Properties

Label 1638.2.a.k.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} -4.00000 q^{10} +1.00000 q^{11} +1.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -4.00000 q^{17} +2.00000 q^{19} -4.00000 q^{20} +1.00000 q^{22} +7.00000 q^{23} +11.0000 q^{25} +1.00000 q^{26} -1.00000 q^{28} +8.00000 q^{29} +3.00000 q^{31} +1.00000 q^{32} -4.00000 q^{34} +4.00000 q^{35} +7.00000 q^{37} +2.00000 q^{38} -4.00000 q^{40} +7.00000 q^{41} -8.00000 q^{43} +1.00000 q^{44} +7.00000 q^{46} -3.00000 q^{47} +1.00000 q^{49} +11.0000 q^{50} +1.00000 q^{52} -4.00000 q^{55} -1.00000 q^{56} +8.00000 q^{58} +6.00000 q^{59} -13.0000 q^{61} +3.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} +7.00000 q^{67} -4.00000 q^{68} +4.00000 q^{70} -4.00000 q^{71} +9.00000 q^{73} +7.00000 q^{74} +2.00000 q^{76} -1.00000 q^{77} -13.0000 q^{79} -4.00000 q^{80} +7.00000 q^{82} +16.0000 q^{83} +16.0000 q^{85} -8.00000 q^{86} +1.00000 q^{88} +6.00000 q^{89} -1.00000 q^{91} +7.00000 q^{92} -3.00000 q^{94} -8.00000 q^{95} +11.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −4.00000 −1.26491
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 2.00000 0.324443
\(39\) 0 0
\(40\) −4.00000 −0.632456
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 7.00000 1.03209
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 8.00000 1.05045
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 3.00000 0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 7.00000 0.813733
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) 7.00000 0.773021
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 7.00000 0.729800
\(93\) 0 0
\(94\) −3.00000 −0.309426
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) 11.0000 1.11688 0.558440 0.829545i \(-0.311400\pi\)
0.558440 + 0.829545i \(0.311400\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 11.0000 1.10000
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −4.00000 −0.381385
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) 0 0
\(115\) −28.0000 −2.61101
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −13.0000 −1.17696
\(123\) 0 0
\(124\) 3.00000 0.269408
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) −4.00000 −0.342997
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −4.00000 −0.335673
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) −32.0000 −2.65746
\(146\) 9.00000 0.744845
\(147\) 0 0
\(148\) 7.00000 0.575396
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) −13.0000 −1.03422
\(159\) 0 0
\(160\) −4.00000 −0.316228
\(161\) −7.00000 −0.551677
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 7.00000 0.546608
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 16.0000 1.22714
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) −11.0000 −0.831522
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 13.0000 0.966282 0.483141 0.875542i \(-0.339496\pi\)
0.483141 + 0.875542i \(0.339496\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 7.00000 0.516047
\(185\) −28.0000 −2.05860
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 11.0000 0.789754
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 11.0000 0.777817
\(201\) 0 0
\(202\) −9.00000 −0.633238
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) −28.0000 −1.95560
\(206\) 10.0000 0.696733
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 32.0000 2.18238
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 9.00000 0.602685 0.301342 0.953516i \(-0.402565\pi\)
0.301342 + 0.953516i \(0.402565\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) −28.0000 −1.84627
\(231\) 0 0
\(232\) 8.00000 0.525226
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −10.0000 −0.642824
\(243\) 0 0
\(244\) −13.0000 −0.832240
\(245\) −4.00000 −0.255551
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) 3.00000 0.190500
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) 13.0000 0.815693
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) −7.00000 −0.434959
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.00000 −0.122628
\(267\) 0 0
\(268\) 7.00000 0.427593
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 11.0000 0.663325
\(276\) 0 0
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 4.00000 0.239046
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 17.0000 1.01055 0.505273 0.862960i \(-0.331392\pi\)
0.505273 + 0.862960i \(0.331392\pi\)
