Properties

Label 1620.4.i.i.541.1
Level $1620$
Weight $4$
Character 1620.541
Analytic conductor $95.583$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(95.5830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1620.541
Dual form 1620.4.i.i.1081.1

$q$-expansion

\(f(q)\) \(=\) \(q+(2.50000 + 4.33013i) q^{5} +(-1.00000 + 1.73205i) q^{7} +O(q^{10})\) \(q+(2.50000 + 4.33013i) q^{5} +(-1.00000 + 1.73205i) q^{7} +(15.0000 - 25.9808i) q^{11} +(2.00000 + 3.46410i) q^{13} -90.0000 q^{17} -28.0000 q^{19} +(60.0000 + 103.923i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(105.000 - 181.865i) q^{29} +(2.00000 + 3.46410i) q^{31} -10.0000 q^{35} +200.000 q^{37} +(120.000 + 207.846i) q^{41} +(68.0000 - 117.779i) q^{43} +(-60.0000 + 103.923i) q^{47} +(169.500 + 293.583i) q^{49} +30.0000 q^{53} +150.000 q^{55} +(-225.000 - 389.711i) q^{59} +(83.0000 - 143.760i) q^{61} +(-10.0000 + 17.3205i) q^{65} +(-454.000 - 786.351i) q^{67} +1020.00 q^{71} -250.000 q^{73} +(30.0000 + 51.9615i) q^{77} +(458.000 - 793.279i) q^{79} +(-570.000 + 987.269i) q^{83} +(-225.000 - 389.711i) q^{85} +420.000 q^{89} -8.00000 q^{91} +(-70.0000 - 121.244i) q^{95} +(-769.000 + 1331.95i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{5} - 2 q^{7} + 30 q^{11} + 4 q^{13} - 180 q^{17} - 56 q^{19} + 120 q^{23} - 25 q^{25} + 210 q^{29} + 4 q^{31} - 20 q^{35} + 400 q^{37} + 240 q^{41} + 136 q^{43} - 120 q^{47} + 339 q^{49} + 60 q^{53} + 300 q^{55} - 450 q^{59} + 166 q^{61} - 20 q^{65} - 908 q^{67} + 2040 q^{71} - 500 q^{73} + 60 q^{77} + 916 q^{79} - 1140 q^{83} - 450 q^{85} + 840 q^{89} - 16 q^{91} - 140 q^{95} - 1538 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.00000 + 1.73205i −0.0539949 + 0.0935220i −0.891760 0.452510i \(-0.850529\pi\)
0.837765 + 0.546032i \(0.183862\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.0000 25.9808i 0.411152 0.712136i −0.583864 0.811851i \(-0.698460\pi\)
0.995016 + 0.0997155i \(0.0317933\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.0426692 + 0.0739053i 0.886571 0.462592i \(-0.153080\pi\)
−0.843902 + 0.536497i \(0.819747\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −90.0000 −1.28401 −0.642006 0.766700i \(-0.721898\pi\)
−0.642006 + 0.766700i \(0.721898\pi\)
\(18\) 0 0
\(19\) −28.0000 −0.338086 −0.169043 0.985609i \(-0.554068\pi\)
−0.169043 + 0.985609i \(0.554068\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 60.0000 + 103.923i 0.543951 + 0.942150i 0.998672 + 0.0515165i \(0.0164055\pi\)
−0.454721 + 0.890634i \(0.650261\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 105.000 181.865i 0.672345 1.16454i −0.304892 0.952387i \(-0.598620\pi\)
0.977237 0.212149i \(-0.0680463\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.0115874 + 0.0200700i 0.871761 0.489931i \(-0.162978\pi\)
−0.860174 + 0.510001i \(0.829645\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.0000 −0.0482945
\(36\) 0 0
\(37\) 200.000 0.888643 0.444322 0.895867i \(-0.353445\pi\)
0.444322 + 0.895867i \(0.353445\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 120.000 + 207.846i 0.457094 + 0.791710i 0.998806 0.0488543i \(-0.0155570\pi\)
−0.541712 + 0.840564i \(0.682224\pi\)
\(42\) 0 0
\(43\) 68.0000 117.779i 0.241161 0.417702i −0.719885 0.694094i \(-0.755805\pi\)
0.961045 + 0.276391i \(0.0891386\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −60.0000 + 103.923i −0.186211 + 0.322526i −0.943984 0.329992i \(-0.892954\pi\)
0.757773 + 0.652518i \(0.226287\pi\)
\(48\) 0 0
\(49\) 169.500 + 293.583i 0.494169 + 0.855926i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 30.0000 0.0777513 0.0388756 0.999244i \(-0.487622\pi\)
0.0388756 + 0.999244i \(0.487622\pi\)
\(54\) 0 0
\(55\) 150.000 0.367745
