Properties

Label 1638.2.a.a.1.1
Level $1638$
Weight $2$
Character 1638.1
Self dual yes
Analytic conductor $13.079$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(1,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{7} -1.00000 q^{8} +3.00000 q^{10} -1.00000 q^{11} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -7.00000 q^{17} +1.00000 q^{19} -3.00000 q^{20} +1.00000 q^{22} +7.00000 q^{23} +4.00000 q^{25} +1.00000 q^{26} -1.00000 q^{28} -3.00000 q^{29} -1.00000 q^{32} +7.00000 q^{34} +3.00000 q^{35} -5.00000 q^{37} -1.00000 q^{38} +3.00000 q^{40} -4.00000 q^{41} +11.0000 q^{43} -1.00000 q^{44} -7.00000 q^{46} +1.00000 q^{49} -4.00000 q^{50} -1.00000 q^{52} +14.0000 q^{53} +3.00000 q^{55} +1.00000 q^{56} +3.00000 q^{58} -4.00000 q^{59} +1.00000 q^{61} +1.00000 q^{64} +3.00000 q^{65} -6.00000 q^{67} -7.00000 q^{68} -3.00000 q^{70} +12.0000 q^{71} +5.00000 q^{73} +5.00000 q^{74} +1.00000 q^{76} +1.00000 q^{77} -10.0000 q^{79} -3.00000 q^{80} +4.00000 q^{82} +14.0000 q^{83} +21.0000 q^{85} -11.0000 q^{86} +1.00000 q^{88} +6.00000 q^{89} +1.00000 q^{91} +7.00000 q^{92} -3.00000 q^{95} +6.00000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 7.00000 1.20049
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −7.00000 −1.03209
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 3.00000 0.393919
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) −7.00000 −0.848875
\(69\) 0 0
\(70\) −3.00000 −0.358569
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 5.00000 0.581238
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) 4.00000 0.441726
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 21.0000 2.27777
\(86\) −11.0000 −1.18616
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 7.00000 0.729800
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −7.00000 −0.689730 −0.344865 0.938652i \(-0.612075\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) −3.00000 −0.286039
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) −21.0000 −1.95826
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 7.00000 0.641689
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −1.00000 −0.0905357
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −3.00000 −0.263117
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 6.00000 0.518321
\(135\) 0 0
\(136\) 7.00000 0.600245
\(137\) −15.0000 −1.28154 −0.640768 0.767734i \(-0.721384\pi\)
−0.640768 + 0.767734i \(0.721384\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 3.00000 0.253546
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) −5.00000 −0.413803
\(147\) 0 0
\(148\) −5.00000 −0.410997
\(149\) −16.0000 −1.31077 −0.655386 0.755295i \(-0.727494\pi\)
−0.655386 + 0.755295i \(0.727494\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) −1.00000 −0.0805823
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) 3.00000 0.237171
\(161\) −7.00000 −0.551677
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) −14.0000 −1.08661
\(167\) −7.00000 −0.541676 −0.270838 0.962625i \(-0.587301\pi\)
−0.270838 + 0.962625i \(0.587301\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −21.0000 −1.61063
\(171\) 0 0
\(172\) 11.0000 0.838742
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −8.00000 −0.597948 −0.298974 0.954261i \(-0.596644\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) −7.00000 −0.516047
\(185\) 15.0000 1.10282
\(186\) 0 0
\(187\) 7.00000 0.511891
\(188\) 0 0
\(189\) 0 0
\(190\) 3.00000 0.217643
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 20.0000 1.42494 0.712470 0.701702i \(-0.247576\pi\)
0.712470 + 0.701702i \(0.247576\pi\)
\(198\) 0 0
\(199\) 3.00000 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −12.0000 −0.844317