\(284\) −4.00000 −0.237356
\(285\) 0 0
\(286\) 1.00000 0.0591312
\(287\) −7.00000 −0.413197
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) −32.0000 −1.87910
\(291\) 0 0
\(292\) 9.00000 0.526685
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 7.00000 0.406867
\(297\) 0 0
\(298\) −15.0000 −0.868927
\(299\) 7.00000 0.404820
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) −4.00000 −0.230174
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) 52.0000 2.97751
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 0 0
\(310\) −12.0000 −0.681554
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −13.0000 −0.731307
\(317\) 13.0000 0.730153 0.365076 0.930978i \(-0.381043\pi\)
0.365076 + 0.930978i \(0.381043\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) −4.00000 −0.223607
\(321\) 0 0
\(322\) −7.00000 −0.390095
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 11.0000 0.610170
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) 7.00000 0.386510
\(329\) 3.00000 0.165395
\(330\) 0 0
\(331\) 15.0000 0.824475 0.412237 0.911077i \(-0.364747\pi\)
0.412237 + 0.911077i \(0.364747\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) 0 0
\(335\) −28.0000 −1.52980
\(336\) 0 0
\(337\) 9.00000 0.490261 0.245131 0.969490i \(-0.421169\pi\)
0.245131 + 0.969490i \(0.421169\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) 16.0000 0.867722
\(341\) 3.00000 0.162459
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) −14.0000 −0.752645
\(347\) 32.0000 1.71785 0.858925 0.512101i \(-0.171133\pi\)
0.858925 + 0.512101i \(0.171133\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −11.0000 −0.587975
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 11.0000 0.585471 0.292735 0.956193i \(-0.405434\pi\)
0.292735 + 0.956193i \(0.405434\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 13.0000 0.683265
\(363\) 0 0
\(364\) −1.00000 −0.0524142
\(365\) −36.0000 −1.88433
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 7.00000 0.364900
\(369\) 0 0
\(370\) −28.0000 −1.45565
\(371\) 0 0
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) −8.00000 −0.410391
\(381\) 0 0
\(382\) −24.0000 −1.22795
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 11.0000 0.558440
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −3.00000 −0.151138
\(395\) 52.0000 2.61640
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −8.00000 −0.399501 −0.199750 0.979847i \(-0.564013\pi\)
−0.199750 + 0.979847i \(0.564013\pi\)
\(402\) 0 0
\(403\) 3.00000 0.149441
\(404\) −9.00000 −0.447767
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 7.00000 0.346977
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) −28.0000 −1.38282
\(411\) 0 0
\(412\) 10.0000 0.492665
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −64.0000 −3.14164
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 2.00000 0.0978232
\(419\) 19.0000 0.928211 0.464105 0.885780i \(-0.346376\pi\)
0.464105 + 0.885780i \(0.346376\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 22.0000 1.07094
\(423\) 0 0
\(424\) 0 0
\(425\) −44.0000 −2.13431
\(426\) 0 0
\(427\) 13.0000 0.629114
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 32.0000 1.54318
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) −3.00000 −0.144005
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 14.0000 0.669711
\(438\) 0 0
\(439\) −2.00000 −0.0954548 −0.0477274 0.998860i \(-0.515198\pi\)
−0.0477274 + 0.998860i \(0.515198\pi\)
\(440\) −4.00000 −0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −24.0000 −1.13771
\(446\) 9.00000 0.426162
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 7.00000 0.329617
\(452\) −1.00000 −0.0470360
\(453\) 0 0
\(454\) −28.0000 −1.31411
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −20.0000 −0.934539
\(459\) 0 0
\(460\) −28.0000 −1.30551
\(461\) −16.0000 −0.745194 −0.372597 0.927993i \(-0.621533\pi\)
−0.372597 + 0.927993i \(0.621533\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 8.00000 0.371391
\(465\) 0 0
\(466\) 13.0000 0.602213
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 22.0000 1.00943
\(476\) 4.00000 0.183340
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 7.00000 0.319173
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) −44.0000 −1.99794
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) −13.0000 −0.588482
\(489\) 0 0
