.939829i \(-0.389016\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) 12.0000 0.481932
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 8.00000 0.319744
\(627\) 0 0
\(628\) −13.0000 −0.518756
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) 29.0000 1.15447 0.577236 0.816577i \(-0.304131\pi\)
0.577236 + 0.816577i \(0.304131\pi\)
\(632\) −10.0000 −0.397779
\(633\) 0 0
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) −27.0000 −1.06894
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −49.0000 −1.93237 −0.966186 0.257847i \(-0.916987\pi\)
−0.966186 + 0.257847i \(0.916987\pi\)
\(644\) −9.00000 −0.354650
\(645\) 0 0
\(646\) −21.0000 −0.826234
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 2.00000 0.0783260
\(653\) −9.00000 −0.352197 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(654\) 0 0
\(655\) −45.0000 −1.75830
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −10.0000 −0.388661
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 21.0000 0.814345
\(666\) 0 0
\(667\) −81.0000 −3.13633
\(668\) −3.00000 −0.116073
\(669\) 0 0
\(670\) −42.0000 −1.62260
\(671\) 3.00000 0.115814
\(672\) 0 0
\(673\) −1.00000 −0.0385472 −0.0192736 0.999814i \(-0.506135\pi\)
−0.0192736 + 0.999814i \(0.506135\pi\)
\(674\) −13.0000 −0.500741
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) −9.00000 −0.345134
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) −33.0000 −1.26271 −0.631355 0.775494i \(-0.717501\pi\)
−0.631355 + 0.775494i \(0.717501\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) −1.00000 −0.0381246
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 26.0000 0.984115
\(699\) 0 0
\(700\) 4.00000 0.151186
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 49.0000 1.84807
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 36.0000 1.35106
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 36.0000 1.34821
\(714\) 0 0
\(715\) 9.00000 0.336581
\(716\) 0 0
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) −18.0000 −0.671287 −0.335643 0.941989i \(-0.608954\pi\)
−0.335643 + 0.941989i \(0.608954\pi\)
\(720\) 0 0
\(721\) −13.0000 −0.484145
\(722\) 30.0000 1.11648
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 36.0000 1.33701
\(726\) 0 0
\(727\) −1.00000 −0.0370879 −0.0185440 0.999828i \(-0.505903\pi\)
−0.0185440 + 0.999828i \(0.505903\pi\)
\(728\) 1.00000 0.0370625
\(729\) 0 0
\(730\) 21.0000 0.777245
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) −9.00000 −0.331744
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 21.0000 0.771975
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −36.0000 −1.31894
\(746\) −4.00000 −0.146450
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 9.00000 0.327761
\(755\) −51.0000 −1.85608
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) 21.0000 0.761750
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) 11.0000 0.398227
\(764\) 15.0000 0.542681
\(765\) 0 0
\(766\) 21.0000 0.758761
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) −13.0000 −0.468792 −0.234396 0.972141i \(-0.575311\pi\)
−0.234396 + 0.972141i \(0.575311\pi\)
\(770\) 9.00000 0.324337
\(771\) 0 0
\(772\) −4.00000 −0.143963
\(773\) −33.0000 −1.18693 −0.593464 0.804861i \(-0.702240\pi\)
−0.593464 + 0.804861i \(0.702240\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 84.0000 3.00961
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) −27.0000 −0.965518
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 39.0000 1.39197
\(786\) 0 0
\(787\) −31.0000 −1.10503 −0.552515 0.833503i \(-0.686332\pi\)
−0.552515 + 0.833503i \(0.686332\pi\)
\(788\) 12.0000 0.427482
\(789\) 0 0
\(790\) 30.0000 1.06735
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) −1.00000 −0.0355110
\(794\) −34.0000 −1.20661
\(795\) 0 0
\(796\) −7.00000 −0.248108
\(797\) −36.0000 −1.27519 −0.637593 0.770374i \(-0.720070\pi\)
−0.637593 + 0.770374i \(0.720070\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) −18.0000 −0.635602
\(803\) 21.0000 0.741074
\(804\) 0 0
\(805\) 27.0000 0.951625
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) −12.0000 −0.422159
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) −43.0000 −1.50993 −0.754967 0.655763i \(-0.772347\pi\)
−0.754967 + 0.655763i \(0.772347\pi\)
\(812\) 9.00000 0.315838
\(813\) 0 0
\(814\) 21.0000 0.736050