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −225.000 389.711i −0.496483 0.859934i 0.503509 0.863990i \(-0.332042\pi\)
−0.999992 + 0.00405618i \(0.998709\pi\)
\(60\) 0 0
\(61\) 83.0000 143.760i 0.174214 0.301748i −0.765675 0.643228i \(-0.777595\pi\)
0.939889 + 0.341480i \(0.110928\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.0000 + 17.3205i −0.0190823 + 0.0330515i
\(66\) 0 0
\(67\) −454.000 786.351i −0.827835 1.43385i −0.899733 0.436440i \(-0.856239\pi\)
0.0718987 0.997412i \(-0.477094\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1020.00 1.70495 0.852477 0.522765i \(-0.175099\pi\)
0.852477 + 0.522765i \(0.175099\pi\)
\(72\) 0 0
\(73\) −250.000 −0.400826 −0.200413 0.979712i \(-0.564228\pi\)
−0.200413 + 0.979712i \(0.564228\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 30.0000 + 51.9615i 0.0444002 + 0.0769034i
\(78\) 0 0
\(79\) 458.000 793.279i 0.652266 1.12976i −0.330306 0.943874i \(-0.607152\pi\)
0.982572 0.185884i \(-0.0595149\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −570.000 + 987.269i −0.753803 + 1.30562i 0.192165 + 0.981363i \(0.438449\pi\)
−0.945967 + 0.324262i \(0.894884\pi\)
\(84\) 0 0
\(85\) −225.000 389.711i −0.287114 0.497296i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 420.000 0.500224 0.250112 0.968217i \(-0.419533\pi\)
0.250112 + 0.968217i \(0.419533\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −70.0000 121.244i −0.0755984 0.130940i
\(96\) 0 0
\(97\) −769.000 + 1331.95i −0.804950 + 1.39421i 0.111375 + 0.993778i \(0.464474\pi\)
−0.916325 + 0.400435i \(0.868859\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 225.000 389.711i 0.221667 0.383938i −0.733647 0.679530i \(-0.762184\pi\)
0.955314 + 0.295592i \(0.0955170\pi\)
\(102\) 0 0
\(103\) 575.000 + 995.929i 0.550062 + 0.952736i 0.998269 + 0.0588063i \(0.0187294\pi\)
−0.448207 + 0.893930i \(0.647937\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1620.00 1.46366 0.731829 0.681489i \(-0.238667\pi\)
0.731829 + 0.681489i \(0.238667\pi\)
\(108\) 0 0
\(109\) −1702.00 −1.49561 −0.747807 0.663916i \(-0.768893\pi\)
−0.747807 + 0.663916i \(0.768893\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 675.000 + 1169.13i 0.561935 + 0.973300i 0.997328 + 0.0730593i \(0.0232762\pi\)
−0.435393 + 0.900241i \(0.643390\pi\)
\(114\) 0 0
\(115\) −300.000 + 519.615i −0.243262 + 0.421342i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 90.0000 155.885i 0.0693301 0.120083i
\(120\) 0 0
\(121\) 215.500 + 373.257i 0.161908 + 0.280433i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 2450.00 1.71183 0.855915 0.517117i \(-0.172995\pi\)
0.855915 + 0.517117i \(0.172995\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 345.000 + 597.558i 0.230098 + 0.398541i 0.957837 0.287313i \(-0.0927621\pi\)
−0.727739 + 0.685854i \(0.759429\pi\)
\(132\) 0 0
\(133\) 28.0000 48.4974i 0.0182549 0.0316185i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1035.00 1792.67i 0.645445 1.11794i −0.338753 0.940875i \(-0.610005\pi\)
0.984198 0.177069i \(-0.0566615\pi\)
\(138\) 0 0
\(139\) 962.000 + 1666.23i 0.587020 + 1.01675i 0.994620 + 0.103588i \(0.0330323\pi\)
−0.407600 + 0.913160i \(0.633634\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 120.000 0.0701742
\(144\) 0 0
\(145\) 1050.00 0.601364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1455.00 + 2520.13i 0.799988 + 1.38562i 0.919623 + 0.392802i \(0.128494\pi\)
−0.119635 + 0.992818i \(0.538172\pi\)
\(150\) 0 0
\(151\) −88.0000 + 152.420i −0.0474261 + 0.0821444i −0.888764 0.458365i \(-0.848435\pi\)
0.841338 + 0.540510i \(0.181769\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.0000 + 17.3205i −0.00518206 + 0.00897559i