\(490\) −4.00000 −0.180702
\(491\) −40.0000 −1.80517 −0.902587 0.430507i \(-0.858335\pi\)
−0.902587 + 0.430507i \(0.858335\pi\)
\(492\) 0 0
\(493\) −32.0000 −1.44121
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 3.00000 0.134704
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 37.0000 1.65635 0.828174 0.560471i \(-0.189380\pi\)
0.828174 + 0.560471i \(0.189380\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) −17.0000 −0.758747
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 7.00000 0.311188
\(507\) 0 0
\(508\) 13.0000 0.576782
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −9.00000 −0.398137
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) −40.0000 −1.76261
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) −7.00000 −0.307562
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) −15.0000 −0.655904 −0.327952 0.944694i \(-0.606358\pi\)
−0.327952 + 0.944694i \(0.606358\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) 7.00000 0.303204
\(534\) 0 0
\(535\) 48.0000 2.07522
\(536\) 7.00000 0.302354
\(537\) 0 0
\(538\) −3.00000 −0.129339
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) −3.00000 −0.128861
\(543\) 0 0
\(544\) −4.00000 −0.171499
\(545\) −56.0000 −2.39878
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 14.0000 0.598050
\(549\) 0 0
\(550\) 11.0000 0.469042
\(551\) 16.0000 0.681623
\(552\) 0 0
\(553\) 13.0000 0.552816
\(554\) −14.0000 −0.594803
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) −31.0000 −1.31351 −0.656756 0.754103i \(-0.728072\pi\)
−0.656756 + 0.754103i \(0.728072\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 20.0000 0.843649
\(563\) 31.0000 1.30649 0.653247 0.757145i \(-0.273406\pi\)
0.653247 + 0.757145i \(0.273406\pi\)
\(564\) 0 0
\(565\) 4.00000 0.168281
\(566\) 17.0000 0.714563
\(567\) 0 0
\(568\) −4.00000 −0.167836
\(569\) −29.0000 −1.21574 −0.607872 0.794035i \(-0.707976\pi\)
−0.607872 + 0.794035i \(0.707976\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 1.00000 0.0418121
\(573\) 0 0
\(574\) −7.00000 −0.292174
\(575\) 77.0000 3.21112
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) −32.0000 −1.32873
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) 0 0
\(584\) 9.00000 0.372423
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) 7.00000 0.287698
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) −15.0000 −0.614424
\(597\) 0 0
\(598\) 7.00000 0.286251
\(599\) −27.0000 −1.10319 −0.551595 0.834112i \(-0.685981\pi\)
−0.551595 + 0.834112i \(0.685981\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 8.00000 0.326056
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) 40.0000 1.62623
\(606\) 0 0
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) 2.00000 0.0811107
\(609\) 0 0
\(610\) 52.0000 2.10542
\(611\) −3.00000 −0.121367
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 14.0000 0.562708 0.281354 0.959604i \(-0.409217\pi\)
0.281354 + 0.959604i \(0.409217\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) 30.0000 1.20289
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) 7.00000 0.279330
\(629\) −28.0000 −1.11643
\(630\) 0 0
\(631\) 22.0000 0.875806 0.437903 0.899022i \(-0.355721\pi\)
0.437903 + 0.899022i \(0.355721\pi\)
\(632\) −13.0000 −0.517112
\(633\) 0 0
\(634\) 13.0000 0.516296
\(635\) −52.0000 −2.06356
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) −4.00000 −0.158114
\(641\) 25.0000 0.987441 0.493720 0.869621i \(-0.335637\pi\)
0.493720 + 0.869621i \(0.335637\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) −7.00000 −0.275839
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) 6.00000 0.235521
\(650\) 11.0000 0.431455
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.00000 0.273304
\(657\) 0 0
\(658\) 3.00000 0.116952
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) −8.00000 −0.311164 −0.155582 0.987823i \(-0.549725\pi\)
−0.155582 + 0.987823i \(0.549725\pi\)
\(662\) 15.0000 0.582992
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 56.0000 2.16833
\(668\) 0 0
\(669\) 0 0
\(670\) −28.0000 −1.08173
\(671\) −13.0000 −0.501859
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) 9.00000 0.346667
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −13.0000 −0.499631 −0.249815 0.968294i \(-0.580370\pi\)
−0.249815 + 0.968294i \(0.580370\pi\)
\(678\) 0 0
\(679\) −11.0000 −0.422141