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) −13.0000 −0.454534
\(819\) 0 0
\(820\) 36.0000 1.25717
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −13.0000 −0.452876
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −27.0000 −0.938882 −0.469441 0.882964i \(-0.655545\pi\)
−0.469441 + 0.882964i \(0.655545\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) −18.0000 −0.624789
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) 9.00000 0.311458
\(836\) 21.0000 0.726300
\(837\) 0 0
\(838\) −3.00000 −0.103633
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) 5.00000 0.172107
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 12.0000 0.411597
\(851\) 63.0000 2.15961
\(852\) 0 0
\(853\) 44.0000 1.50653 0.753266 0.657716i \(-0.228477\pi\)
0.753266 + 0.657716i \(0.228477\pi\)
\(854\) −1.00000 −0.0342193
\(855\) 0 0
\(856\) 6.00000 0.205076
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 3.00000 0.102299
\(861\) 0 0
\(862\) −18.0000 −0.613082
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 30.0000 1.01768
\(870\) 0 0
\(871\) 14.0000 0.474372
\(872\) 11.0000 0.372507
\(873\) 0 0
\(874\) 63.0000 2.13101
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) −1.00000 −0.0337484
\(879\) 0 0
\(880\) 9.00000 0.303390
\(881\) 3.00000 0.101073 0.0505363 0.998722i \(-0.483907\pi\)
0.0505363 + 0.998722i \(0.483907\pi\)
\(882\) 0 0
\(883\) −25.0000 −0.841317 −0.420658 0.907219i \(-0.638201\pi\)
−0.420658 + 0.907219i \(0.638201\pi\)
\(884\) 3.00000 0.100901
\(885\) 0 0
\(886\) −18.0000 −0.604722
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) 2.00000 0.0670778
\(890\) −18.0000 −0.603361
\(891\) 0 0
\(892\) 26.0000 0.870544
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −21.0000 −0.700779
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 36.0000 1.19867
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 18.0000 0.597351
\(909\) 0 0
\(910\) −3.00000 −0.0994490
\(911\) 33.0000 1.09334 0.546669 0.837349i \(-0.315895\pi\)
0.546669 + 0.837349i \(0.315895\pi\)
\(912\) 0 0
\(913\) −18.0000 −0.595713
\(914\) −28.0000 −0.926158
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 15.0000 0.495344
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 27.0000 0.890164
\(921\) 0 0
\(922\) −33.0000 −1.08680
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 41.0000 1.34734
\(927\) 0 0
\(928\) 9.00000 0.295439
\(929\) −12.0000 −0.393707 −0.196854 0.980433i \(-0.563072\pi\)
−0.196854 + 0.980433i \(0.563072\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) −24.0000 −0.786146
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) 27.0000 0.882994
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 14.0000 0.457116
\(939\) 0 0
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 108.000 3.51696
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) 57.0000 1.85225 0.926126 0.377215i \(-0.123118\pi\)
0.926126 + 0.377215i \(0.123118\pi\)
\(948\) 0 0
\(949\) −7.00000 −0.227230
\(950\) −28.0000 −0.908440
\(951\) 0 0
\(952\) 3.00000 0.0972306
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) −45.0000 −1.45617
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 15.0000 0.484628
\(959\) −9.00000 −0.290625
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −7.00000 −0.225689
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) −13.0000 −0.418052 −0.209026 0.977910i \(-0.567029\pi\)
−0.209026 + 0.977910i \(0.567029\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 0 0
\(970\) 30.0000 0.963242
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) −15.0000 −0.479893 −0.239946 0.970786i \(-0.577130\pi\)
−0.239946 + 0.970786i \(0.577130\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) −30.0000 −0.957338
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) 0 0
\(985\) −36.0000 −1.14706
\(986\) 27.0000 0.859855
\(987\) 0 0
\(988\) −7.00000 −0.222700
\(989\) 9.00000 0.286183
\(990\) 0 0
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) 21.0000 0.665745
\(996\) 0 0
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.l.1.1 1
3.2 odd 2 546.2.a.d.1.1 1
12.11 even 2 4368.2.a.l.1.1 1
21.20 even 2 3822.2.a.a.1.1 1
39.38 odd 2 7098.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.d.1.1 1 3.2 odd 2
1638.2.a.l.1.1 1 1.1 even 1 trivial
3822.2.a.a.1.1 1 21.20 even 2
4368.2.a.l.1.1 1 12.11 even 2
7098.2.a.w.1.1 1 39.38 odd 2