\(156\) 0 0
\(157\) −1174.00 2033.43i −0.596786 1.03366i −0.993292 0.115632i \(-0.963111\pi\)
0.396506 0.918032i \(-0.370223\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −240.000 −0.117482
\(162\) 0 0
\(163\) −1996.00 −0.959134 −0.479567 0.877505i \(-0.659206\pi\)
−0.479567 + 0.877505i \(0.659206\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1560.00 + 2702.00i 0.722853 + 1.25202i 0.959852 + 0.280508i \(0.0905029\pi\)
−0.236999 + 0.971510i \(0.576164\pi\)
\(168\) 0 0
\(169\) 1090.50 1888.80i 0.496359 0.859718i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 885.000 1532.86i 0.388932 0.673651i −0.603374 0.797458i \(-0.706177\pi\)
0.992306 + 0.123808i \(0.0395106\pi\)
\(174\) 0 0
\(175\) −25.0000 43.3013i −0.0107990 0.0187044i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2130.00 0.889406 0.444703 0.895678i \(-0.353309\pi\)
0.444703 + 0.895678i \(0.353309\pi\)
\(180\) 0 0
\(181\) −1654.00 −0.679231 −0.339616 0.940564i \(-0.610297\pi\)
−0.339616 + 0.940564i \(0.610297\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 500.000 + 866.025i 0.198707 + 0.344170i
\(186\) 0 0
\(187\) −1350.00 + 2338.27i −0.527924 + 0.914391i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 870.000 1506.88i 0.329586 0.570860i −0.652843 0.757493i \(-0.726424\pi\)
0.982430 + 0.186633i \(0.0597574\pi\)
\(192\) 0 0
\(193\) −43.0000 74.4782i −0.0160373 0.0277775i 0.857895 0.513824i \(-0.171772\pi\)
−0.873933 + 0.486047i \(0.838438\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2490.00 0.900534 0.450267 0.892894i \(-0.351329\pi\)
0.450267 + 0.892894i \(0.351329\pi\)
\(198\) 0 0
\(199\) −832.000 −0.296376 −0.148188 0.988959i \(-0.547344\pi\)
−0.148188 + 0.988959i \(0.547344\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 210.000 + 363.731i 0.0726065 + 0.125758i
\(204\) 0 0
\(205\) −600.000 + 1039.23i −0.204419 + 0.354063i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −420.000 + 727.461i −0.139005 + 0.240763i
\(210\) 0 0
\(211\) −1042.00 1804.80i −0.339973 0.588850i 0.644455 0.764643i \(-0.277085\pi\)
−0.984427 + 0.175793i \(0.943751\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 680.000 0.215701
\(216\) 0 0
\(217\) −8.00000 −0.00250265
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −180.000 311.769i −0.0547878 0.0948953i
\(222\) 0 0
\(223\) 587.000 1016.71i 0.176271 0.305310i −0.764329 0.644826i \(-0.776930\pi\)
0.940600 + 0.339516i \(0.110263\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1560.00 + 2702.00i −0.456127 + 0.790035i −0.998752 0.0499397i \(-0.984097\pi\)
0.542625 + 0.839975i \(0.317430\pi\)
\(228\) 0 0
\(229\) 29.0000 + 50.2295i 0.00836845 + 0.0144946i 0.870179 0.492735i \(-0.164003\pi\)
−0.861811 + 0.507230i \(0.830670\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5910.00 1.66170 0.830852 0.556494i \(-0.187854\pi\)
0.830852 + 0.556494i \(0.187854\pi\)
\(234\) 0 0
\(235\) −600.000 −0.166552
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1650.00 + 2857.88i 0.446567 + 0.773478i 0.998160 0.0606362i \(-0.0193129\pi\)
−0.551592 + 0.834114i \(0.685980\pi\)
\(240\) 0 0
\(241\) 1493.00 2585.95i 0.399056 0.691186i −0.594553 0.804056i \(-0.702671\pi\)
0.993610 + 0.112870i \(0.0360044\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −847.500 + 1467.91i −0.220999 + 0.382782i
\(246\) 0 0
\(247\) −56.0000 96.9948i −0.0144259 0.0249864i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6630.00 1.66726 0.833629 0.552324i \(-0.186259\pi\)
0.833629 + 0.552324i \(0.186259\pi\)
\(252\) 0 0
\(253\) 3600.00 0.894585
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −765.000 1325.02i −0.185679 0.321605i 0.758126 0.652108i \(-0.226115\pi\)
−0.943805 + 0.330503i \(0.892782\pi\)