\(680\) 16.0000 0.613572
\(681\) 0 0
\(682\) 3.00000 0.114876
\(683\) −31.0000 −1.18618 −0.593091 0.805135i \(-0.702093\pi\)
−0.593091 + 0.805135i \(0.702093\pi\)
\(684\) 0 0
\(685\) −56.0000 −2.13965
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) 0 0
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −14.0000 −0.532200
\(693\) 0 0
\(694\) 32.0000 1.21470
\(695\) 80.0000 3.03457
\(696\) 0 0
\(697\) −28.0000 −1.06058
\(698\) 2.00000 0.0757011
\(699\) 0 0
\(700\) −11.0000 −0.415761
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 11.0000 0.413990
\(707\) 9.00000 0.338480
\(708\) 0 0
\(709\) −51.0000 −1.91535 −0.957673 0.287860i \(-0.907056\pi\)
−0.957673 + 0.287860i \(0.907056\pi\)
\(710\) 16.0000 0.600469
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 21.0000 0.786456
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) 0 0
\(719\) 22.0000 0.820462 0.410231 0.911982i \(-0.365448\pi\)
0.410231 + 0.911982i \(0.365448\pi\)
\(720\) 0 0
\(721\) −10.0000 −0.372419
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) 13.0000 0.483141
\(725\) 88.0000 3.26824
\(726\) 0 0
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) −36.0000 −1.33242
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) −12.0000 −0.443230 −0.221615 0.975134i \(-0.571133\pi\)
−0.221615 + 0.975134i \(0.571133\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) 7.00000 0.258023
\(737\) 7.00000 0.257848
\(738\) 0 0
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) −28.0000 −1.02930
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0000 1.61420 0.807102 0.590412i \(-0.201035\pi\)
0.807102 + 0.590412i \(0.201035\pi\)
\(744\) 0 0
\(745\) 60.0000 2.19823
\(746\) −32.0000 −1.17160
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 37.0000 1.35015 0.675075 0.737749i \(-0.264111\pi\)
0.675075 + 0.737749i \(0.264111\pi\)
\(752\) −3.00000 −0.109399
\(753\) 0 0
\(754\) 8.00000 0.291343
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) −8.00000 −0.290573
\(759\) 0 0
\(760\) −8.00000 −0.290191
\(761\) −1.00000 −0.0362500 −0.0181250 0.999836i \(-0.505770\pi\)
−0.0181250 + 0.999836i \(0.505770\pi\)
\(762\) 0 0
\(763\) −14.0000 −0.506834
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) −21.0000 −0.758761
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) 25.0000 0.901523 0.450762 0.892644i \(-0.351152\pi\)
0.450762 + 0.892644i \(0.351152\pi\)
\(770\) 4.00000 0.144150
\(771\) 0 0
\(772\) −4.00000 −0.143963
\(773\) −38.0000 −1.36677 −0.683383 0.730061i \(-0.739492\pi\)
−0.683383 + 0.730061i \(0.739492\pi\)
\(774\) 0 0
\(775\) 33.0000 1.18539
\(776\) 11.0000 0.394877
\(777\) 0 0
\(778\) −8.00000 −0.286814
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) −28.0000 −1.00128
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −28.0000 −0.999363
\(786\) 0 0
\(787\) −40.0000 −1.42585 −0.712923 0.701242i \(-0.752629\pi\)
−0.712923 + 0.701242i \(0.752629\pi\)
\(788\) −3.00000 −0.106871
\(789\) 0 0
\(790\) 52.0000 1.85008
\(791\) 1.00000 0.0355559
\(792\) 0 0
\(793\) −13.0000 −0.461644
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −21.0000 −0.743858 −0.371929 0.928261i \(-0.621304\pi\)
−0.371929 + 0.928261i \(0.621304\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 11.0000 0.388909
\(801\) 0 0
\(802\) −8.00000 −0.282490
\(803\) 9.00000 0.317603
\(804\) 0 0
\(805\) 28.0000 0.986870
\(806\) 3.00000 0.105670
\(807\) 0 0
\(808\) −9.00000 −0.316619
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −8.00000 −0.280745
\(813\) 0 0
\(814\) 7.00000 0.245350
\(815\) −48.0000 −1.68137
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) −28.0000 −0.977802
\(821\) −46.0000 −1.60541 −0.802706 0.596376i \(-0.796607\pi\)
−0.802706 + 0.596376i \(0.796607\pi\)
\(822\) 0 0
\(823\) −35.0000 −1.22002 −0.610012 0.792392i \(-0.708835\pi\)
−0.610012 + 0.792392i \(0.708835\pi\)
\(824\) 10.0000 0.348367
\(825\) 0 0
\(826\) −6.00000 −0.208767
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) −64.0000 −2.22147
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) 19.0000 0.656344
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) −11.0000 −0.379085
\(843\) 0 0
\(844\) 22.0000 0.757271
\(845\) −4.00000 −0.137604
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) 0 0
\(850\) −44.0000 −1.50919
\(851\) 49.0000 1.67970
\(852\) 0 0
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 13.0000 0.444851
