Properties

Label 1638.2.a.c.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +2.00000 q^{10} -4.00000 q^{11} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +6.00000 q^{17} -2.00000 q^{20} +4.00000 q^{22} -8.00000 q^{23} -1.00000 q^{25} +1.00000 q^{26} -1.00000 q^{28} +10.0000 q^{29} -8.00000 q^{31} -1.00000 q^{32} -6.00000 q^{34} +2.00000 q^{35} +6.00000 q^{37} +2.00000 q^{40} +6.00000 q^{41} +4.00000 q^{43} -4.00000 q^{44} +8.00000 q^{46} +8.00000 q^{47} +1.00000 q^{49} +1.00000 q^{50} -1.00000 q^{52} -6.00000 q^{53} +8.00000 q^{55} +1.00000 q^{56} -10.0000 q^{58} -8.00000 q^{59} +10.0000 q^{61} +8.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} +4.00000 q^{67} +6.00000 q^{68} -2.00000 q^{70} +8.00000 q^{71} +2.00000 q^{73} -6.00000 q^{74} +4.00000 q^{77} +8.00000 q^{79} -2.00000 q^{80} -6.00000 q^{82} -12.0000 q^{85} -4.00000 q^{86} +4.00000 q^{88} -18.0000 q^{89} +1.00000 q^{91} -8.00000 q^{92} -8.00000 q^{94} +2.00000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −8.00000 −0.762770
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) 10.0000 0.928477
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −2.00000 −0.175412
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) −20.0000 −1.66091
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −4.00000 −0.322329
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 12.0000 0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 18.0000 1.34916
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 8.00000 0.589768
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) −24.0000 −1.75505
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −14.0000 −0.985037
\(203\) −10.0000 −0.701862
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) −16.0000 −1.05501
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) −8.00000 −0.520756
\(237\) 0 0
\(238\) 6.00000 0.388922
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 0 0
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) −2.00000 −0.119523
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 20.0000 1.17444
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) −18.0000 −1.04271
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 4.00000 0.227921
\(309\) 0 0
\(310\) −16.0000 −0.908739
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −40.0000 −2.23957
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) −8.00000 −0.445823
\(323\) 0 0
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) −12.0000 −0.650791
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) −18.0000 −0.953998
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 6.00000 0.315353
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) 12.0000 0.623850
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 24.0000 1.24101
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −10.0000 −0.515026
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −48.0000 −2.42746
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) 10.0000 0.496292
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 12.0000 0.592638
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −38.0000 −1.82616 −0.913082 0.407777i \(-0.866304\pi\)
−0.913082 + 0.407777i \(0.866304\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) −8.00000 −0.381385
\(441\) 0 0
\(442\) 6.00000 0.285391
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 36.0000 1.70656
\(446\) 0 0
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −2.00000 −0.0940721
\(453\) 0 0
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) 16.0000 0.746004
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 10.0000 0.464238
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 16.0000 0.738025
\(471\) 0 0
\(472\) 8.00000 0.368230
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) −6.00000 −0.275010
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 60.0000 2.70226
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) −32.0000 −1.42257
\(507\) 0 0
\(508\) 16.0000 0.709885
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) −32.0000 −1.41009
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 6.00000 0.263625
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) 0 0
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 −0.259889
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −30.0000 −1.29339
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 32.0000 1.37452
\(543\) 0 0
\(544\) −6.00000 −0.257248
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) −6.00000 −0.254916
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 16.0000 0.674320 0.337160 0.941447i \(-0.390534\pi\)
0.337160 + 0.941447i \(0.390534\pi\)
\(564\) 0 0
\(565\) 4.00000 0.168281
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 38.0000 1.59304 0.796521 0.604610i \(-0.206671\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 42.0000 1.74848 0.874241 0.485491i \(-0.161359\pi\)
0.874241 + 0.485491i \(0.161359\pi\)
\(578\) −19.0000 −0.790296
\(579\) 0 0
\(580\) −20.0000 −0.830455
\(581\) 0 0
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −16.0000 −0.658710
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) −8.00000 −0.327144
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −48.0000 −1.94826 −0.974130 0.225989i \(-0.927439\pi\)
−0.974130 + 0.225989i \(0.927439\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) −32.0000 −1.29141
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 16.0000 0.642575
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 18.0000 0.721155
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 40.0000 1.58362
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) −34.0000 −1.34292 −0.671460 0.741041i \(-0.734332\pi\)
−0.671460 + 0.741041i \(0.734332\pi\)
\(642\) 0 0
\(643\) 8.00000 0.315489 0.157745 0.987480i \(-0.449578\pi\)