\(258\) 0 0
\(259\) −200.000 + 346.410i −0.0479822 + 0.0831076i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1320.00 2286.31i 0.309486 0.536045i −0.668764 0.743474i \(-0.733177\pi\)
0.978250 + 0.207430i \(0.0665098\pi\)
\(264\) 0 0
\(265\) 75.0000 + 129.904i 0.0173857 + 0.0301129i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7350.00 1.66594 0.832969 0.553319i \(-0.186639\pi\)
0.832969 + 0.553319i \(0.186639\pi\)
\(270\) 0 0
\(271\) 3512.00 0.787228 0.393614 0.919276i \(-0.371225\pi\)
0.393614 + 0.919276i \(0.371225\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 375.000 + 649.519i 0.0822304 + 0.142427i
\(276\) 0 0
\(277\) 2684.00 4648.82i 0.582187 1.00838i −0.413032 0.910716i \(-0.635530\pi\)
0.995220 0.0976619i \(-0.0311364\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1530.00 + 2650.04i −0.324812 + 0.562591i −0.981474 0.191594i \(-0.938634\pi\)
0.656662 + 0.754185i \(0.271968\pi\)
\(282\) 0 0
\(283\) 2522.00 + 4368.23i 0.529743 + 0.917542i 0.999398 + 0.0346921i \(0.0110450\pi\)
−0.469655 + 0.882850i \(0.655622\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −480.000 −0.0987230
\(288\) 0 0
\(289\) 3187.00 0.648687
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1005.00 1740.71i −0.200385 0.347077i 0.748268 0.663397i \(-0.230886\pi\)
−0.948652 + 0.316320i \(0.897553\pi\)
\(294\) 0 0
\(295\) 1125.00 1948.56i 0.222034 0.384574i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −240.000 + 415.692i −0.0464199 + 0.0804017i
\(300\) 0 0
\(301\) 136.000 + 235.559i 0.0260429 + 0.0451076i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 830.000 0.155822
\(306\) 0 0
\(307\) −2752.00 −0.511612 −0.255806 0.966728i \(-0.582341\pi\)
−0.255806 + 0.966728i \(0.582341\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4770.00 + 8261.88i 0.869717 + 1.50639i 0.862286 + 0.506421i \(0.169032\pi\)
0.00743035 + 0.999972i \(0.497635\pi\)
\(312\) 0 0
\(313\) −4627.00 + 8014.20i −0.835570 + 1.44725i 0.0579950 + 0.998317i \(0.481529\pi\)
−0.893565 + 0.448933i \(0.851804\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 75.0000 129.904i 0.0132884 0.0230162i −0.859305 0.511464i \(-0.829103\pi\)
0.872593 + 0.488448i \(0.162437\pi\)
\(318\) 0 0
\(319\) −3150.00 5455.96i −0.552872 0.957602i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2520.00 0.434107
\(324\) 0 0
\(325\) −100.000 −0.0170677
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −120.000 207.846i −0.0201089 0.0348296i
\(330\) 0 0
\(331\) −946.000 + 1638.52i −0.157090 + 0.272088i −0.933818 0.357748i \(-0.883545\pi\)
0.776728 + 0.629836i \(0.216878\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2270.00 3931.76i 0.370219 0.641238i
\(336\) 0 0
\(337\) 3689.00 + 6389.54i 0.596299 + 1.03282i 0.993362 + 0.115028i \(0.0366959\pi\)
−0.397064 + 0.917791i \(0.629971\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 120.000 0.0190568
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3360.00 + 5819.69i 0.519811 + 0.900338i 0.999735 + 0.0230283i \(0.00733079\pi\)
−0.479924 + 0.877310i \(0.659336\pi\)
\(348\) 0 0
\(349\) −2593.00 + 4491.21i −0.397708 + 0.688851i −0.993443 0.114331i \(-0.963528\pi\)
0.595735 + 0.803181i \(0.296861\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1665.00 2883.86i 0.251045 0.434823i −0.712769 0.701399i \(-0.752559\pi\)
0.963814 + 0.266576i \(0.0858923\pi\)
\(354\) 0 0
\(355\) 2550.00 + 4416.73i 0.381239 + 0.660326i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9000.00 −1.32312 −0.661562 0.749890i \(-0.730106\pi\)
−0.661562 + 0.749890i \(0.730106\pi\)
\(360\) 0 0
\(361\) −6075.00 −0.885698
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −625.000 1082.53i −0.0896274 0.155239i