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 7.00000 0.487713
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 25.0000 1.72107 0.860535 0.509390i \(-0.170129\pi\)
0.860535 + 0.509390i \(0.170129\pi\)
\(212\) 14.0000 0.961524
\(213\) 0 0
\(214\) −18.0000 −1.23045
\(215\) −33.0000 −2.25058
\(216\) 0 0
\(217\) 0 0
\(218\) 7.00000 0.474100
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 7.00000 0.470871
\(222\) 0 0
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 21.0000 1.38470
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) −7.00000 −0.453743
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −1.00000 −0.0636285
\(248\) 0 0
\(249\) 0 0
\(250\) −3.00000 −0.189737
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) −7.00000 −0.440086
\(254\) −10.0000 −0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.0000 −0.623783 −0.311891 0.950118i \(-0.600963\pi\)
−0.311891 + 0.950118i \(0.600963\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) 15.0000 0.926703
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −42.0000 −2.58004
\(266\) 1.00000 0.0613139
\(267\) 0 0
\(268\) −6.00000 −0.366508
\(269\) −2.00000 −0.121942 −0.0609711 0.998140i \(-0.519420\pi\)
−0.0609711 + 0.998140i \(0.519420\pi\)
\(270\) 0 0
\(271\) −30.0000 −1.82237 −0.911185 0.411997i \(-0.864831\pi\)
−0.911185 + 0.411997i \(0.864831\pi\)
\(272\) −7.00000 −0.424437
\(273\) 0 0
\(274\) 15.0000 0.906183
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) −1.00000 −0.0591312
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) 5.00000 0.292603
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 5.00000 0.290619
\(297\) 0 0
\(298\) 16.0000 0.926855
\(299\) −7.00000 −0.404820
\(300\) 0 0
\(301\) −11.0000 −0.634029
\(302\) −7.00000 −0.402805
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) −32.0000 −1.82634 −0.913168 0.407583i \(-0.866372\pi\)
−0.913168 + 0.407583i \(0.866372\pi\)
\(308\) 1.00000 0.0569803
\(309\) 0 0
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) −5.00000 −0.282166
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 28.0000 1.57264 0.786318 0.617822i \(-0.211985\pi\)
0.786318 + 0.617822i \(0.211985\pi\)
\(318\) 0 0
\(319\) 3.00000 0.167968
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 7.00000 0.390095
\(323\) −7.00000 −0.389490
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −10.0000 −0.553849
\(327\) 0 0
\(328\) 4.00000 0.220863
\(329\) 0 0
\(330\) 0 0
\(331\) −14.0000 −0.769510 −0.384755 0.923019i \(-0.625714\pi\)
−0.384755 + 0.923019i \(0.625714\pi\)
\(332\) 14.0000 0.768350
\(333\) 0 0
\(334\) 7.00000 0.383023
\(335\) 18.0000 0.983445
\(336\) 0 0
\(337\) 3.00000 0.163420 0.0817102 0.996656i \(-0.473962\pi\)
0.0817102 + 0.996656i \(0.473962\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) 21.0000 1.13888
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −11.0000 −0.593080
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −32.0000 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) −36.0000 −1.91068
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 8.00000 0.422813
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −22.0000 −1.15629
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) −15.0000 −0.785136
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 7.00000 0.364900
\(369\) 0 0
\(370\) −15.0000 −0.779813
\(371\) −14.0000 −0.726844
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) −7.00000 −0.361961
\(375\) 0 0
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) −3.00000 −0.153897
\(381\) 0 0
\(382\) −15.0000 −0.767467
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) −34.0000 −1.72387 −0.861934 0.507020i \(-0.830747\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) −49.0000 −2.47804
