Properties

Label 16272.2.jj
Level $16272$
Weight $2$
Character orbit 16272.jj
Rep. character $\chi_{16272}(271,\cdot)$
Character field $\Q(\zeta_{112})$
Dimension $13680$
Sturm bound $5472$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16272 = 2^{4} \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16272.jj (of order \(112\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 452 \)
Character field: \(\Q(\zeta_{112})\)
Sturm bound: \(5472\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(16272, [\chi])\).

Total New Old
Modular forms 132480 13680 118800
Cusp forms 130176 13680 116496
Eisenstein series 2304 0 2304

Decomposition of \(S_{2}^{\mathrm{new}}(16272, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(16272, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(16272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(452, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1356, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1808, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4068, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5424, [\chi])\)\(^{\oplus 2}\)