\(366\) 0 0
\(367\) 4379.00 7584.65i 0.622839 1.07879i −0.366115 0.930569i \(-0.619312\pi\)
0.988954 0.148219i \(-0.0473542\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −30.0000 + 51.9615i −0.00419817 + 0.00727145i
\(372\) 0 0
\(373\) −2362.00 4091.10i −0.327881 0.567907i 0.654210 0.756313i \(-0.273001\pi\)
−0.982091 + 0.188406i \(0.939668\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 840.000 0.114754
\(378\) 0 0
\(379\) 7292.00 0.988298 0.494149 0.869377i \(-0.335480\pi\)
0.494149 + 0.869377i \(0.335480\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7260.00 + 12574.7i 0.968587 + 1.67764i 0.699653 + 0.714482i \(0.253338\pi\)
0.268933 + 0.963159i \(0.413329\pi\)
\(384\) 0 0
\(385\) −150.000 + 259.808i −0.0198564 + 0.0343923i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3555.00 6157.44i 0.463356 0.802557i −0.535769 0.844364i \(-0.679978\pi\)
0.999126 + 0.0418076i \(0.0133116\pi\)
\(390\) 0 0
\(391\) −5400.00 9353.07i −0.698439 1.20973i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4580.00 0.583405
\(396\) 0 0
\(397\) −11488.0 −1.45231 −0.726154 0.687532i \(-0.758694\pi\)
−0.726154 + 0.687532i \(0.758694\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 390.000 + 675.500i 0.0485678 + 0.0841218i 0.889287 0.457349i \(-0.151201\pi\)
−0.840720 + 0.541471i \(0.817868\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.000988855 + 0.00171275i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3000.00 5196.15i 0.365367 0.632835i
\(408\) 0 0
\(409\) −2701.00 4678.27i −0.326542 0.565588i 0.655281 0.755385i \(-0.272550\pi\)
−0.981823 + 0.189797i \(0.939217\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 900.000 0.107230
\(414\) 0 0
\(415\) −5700.00 −0.674222
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1095.00 1896.60i −0.127671 0.221133i 0.795103 0.606475i \(-0.207417\pi\)
−0.922774 + 0.385342i \(0.874084\pi\)
\(420\) 0 0
\(421\) 3581.00 6202.47i 0.414554 0.718029i −0.580827 0.814027i \(-0.697271\pi\)
0.995382 + 0.0959980i \(0.0306042\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1125.00 1948.56i 0.128401 0.222397i
\(426\) 0 0
\(427\) 166.000 + 287.520i 0.0188134 + 0.0325857i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9360.00 −1.04607 −0.523034 0.852312i \(-0.675200\pi\)
−0.523034 + 0.852312i \(0.675200\pi\)
\(432\) 0 0
\(433\) 12806.0 1.42129 0.710643 0.703552i \(-0.248404\pi\)
0.710643 + 0.703552i \(0.248404\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1680.00 2909.85i −0.183902 0.318528i
\(438\) 0 0
\(439\) −5644.00 + 9775.69i −0.613607 + 1.06280i 0.377020 + 0.926205i \(0.376949\pi\)
−0.990627 + 0.136593i \(0.956385\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4260.00 + 7378.54i −0.456882 + 0.791343i −0.998794 0.0490923i \(-0.984367\pi\)
0.541912 + 0.840435i \(0.317700\pi\)
\(444\) 0 0
\(445\) 1050.00 + 1818.65i 0.111853 + 0.193736i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1260.00 0.132434 0.0662172 0.997805i \(-0.478907\pi\)
0.0662172 + 0.997805i \(0.478907\pi\)
\(450\) 0 0
\(451\) 7200.00 0.751740
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −20.0000 34.6410i −0.00206069 0.00356922i
\(456\) 0 0
\(457\) 6875.00 11907.8i 0.703718 1.21887i −0.263435 0.964677i \(-0.584855\pi\)
0.967152 0.254197i \(-0.0818113\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1605.00 + 2779.94i −0.162152 + 0.280856i −0.935640 0.352955i \(-0.885177\pi\)
0.773488 + 0.633811i \(0.218510\pi\)
\(462\) 0 0
\(463\) 6425.00 + 11128.4i 0.644914 + 1.11702i 0.984321 + 0.176384i \(0.0564401\pi\)
−0.339408 + 0.940639i \(0.610227\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8220.00 0.814510 0.407255 0.913314i \(-0.366486\pi\)