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −20.0000 −1.00759
\(395\) 30.0000 1.50946
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) −3.00000 −0.150376
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) 23.0000 1.13728 0.568638 0.822588i \(-0.307470\pi\)
0.568638 + 0.822588i \(0.307470\pi\)
\(410\) −12.0000 −0.592638
\(411\) 0 0
\(412\) −7.00000 −0.344865
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) −42.0000 −2.06170
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 1.00000 0.0489116
\(419\) −29.0000 −1.41674 −0.708371 0.705840i \(-0.750570\pi\)
−0.708371 + 0.705840i \(0.750570\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) −25.0000 −1.21698
\(423\) 0 0
\(424\) −14.0000 −0.679900
\(425\) −28.0000 −1.35820
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) 33.0000 1.59140
\(431\) 10.0000 0.481683 0.240842 0.970564i \(-0.422577\pi\)
0.240842 + 0.970564i \(0.422577\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.00000 −0.335239
\(437\) 7.00000 0.334855
\(438\) 0 0
\(439\) −19.0000 −0.906821 −0.453410 0.891302i \(-0.649793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(440\) −3.00000 −0.143019
\(441\) 0 0
\(442\) −7.00000 −0.332956
\(443\) −26.0000 −1.23530 −0.617649 0.786454i \(-0.711915\pi\)
−0.617649 + 0.786454i \(0.711915\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) −14.0000 −0.662919
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −19.0000 −0.896665 −0.448333 0.893867i \(-0.647982\pi\)
−0.448333 + 0.893867i \(0.647982\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 14.0000 0.658505
\(453\) 0 0
\(454\) −18.0000 −0.844782
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −40.0000 −1.87112 −0.935561 0.353166i \(-0.885105\pi\)
−0.935561 + 0.353166i \(0.885105\pi\)
\(458\) −18.0000 −0.841085
\(459\) 0 0
\(460\) −21.0000 −0.979130
\(461\) 23.0000 1.07122 0.535608 0.844466i \(-0.320082\pi\)
0.535608 + 0.844466i \(0.320082\pi\)
\(462\) 0 0
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −12.0000 −0.555889
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) −11.0000 −0.505781
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 7.00000 0.320844
\(477\) 0 0
\(478\) 20.0000 0.914779
\(479\) 11.0000 0.502603 0.251301 0.967909i \(-0.419141\pi\)
0.251301 + 0.967909i \(0.419141\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) −18.0000 −0.817338
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −1.00000 −0.0452679
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 1.00000 0.0449921
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) 3.00000 0.133897
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 7.00000 0.311188
\(507\) 0 0
\(508\) 10.0000 0.443678
\(509\) 39.0000 1.72864 0.864322 0.502938i \(-0.167748\pi\)
0.864322 + 0.502938i \(0.167748\pi\)
\(510\) 0 0
\(511\) −5.00000 −0.221187
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 10.0000 0.441081
\(515\) 21.0000 0.925371
\(516\) 0 0
\(517\) 0 0
\(518\) −5.00000 −0.219687
\(519\) 0 0
\(520\) −3.00000 −0.131559
\(521\) 11.0000 0.481919 0.240959 0.970535i \(-0.422538\pi\)
0.240959 + 0.970535i \(0.422538\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −15.0000 −0.655278
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 0 0
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 42.0000 1.82436
\(531\) 0 0
\(532\) −1.00000 −0.0433555
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) −54.0000 −2.33462
\(536\) 6.00000 0.259161
\(537\) 0 0
\(538\) 2.00000 0.0862261
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) 30.0000 1.28861
\(543\) 0 0
\(544\) 7.00000 0.300123
\(545\) 21.0000 0.899541
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −15.0000 −0.640768
