Defining parameters
| Level: | \( N \) | \(=\) | \( 16272 = 2^{4} \cdot 3^{2} \cdot 113 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 16272.jj (of order \(112\) and degree \(48\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 452 \) |
| Character field: | \(\Q(\zeta_{112})\) | ||
| Sturm bound: | \(5472\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(16272, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 132480 | 13680 | 118800 |
| Cusp forms | 130176 | 13680 | 116496 |
| Eisenstein series | 2304 | 0 | 2304 |
Decomposition of \(S_{2}^{\mathrm{new}}(16272, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(16272, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(16272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(452, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1356, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1808, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4068, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(5424, [\chi])\)\(^{\oplus 2}\)