0.407255 + 0.913314i \(0.366486\pi\)
\(468\) 0 0
\(469\) 1816.00 0.178795
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2040.00 3533.38i −0.198307 0.343478i
\(474\) 0 0
\(475\) 350.000 606.218i 0.0338086 0.0585583i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3510.00 + 6079.50i −0.334814 + 0.579915i −0.983449 0.181184i \(-0.942007\pi\)
0.648635 + 0.761100i \(0.275340\pi\)
\(480\) 0 0
\(481\) 400.000 + 692.820i 0.0379177 + 0.0656754i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7690.00 −0.719969
\(486\) 0 0
\(487\) −8122.00 −0.755735 −0.377868 0.925860i \(-0.623343\pi\)
−0.377868 + 0.925860i \(0.623343\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6735.00 11665.4i −0.619035 1.07220i −0.989662 0.143419i \(-0.954190\pi\)
0.370627 0.928782i \(-0.379143\pi\)
\(492\) 0 0
\(493\) −9450.00 + 16367.9i −0.863299 + 1.49528i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1020.00 + 1766.69i −0.0920589 + 0.159451i
\(498\) 0 0
\(499\) −1234.00 2137.35i −0.110704 0.191745i 0.805350 0.592799i \(-0.201977\pi\)
−0.916054 + 0.401054i \(0.868644\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4440.00 0.393578 0.196789 0.980446i \(-0.436949\pi\)
0.196789 + 0.980446i \(0.436949\pi\)
\(504\) 0 0
\(505\) 2250.00 0.198265
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5595.00 9690.82i −0.487218 0.843887i 0.512674 0.858583i \(-0.328655\pi\)
−0.999892 + 0.0146969i \(0.995322\pi\)
\(510\) 0 0
\(511\) 250.000 433.013i 0.0216426 0.0374860i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2875.00 + 4979.65i −0.245995 + 0.426077i
\(516\) 0 0
\(517\) 1800.00 + 3117.69i 0.153122 + 0.265215i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4020.00 0.338041 0.169021 0.985613i \(-0.445940\pi\)
0.169021 + 0.985613i \(0.445940\pi\)
\(522\) 0 0
\(523\) −9076.00 −0.758826 −0.379413 0.925228i \(-0.623874\pi\)
−0.379413 + 0.925228i \(0.623874\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −180.000 311.769i −0.0148784 0.0257702i
\(528\) 0 0
\(529\) −1116.50 + 1933.83i −0.0917646 + 0.158941i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −480.000 + 831.384i −0.0390077 + 0.0675633i
\(534\) 0 0
\(535\) 4050.00 + 7014.81i 0.327284 + 0.566872i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10170.0 0.812714
\(540\) 0 0
\(541\) −7486.00 −0.594914 −0.297457 0.954735i \(-0.596138\pi\)
−0.297457 + 0.954735i \(0.596138\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4255.00 7369.88i −0.334430 0.579249i
\(546\) 0 0
\(547\) −3700.00 + 6408.59i −0.289215 + 0.500935i −0.973623 0.228165i \(-0.926728\pi\)
0.684408 + 0.729100i \(0.260061\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2940.00 + 5092.23i −0.227311 + 0.393714i
\(552\) 0 0
\(553\) 916.000 + 1586.56i 0.0704381 + 0.122002i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11490.0 −0.874052 −0.437026 0.899449i \(-0.643968\pi\)
−0.437026 + 0.899449i \(0.643968\pi\)
\(558\) 0 0
\(559\) 544.000 0.0411606
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9660.00 16731.6i −0.723127 1.25249i −0.959740 0.280889i \(-0.909371\pi\)
0.236613 0.971604i \(-0.423963\pi\)
\(564\) 0 0
\(565\) −3375.00 + 5845.67i −0.251305 + 0.435273i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4170.00 7222.65i 0.307233 0.532143i −0.670523 0.741889i \(-0.733930\pi\)
0.977756 + 0.209746i \(0.0672636\pi\)
\(570\) 0 0
\(571\) −10522.0 18224.6i −0.771159 1.33569i −0.936928 0.349523i \(-0.886344\pi\)
0.165769 0.986165i \(-0.446990\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3000.00 −0.217580
\(576\) 0 0
\(577\) 1418.00 0.102309 0.0511543 0.998691i \(-0.483710\pi\)