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 10.0000 0.425243
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −11.0000 −0.465250
\(560\) 3.00000 0.126773
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −39.0000 −1.64365 −0.821827 0.569737i \(-0.807045\pi\)
−0.821827 + 0.569737i \(0.807045\pi\)
\(564\) 0 0
\(565\) −42.0000 −1.76695
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −14.0000 −0.586911 −0.293455 0.955973i \(-0.594805\pi\)
−0.293455 + 0.955973i \(0.594805\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) 1.00000 0.0418121
\(573\) 0 0
\(574\) −4.00000 −0.166957
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) −32.0000 −1.33102
\(579\) 0 0
\(580\) 9.00000 0.373705
\(581\) −14.0000 −0.580818
\(582\) 0 0
\(583\) −14.0000 −0.579821
\(584\) −5.00000 −0.206901
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) −5.00000 −0.205499
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) −21.0000 −0.860916
\(596\) −16.0000 −0.655386
\(597\) 0 0
\(598\) 7.00000 0.286251
\(599\) 1.00000 0.0408589 0.0204294 0.999791i \(-0.493497\pi\)
0.0204294 + 0.999791i \(0.493497\pi\)
\(600\) 0 0
\(601\) 16.0000 0.652654 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(602\) 11.0000 0.448327
\(603\) 0 0
\(604\) 7.00000 0.284826
\(605\) 30.0000 1.21967
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 3.00000 0.121466
\(611\) 0 0
\(612\) 0 0
\(613\) −7.00000 −0.282727 −0.141364 0.989958i \(-0.545149\pi\)
−0.141364 + 0.989958i \(0.545149\pi\)
\(614\) 32.0000 1.29141
\(615\) 0 0
\(616\) −1.00000 −0.0402911
\(617\) 27.0000 1.08698 0.543490 0.839416i \(-0.317103\pi\)
0.543490 + 0.839416i \(0.317103\pi\)
\(618\) 0 0
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.00000 0.0801927
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 5.00000 0.199522
\(629\) 35.0000 1.39554
\(630\) 0 0
\(631\) −37.0000 −1.47295 −0.736473 0.676467i \(-0.763510\pi\)
−0.736473 + 0.676467i \(0.763510\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) −28.0000 −1.11202
\(635\) −30.0000 −1.19051
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) −3.00000 −0.118771
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) −9.00000 −0.354925 −0.177463 0.984128i \(-0.556789\pi\)
−0.177463 + 0.984128i \(0.556789\pi\)
\(644\) −7.00000 −0.275839
\(645\) 0 0
\(646\) 7.00000 0.275411
\(647\) 36.0000 1.41531 0.707653 0.706560i \(-0.249754\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 10.0000 0.391630
\(653\) 43.0000 1.68272 0.841360 0.540475i \(-0.181755\pi\)
0.841360 + 0.540475i \(0.181755\pi\)
\(654\) 0 0
\(655\) 45.0000 1.75830
\(656\) −4.00000 −0.156174
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 14.0000 0.544125
\(663\) 0 0
\(664\) −14.0000 −0.543305
\(665\) 3.00000 0.116335
\(666\) 0 0
\(667\) −21.0000 −0.813123
\(668\) −7.00000 −0.270838
\(669\) 0 0
\(670\) −18.0000 −0.695401
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) 7.00000 0.269830 0.134915 0.990857i \(-0.456924\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(674\) −3.00000 −0.115556
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) −21.0000 −0.805313
\(681\) 0 0
\(682\) 0 0
\(683\) 13.0000 0.497431 0.248716 0.968577i \(-0.419992\pi\)
0.248716 + 0.968577i \(0.419992\pi\)
\(684\) 0 0
\(685\) 45.0000 1.71936
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 11.0000 0.419371
\(689\) −14.0000 −0.533358
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 32.0000 1.21470
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 28.0000 1.06058
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −5.00000 −0.188579
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −10.0000 −0.376355
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) 36.0000 1.35106
