Defining parameters
| Level: | \( N \) | \(=\) | \( 16272 = 2^{4} \cdot 3^{2} \cdot 113 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 16272.ey (of order \(21\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1017 \) |
| Character field: | \(\Q(\zeta_{21})\) | ||
| Sturm bound: | \(5472\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(16272, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 32976 | 8232 | 24744 |
| Cusp forms | 32688 | 8184 | 24504 |
| Eisenstein series | 288 | 48 | 240 |
Decomposition of \(S_{2}^{\mathrm{new}}(16272, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(16272, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(16272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1017, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2034, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4068, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(8136, [\chi])\)\(^{\oplus 2}\)