0.0511543 + 0.998691i \(0.483710\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1140.00 1974.54i −0.0814030 0.140994i
\(582\) 0 0
\(583\) 450.000 779.423i 0.0319676 0.0553695i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11010.0 + 19069.9i −0.774159 + 1.34088i 0.161107 + 0.986937i \(0.448494\pi\)
−0.935266 + 0.353946i \(0.884840\pi\)
\(588\) 0 0
\(589\) −56.0000 96.9948i −0.00391755 0.00678540i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25230.0 −1.74717 −0.873585 0.486671i \(-0.838211\pi\)
−0.873585 + 0.486671i \(0.838211\pi\)
\(594\) 0 0
\(595\) 900.000 0.0620108
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4140.00 + 7170.69i 0.282397 + 0.489126i 0.971975 0.235086i \(-0.0755371\pi\)
−0.689578 + 0.724212i \(0.742204\pi\)
\(600\) 0 0
\(601\) 9437.00 16345.4i 0.640505 1.10939i −0.344816 0.938670i \(-0.612059\pi\)
0.985320 0.170716i \(-0.0546081\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1077.50 + 1866.28i −0.0724076 + 0.125414i
\(606\) 0 0
\(607\) −5275.00 9136.57i −0.352728 0.610942i 0.633999 0.773334i \(-0.281412\pi\)
−0.986726 + 0.162392i \(0.948079\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −480.000 −0.0317819
\(612\) 0 0
\(613\) 11000.0 0.724773 0.362386 0.932028i \(-0.381962\pi\)
0.362386 + 0.932028i \(0.381962\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5655.00 9794.75i −0.368982 0.639095i 0.620425 0.784266i \(-0.286960\pi\)
−0.989407 + 0.145171i \(0.953627\pi\)
\(618\) 0 0
\(619\) 8786.00 15217.8i 0.570499 0.988134i −0.426015 0.904716i \(-0.640083\pi\)
0.996515 0.0834180i \(-0.0265837\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −420.000 + 727.461i −0.0270095 + 0.0467819i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18000.0 −1.14103
\(630\) 0 0
\(631\) 1604.00 0.101195 0.0505976 0.998719i \(-0.483887\pi\)
0.0505976 + 0.998719i \(0.483887\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6125.00 + 10608.8i 0.382777 + 0.662989i
\(636\) 0 0
\(637\) −678.000 + 1174.33i −0.0421716 + 0.0730434i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15660.0 27123.9i 0.964950 1.67134i 0.255200 0.966888i \(-0.417859\pi\)
0.709750 0.704454i \(-0.248808\pi\)
\(642\) 0 0
\(643\) 15650.0 + 27106.6i 0.959838 + 1.66249i 0.722887 + 0.690966i \(0.242815\pi\)
0.236951 + 0.971522i \(0.423852\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10920.0 −0.663539 −0.331769 0.943361i \(-0.607646\pi\)
−0.331769 + 0.943361i \(0.607646\pi\)
\(648\) 0 0
\(649\) −13500.0 −0.816520
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1605.00 2779.94i −0.0961845 0.166597i 0.813918 0.580980i \(-0.197331\pi\)
−0.910102 + 0.414384i \(0.863997\pi\)
\(654\) 0 0
\(655\) −1725.00 + 2987.79i −0.102903 + 0.178233i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5955.00 + 10314.4i −0.352009 + 0.609697i −0.986601 0.163150i \(-0.947835\pi\)
0.634592 + 0.772847i \(0.281168\pi\)
\(660\) 0 0
\(661\) 1691.00 + 2928.90i 0.0995042 + 0.172346i 0.911480 0.411345i \(-0.134941\pi\)
−0.811975 + 0.583692i \(0.801608\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 280.000 0.0163277
\(666\) 0 0
\(667\) 25200.0 1.46289
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2490.00 4312.81i −0.143257 0.248128i
\(672\) 0 0
\(673\) −7975.00 + 13813.1i −0.456781 + 0.791168i −0.998789 0.0492056i \(-0.984331\pi\)
0.542008 + 0.840374i \(0.317664\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16095.0 27877.4i 0.913709 1.58259i 0.104929 0.994480i \(-0.466538\pi\)
0.808780 0.588111i \(-0.200128\pi\)
\(678\) 0 0
\(679\) −1538.00 2663.89i −0.0869264 0.150561i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22140.0 −1.24036 −0.620178 0.784461i \(-0.712940\pi\)
−0.620178 + 0.784461i \(0.712940\pi\)
\(684\) 0 0