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) −8.00000 −0.298974
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 7.00000 0.260694
\(722\) 18.0000 0.669891
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) 37.0000 1.37225 0.686127 0.727482i \(-0.259309\pi\)
0.686127 + 0.727482i \(0.259309\pi\)
\(728\) −1.00000 −0.0370625
\(729\) 0 0
\(730\) 15.0000 0.555175
\(731\) −77.0000 −2.84795
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) 6.00000 0.221013
\(738\) 0 0
\(739\) 38.0000 1.39785 0.698926 0.715194i \(-0.253662\pi\)
0.698926 + 0.715194i \(0.253662\pi\)
\(740\) 15.0000 0.551411
\(741\) 0 0
\(742\) 14.0000 0.513956
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) 48.0000 1.75858
\(746\) −12.0000 −0.439351
\(747\) 0 0
\(748\) 7.00000 0.255945
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −3.00000 −0.109254
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 3.00000 0.108821
\(761\) 32.0000 1.16000 0.580000 0.814617i \(-0.303053\pi\)
0.580000 + 0.814617i \(0.303053\pi\)
\(762\) 0 0
\(763\) 7.00000 0.253417
\(764\) 15.0000 0.542681
\(765\) 0 0
\(766\) −1.00000 −0.0361315
\(767\) 4.00000 0.144432
\(768\) 0 0
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 3.00000 0.108112
\(771\) 0 0
\(772\) −8.00000 −0.287926
\(773\) 7.00000 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 34.0000 1.21896
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 49.0000 1.75224
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) −31.0000 −1.10503 −0.552515 0.833503i \(-0.686332\pi\)
−0.552515 + 0.833503i \(0.686332\pi\)
\(788\) 20.0000 0.712470
\(789\) 0 0
\(790\) −30.0000 −1.06735
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) −1.00000 −0.0355110
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) 3.00000 0.106332
\(797\) −36.0000 −1.27519 −0.637593 0.770374i \(-0.720070\pi\)
−0.637593 + 0.770374i \(0.720070\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) −2.00000 −0.0706225
\(803\) −5.00000 −0.176446
\(804\) 0 0
\(805\) 21.0000 0.740153
\(806\) 0 0
\(807\) 0 0
\(808\) −12.0000 −0.422159
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 21.0000 0.737410 0.368705 0.929547i \(-0.379801\pi\)
0.368705 + 0.929547i \(0.379801\pi\)
\(812\) 3.00000 0.105279
\(813\) 0 0
\(814\) −5.00000 −0.175250
\(815\) −30.0000 −1.05085
\(816\) 0 0
\(817\) 11.0000 0.384841
\(818\) −23.0000 −0.804176
\(819\) 0 0
\(820\) 12.0000 0.419058
\(821\) 32.0000 1.11681 0.558404 0.829569i \(-0.311414\pi\)
0.558404 + 0.829569i \(0.311414\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) −4.00000 −0.139178
\(827\) −9.00000 −0.312961 −0.156480 0.987681i \(-0.550015\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(828\) 0 0
\(829\) 49.0000 1.70184 0.850920 0.525295i \(-0.176045\pi\)
0.850920 + 0.525295i \(0.176045\pi\)
\(830\) 42.0000 1.45784
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −7.00000 −0.242536
\(834\) 0 0
\(835\) 21.0000 0.726735
\(836\) −1.00000 −0.0345857
\(837\) 0 0
\(838\) 29.0000 1.00179
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −26.0000 −0.896019
\(843\) 0 0
\(844\) 25.0000 0.860535
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 14.0000 0.480762
\(849\) 0 0
\(850\) 28.0000 0.960392
\(851\) −35.0000 −1.19978
\(852\) 0 0
\(853\) 44.0000 1.50653 0.753266 0.657716i \(-0.228477\pi\)
0.753266 + 0.657716i \(0.228477\pi\)
\(854\) 1.00000 0.0342193
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −33.0000 −1.12529
\(861\) 0 0
\(862\) −10.0000 −0.340601
\(863\) 42.0000 1.42970 0.714848 0.699280i \(-0.246496\pi\)
0.714848 + 0.699280i \(0.246496\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 8.00000 0.271851
\(867\) 0 0
\(868\) 0 0
\(869\) 10.0000 0.339227
\(870\) 0 0