0.157745 + 0.987480i \(0.449578\pi\)
\(644\) 8.00000 0.315244
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) −1.00000 −0.0392232
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 8.00000 0.311872
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 28.0000 1.08825
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −80.0000 −3.09761
\(668\) 0 0
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 12.0000 0.460179
\(681\) 0 0
\(682\) −32.0000 −1.22534
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 16.0000 0.608669 0.304334 0.952565i \(-0.401566\pi\)
0.304334 + 0.952565i \(0.401566\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 16.0000 0.606915
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 14.0000 0.529908
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 10.0000 0.376355
\(707\) −14.0000 −0.526524
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 16.0000 0.600469
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) 64.0000 2.39682
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 19.0000 0.707107
\(723\) 0 0
\(724\) −6.00000 −0.222988
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) 4.00000 0.148047
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 8.00000 0.294884
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) −36.0000 −1.31894
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) −24.0000 −0.877527
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) 48.0000 1.75154 0.875772 0.482724i \(-0.160353\pi\)
0.875772 + 0.482724i \(0.160353\pi\)
\(752\) 8.00000 0.291730
\(753\) 0 0
\(754\) 10.0000 0.364179
\(755\) 0 0
\(756\) 0 0
\(757\) 30.0000 1.09037 0.545184 0.838316i \(-0.316460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 8.00000 0.288300
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) 46.0000 1.65451 0.827253 0.561830i \(-0.189903\pi\)
0.827253 + 0.561830i \(0.189903\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 0 0
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 48.0000 1.71648
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 18.0000 0.641223
\(789\) 0 0
\(790\) 16.0000 0.569254
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) −10.0000 −0.355110
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) −14.0000 −0.492518
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) −10.0000 −0.350931
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 0 0
\(818\) 38.0000 1.32864
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −14.0000 −0.488603 −0.244302 0.969699i \(-0.578559\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −32.0000 −1.10476 −0.552381 0.833592i \(-0.686281\pi\)
−0.552381 + 0.833592i \(0.686281\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) −2.00000 −0.0688021
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 6.00000 0.205798
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) −34.0000 −1.16142 −0.580709 0.814111i \(-0.697225\pi\)
−0.580709 + 0.814111i \(0.697225\pi\)
\(858\) 0 0
\(859\) 8.00000 0.272956 0.136478 0.990643i \(-0.456422\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 4.00000 0.136004
\(866\) 38.0000 1.29129
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 2.00000 0.0677285
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) 30.0000 1.01303 0.506514 0.862232i \(-0.330934\pi\)
0.506514 + 0.862232i \(0.330934\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 8.00000 0.269680
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) −6.00000 −0.201802
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) 32.0000 1.07445 0.537227 0.843437i \(-0.319472\pi\)
0.537227 + 0.843437i \(0.319472\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) −36.0000 −1.20672
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −14.0000 −0.467186
\(899\) −80.0000 −2.66815
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 24.0000 0.799113
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 12.0000 0.398893
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) 48.0000 1.58337 0.791687 0.610927i \(-0.209203\pi\)
0.791687 + 0.610927i \(0.209203\pi\)
\(920\) −16.0000 −0.527504
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) −10.0000 −0.328266
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −10.0000 −0.327561
\(933\) 0 0
\(934\) 8.00000 0.261768
\(935\) 48.0000 1.56977
\(936\) 0 0
\(937\) 42.0000 1.37208 0.686040 0.727564i \(-0.259347\pi\)
0.686040 + 0.727564i \(0.259347\pi\)
\(938\) 4.00000 0.130605
\(939\) 0 0
\(940\) −16.0000 −0.521862
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 0 0
\(952\) 6.00000 0.194461
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 6.00000 0.193448
\(963\) 0 0
\(964\) 18.0000 0.579741
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 4.00000 0.128432
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) 28.0000 0.893516
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) −36.0000 −1.14706
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.c.1.1 1
3.2 odd 2 182.2.a.c.1.1 1
12.11 even 2 1456.2.a.i.1.1 1
15.14 odd 2 4550.2.a.g.1.1 1
21.2 odd 6 1274.2.f.f.1145.1 2
21.5 even 6 1274.2.f.g.1145.1 2
21.11 odd 6 1274.2.f.f.79.1 2
21.17 even 6 1274.2.f.g.79.1 2
21.20 even 2 1274.2.a.l.1.1 1
24.5 odd 2 5824.2.a.l.1.1 1
24.11 even 2 5824.2.a.m.1.1 1
39.5 even 4 2366.2.d.d.337.1 2
39.8 even 4 2366.2.d.d.337.2 2
39.38 odd 2 2366.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.a.c.1.1 1 3.2 odd 2
1274.2.a.l.1.1 1 21.20 even 2
1274.2.f.f.79.1 2 21.11 odd 6
1274.2.f.f.1145.1 2 21.2 odd 6
1274.2.f.g.79.1 2 21.17 even 6
1274.2.f.g.1145.1 2 21.5 even 6
1456.2.a.i.1.1 1 12.11 even 2
1638.2.a.c.1.1 1 1.1 even 1 trivial
2366.2.a.d.1.1 1 39.38 odd 2
2366.2.d.d.337.1 2 39.5 even 4
2366.2.d.d.337.2 2 39.8 even 4
4550.2.a.g.1.1 1 15.14 odd 2
5824.2.a.l.1.1 1 24.5 odd 2
5824.2.a.m.1.1 1 24.11 even 2