Properties

Label 16245.2.a.k
Level $16245$
Weight $2$
Character orbit 16245.a
Self dual yes
Analytic conductor $129.717$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16245,2,Mod(1,16245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16245.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16245 = 3^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(129.716978084\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{4} + q^{5} - 2 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + q^{5} - 2 q^{7} - 3 q^{8} + q^{10} + 2 q^{11} + 4 q^{13} - 2 q^{14} - q^{16} - 2 q^{17} - q^{20} + 2 q^{22} + 4 q^{23} + q^{25} + 4 q^{26} + 2 q^{28} + 4 q^{29} + 5 q^{32} - 2 q^{34} - 2 q^{35} - 3 q^{40} - 10 q^{43} - 2 q^{44} + 4 q^{46} - 12 q^{47} - 3 q^{49} + q^{50} - 4 q^{52} - 2 q^{53} + 2 q^{55} + 6 q^{56} + 4 q^{58} + 4 q^{59} + 2 q^{61} + 7 q^{64} + 4 q^{65} + 16 q^{67} + 2 q^{68} - 2 q^{70} - 2 q^{73} - 4 q^{77} + 8 q^{79} - q^{80} + 12 q^{83} - 2 q^{85} - 10 q^{86} - 6 q^{88} - 8 q^{91} - 4 q^{92} - 12 q^{94} + 16 q^{97} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.