\(871\) 6.00000 0.203302
\(872\) 7.00000 0.237050
\(873\) 0 0
\(874\) −7.00000 −0.236779
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 19.0000 0.641219
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) 17.0000 0.572745 0.286372 0.958118i \(-0.407551\pi\)
0.286372 + 0.958118i \(0.407551\pi\)
\(882\) 0 0
\(883\) 35.0000 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(884\) 7.00000 0.235435
\(885\) 0 0
\(886\) 26.0000 0.873487
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) −10.0000 −0.335389
\(890\) 18.0000 0.603361
\(891\) 0 0
\(892\) 14.0000 0.468755
\(893\) 0 0
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 19.0000 0.634038
\(899\) 0 0
\(900\) 0 0
\(901\) −98.0000 −3.26485
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) −66.0000 −2.19391
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 18.0000 0.597351
\(909\) 0 0
\(910\) 3.00000 0.0994490
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) −14.0000 −0.463332
\(914\) 40.0000 1.32308
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) 15.0000 0.495344
\(918\) 0 0
\(919\) −50.0000 −1.64935 −0.824674 0.565608i \(-0.808641\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(920\) 21.0000 0.692349
\(921\) 0 0
\(922\) −23.0000 −0.757465
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −20.0000 −0.657596
\(926\) −23.0000 −0.755827
\(927\) 0 0
\(928\) 3.00000 0.0984798
\(929\) −48.0000 −1.57483 −0.787414 0.616424i \(-0.788581\pi\)
−0.787414 + 0.616424i \(0.788581\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 12.0000 0.393073
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) −21.0000 −0.686773
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −6.00000 −0.195907
\(939\) 0 0
\(940\) 0 0
\(941\) −34.0000 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(942\) 0 0
\(943\) −28.0000 −0.911805
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 11.0000 0.357641
\(947\) 11.0000 0.357452 0.178726 0.983899i \(-0.442802\pi\)
0.178726 + 0.983899i \(0.442802\pi\)
\(948\) 0 0
\(949\) −5.00000 −0.162307
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) −7.00000 −0.226871
\(953\) −36.0000 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(954\) 0 0
\(955\) −45.0000 −1.45617
\(956\) −20.0000 −0.646846
\(957\) 0 0
\(958\) −11.0000 −0.355394
\(959\) 15.0000 0.484375
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −5.00000 −0.161206
\(963\) 0 0
\(964\) −18.0000 −0.579741
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) 10.0000 0.321412
\(969\) 0 0
\(970\) 18.0000 0.577945
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) 1.00000 0.0320092
\(977\) 7.00000 0.223950 0.111975 0.993711i \(-0.464282\pi\)
0.111975 + 0.993711i \(0.464282\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) 2.00000 0.0638226
\(983\) 19.0000 0.606006 0.303003 0.952990i \(-0.402011\pi\)
0.303003 + 0.952990i \(0.402011\pi\)
\(984\) 0 0
\(985\) −60.0000 −1.91176
\(986\) −21.0000 −0.668776
\(987\) 0 0
\(988\) −1.00000 −0.0318142
\(989\) 77.0000 2.44846
\(990\) 0 0
\(991\) 34.0000 1.08005 0.540023 0.841650i \(-0.318416\pi\)
0.540023 + 0.841650i \(0.318416\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 12.0000 0.380617
\(995\) −9.00000 −0.285319
\(996\) 0 0
\(997\) 54.0000 1.71020 0.855099 0.518465i \(-0.173497\pi\)
0.855099 + 0.518465i \(0.173497\pi\)
\(998\) −16.0000 −0.506471
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.a.a.1.1 1
3.2 odd 2 546.2.a.e.1.1 1
12.11 even 2 4368.2.a.z.1.1 1
21.20 even 2 3822.2.a.bc.1.1 1
39.38 odd 2 7098.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.e.1.1 1 3.2 odd 2
1638.2.a.a.1.1 1 1.1 even 1 trivial
3822.2.a.bc.1.1 1 21.20 even 2
4368.2.a.z.1.1 1 12.11 even 2
7098.2.a.b.1.1 1 39.38 odd 2