\(685\) 10350.0 0.577304
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 60.0000 + 103.923i 0.00331759 + 0.00574623i
\(690\) 0 0
\(691\) 3086.00 5345.11i 0.169894 0.294266i −0.768488 0.639864i \(-0.778991\pi\)
0.938383 + 0.345598i \(0.112324\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4810.00 + 8331.16i −0.262523 + 0.454704i
\(696\) 0 0
\(697\) −10800.0 18706.1i −0.586914 1.01657i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −19170.0 −1.03287 −0.516434 0.856327i \(-0.672741\pi\)
−0.516434 + 0.856327i \(0.672741\pi\)
\(702\) 0 0
\(703\) −5600.00 −0.300438
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 450.000 + 779.423i 0.0239378 + 0.0414614i
\(708\) 0 0
\(709\) 10949.0 18964.2i 0.579969 1.00454i −0.415513 0.909587i \(-0.636398\pi\)
0.995482 0.0949491i \(-0.0302688\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −240.000 + 415.692i −0.0126060 + 0.0218342i
\(714\) 0 0
\(715\) 300.000 + 519.615i 0.0156914 + 0.0271783i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16680.0 −0.865173 −0.432586 0.901593i \(-0.642399\pi\)
−0.432586 + 0.901593i \(0.642399\pi\)
\(720\) 0 0
\(721\) −2300.00 −0.118802
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2625.00 + 4546.63i 0.134469 + 0.232907i
\(726\) 0 0
\(727\) −3259.00 + 5644.75i −0.166258 + 0.287967i −0.937101 0.349057i \(-0.886502\pi\)
0.770843 + 0.637025i \(0.219835\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6120.00 + 10600.2i −0.309653 + 0.536335i
\(732\) 0 0
\(733\) 11600.0 + 20091.8i 0.584524 + 1.01242i 0.994935 + 0.100524i \(0.0320519\pi\)
−0.410411 + 0.911901i \(0.634615\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27240.0 −1.36146
\(738\) 0 0
\(739\) −16324.0 −0.812568 −0.406284 0.913747i \(-0.633176\pi\)
−0.406284 + 0.913747i \(0.633176\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −60.0000 103.923i −0.00296257 0.00513131i 0.864540 0.502563i \(-0.167610\pi\)
−0.867503 + 0.497432i \(0.834276\pi\)
\(744\) 0 0
\(745\) −7275.00 + 12600.7i −0.357766 + 0.619668i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1620.00 + 2805.92i −0.0790301 + 0.136884i
\(750\) 0 0
\(751\) −15274.0 26455.3i −0.742152 1.28545i −0.951514 0.307607i \(-0.900472\pi\)
0.209362 0.977838i \(-0.432861\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −880.000 −0.0424192
\(756\) 0 0
\(757\) 16952.0 0.813911 0.406956 0.913448i \(-0.366590\pi\)
0.406956 + 0.913448i \(0.366590\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10110.0 17511.0i −0.481586 0.834132i 0.518190 0.855265i \(-0.326606\pi\)
−0.999777 + 0.0211333i \(0.993273\pi\)
\(762\) 0 0
\(763\) 1702.00 2947.95i 0.0807556 0.139873i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 900.000 1558.85i 0.0423691 0.0733855i
\(768\) 0 0
\(769\) 10361.0 + 17945.8i 0.485861 + 0.841536i 0.999868 0.0162499i \(-0.00517274\pi\)
−0.514007 + 0.857786i \(0.671839\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4350.00 −0.202404 −0.101202 0.994866i \(-0.532269\pi\)
−0.101202 + 0.994866i \(0.532269\pi\)
\(774\) 0 0
\(775\) −100.000 −0.00463498
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3360.00 5819.69i −0.154537 0.267666i
\(780\) 0 0
\(781\) 15300.0 26500.4i 0.700995 1.21416i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5870.00 10167.1i 0.266891 0.462268i
\(786\) 0 0
\(787\) −20986.0 36348.8i −0.950534 1.64637i −0.744273 0.667876i \(-0.767204\pi\)
−0.206261 0.978497i \(-0.566130\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2700.00 −0.121367
\(792\) 0 0
\(793\) 664.000 0.0297343
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19755.0 34216.7i −0.877990 1.52072i −0.853543 0.521022i \(-0.825551\pi\)
−0.0244468 0.999701i \(-0.507782\pi\)
\(798\) 0 0