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 32.0000 1.09119
\(861\) 0 0
\(862\) −2.00000 −0.0681203
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 56.0000 1.90406
\(866\) −18.0000 −0.611665
\(867\) 0 0
\(868\) −3.00000 −0.101827
\(869\) −13.0000 −0.440995
\(870\) 0 0
\(871\) 7.00000 0.237186
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) 14.0000 0.473557
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 29.0000 0.979260 0.489630 0.871930i \(-0.337132\pi\)
0.489630 + 0.871930i \(0.337132\pi\)
\(878\) −2.00000 −0.0674967
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 0 0
\(887\) −14.0000 −0.470074 −0.235037 0.971986i \(-0.575521\pi\)
−0.235037 + 0.971986i \(0.575521\pi\)
\(888\) 0 0
\(889\) −13.0000 −0.436006
\(890\) −24.0000 −0.804482
\(891\) 0 0
\(892\) 9.00000 0.301342
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) −72.0000 −2.40669
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 7.00000 0.233075
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) −52.0000 −1.72854
\(906\) 0 0
\(907\) 54.0000 1.79304 0.896520 0.443003i \(-0.146087\pi\)
0.896520 + 0.443003i \(0.146087\pi\)
\(908\) −28.0000 −0.929213
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) −20.0000 −0.660819
\(917\) 0 0
\(918\) 0 0
\(919\) −37.0000 −1.22052 −0.610259 0.792202i \(-0.708935\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(920\) −28.0000 −0.923133
\(921\) 0 0
\(922\) −16.0000 −0.526932
\(923\) −4.00000 −0.131662
\(924\) 0 0
\(925\) 77.0000 2.53174
\(926\) −12.0000 −0.394344
\(927\) 0 0
\(928\) 8.00000 0.262613
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) 13.0000 0.425829
\(933\) 0 0
\(934\) 20.0000 0.654420
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) −48.0000 −1.56809 −0.784046 0.620703i \(-0.786847\pi\)
−0.784046 + 0.620703i \(0.786847\pi\)
\(938\) −7.00000 −0.228558
\(939\) 0 0
\(940\) 12.0000 0.391397
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) 49.0000 1.59566
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) 8.00000 0.259965 0.129983 0.991516i \(-0.458508\pi\)
0.129983 + 0.991516i \(0.458508\pi\)
\(948\) 0 0
\(949\) 9.00000 0.292152
\(950\) 22.0000 0.713774
\(951\) 0 0
\(952\) 4.00000 0.129641
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) 96.0000 3.10649
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) 0 0
\(959\) −14.0000 −0.452084
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 7.00000 0.225689
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 18.0000 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(968\) −10.0000 −0.321412
\(969\) 0 0
\(970\) −44.0000 −1.41275
\(971\) 45.0000 1.44412 0.722059 0.691831i \(-0.243196\pi\)
0.722059 + 0.691831i \(0.243196\pi\)
\(972\) 0 0
\(973\) 20.0000 0.641171
\(974\) 26.0000 0.833094
\(975\) 0 0
\(976\) −13.0000 −0.416120
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) −4.00000 −0.127775
\(981\) 0 0
\(982\) −40.0000 −1.27645
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) −32.0000 −1.01909
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) −56.0000 −1.78070
\(990\) 0 0
\(991\) −33.0000 −1.04828 −0.524140 0.851632i \(-0.675613\pi\)
−0.524140 + 0.851632i \(0.675613\pi\)
\(992\) 3.00000 0.0952501
\(993\) 0 0
\(994\) 4.00000 0.126872
\(995\) −64.0000 −2.02894
\(996\) 0 0
\(997\) 31.0000 0.981780 0.490890 0.871222i \(-0.336672\pi\)
0.490890 + 0.871222i \(0.336672\pi\)
\(998\) 37.0000 1.17121
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.k.1.1 1
3.2 odd 2 182.2.a.a.1.1 1
12.11 even 2 1456.2.a.e.1.1 1
15.14 odd 2 4550.2.a.t.1.1 1
21.2 odd 6 1274.2.f.n.1145.1 2
21.5 even 6 1274.2.f.t.1145.1 2
21.11 odd 6 1274.2.f.n.79.1 2
21.17 even 6 1274.2.f.t.79.1 2
21.20 even 2 1274.2.a.b.1.1 1
24.5 odd 2 5824.2.a.g.1.1 1
24.11 even 2 5824.2.a.w.1.1 1
39.5 even 4 2366.2.d.g.337.2 2
39.8 even 4 2366.2.d.g.337.1 2
39.38 odd 2 2366.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.a.a.1.1 1 3.2 odd 2
1274.2.a.b.1.1 1 21.20 even 2
1274.2.f.n.79.1 2 21.11 odd 6
1274.2.f.n.1145.1 2 21.2 odd 6
1274.2.f.t.79.1 2 21.17 even 6
1274.2.f.t.1145.1 2 21.5 even 6
1456.2.a.e.1.1 1 12.11 even 2
1638.2.a.k.1.1 1 1.1 even 1 trivial
2366.2.a.m.1.1 1 39.38 odd 2
2366.2.d.g.337.1 2 39.8 even 4
2366.2.d.g.337.2 2 39.5 even 4
4550.2.a.t.1.1 1 15.14 odd 2
5824.2.a.g.1.1 1 24.5 odd 2
5824.2.a.w.1.1 1 24.11 even 2