Properties

Label 1620.4.i.g.1081.1
Level $1620$
Weight $4$
Character 1620.1081
Analytic conductor $95.583$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(95.5830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1620.1081
Dual form 1620.4.i.g.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 4.33013i) q^{5} +(-16.0000 - 27.7128i) q^{7} +(18.0000 + 31.1769i) q^{11} +(5.00000 - 8.66025i) q^{13} +78.0000 q^{17} +140.000 q^{19} +(-96.0000 + 166.277i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(3.00000 + 5.19615i) q^{29} +(8.00000 - 13.8564i) q^{31} -160.000 q^{35} -34.0000 q^{37} +(-195.000 + 337.750i) q^{41} +(26.0000 + 45.0333i) q^{43} +(204.000 + 353.338i) q^{47} +(-340.500 + 589.763i) q^{49} +114.000 q^{53} +180.000 q^{55} +(258.000 - 446.869i) q^{59} +(29.0000 + 50.2295i) q^{61} +(-25.0000 - 43.3013i) q^{65} +(446.000 - 772.495i) q^{67} +120.000 q^{71} -646.000 q^{73} +(576.000 - 997.661i) q^{77} +(584.000 + 1011.52i) q^{79} +(-366.000 - 633.931i) q^{83} +(195.000 - 337.750i) q^{85} +1590.00 q^{89} -320.000 q^{91} +(350.000 - 606.218i) q^{95} +(-97.0000 - 168.009i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{5} - 32 q^{7} + 36 q^{11} + 10 q^{13} + 156 q^{17} + 280 q^{19} - 192 q^{23} - 25 q^{25} + 6 q^{29} + 16 q^{31} - 320 q^{35} - 68 q^{37} - 390 q^{41} + 52 q^{43} + 408 q^{47} - 681 q^{49} + 228 q^{53}+ \cdots - 194 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) −16.0000 27.7128i −0.863919 1.49635i −0.868117 0.496360i \(-0.834670\pi\)
0.00419795 0.999991i \(-0.498664\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 18.0000 + 31.1769i 0.493382 + 0.854563i 0.999971 0.00762479i \(-0.00242707\pi\)
−0.506589 + 0.862188i \(0.669094\pi\)
\(12\) 0 0
\(13\) 5.00000 8.66025i 0.106673 0.184763i −0.807747 0.589529i \(-0.799313\pi\)
0.914421 + 0.404765i \(0.132647\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 78.0000 1.11281 0.556405 0.830911i \(-0.312180\pi\)
0.556405 + 0.830911i \(0.312180\pi\)
\(18\) 0 0
\(19\) 140.000 1.69043 0.845216 0.534425i \(-0.179472\pi\)
0.845216 + 0.534425i \(0.179472\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −96.0000 + 166.277i −0.870321 + 1.50744i −0.00865615 + 0.999963i \(0.502755\pi\)
−0.861665 + 0.507478i \(0.830578\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.0192099 + 0.0332725i 0.875471 0.483272i \(-0.160552\pi\)
−0.856261 + 0.516544i \(0.827218\pi\)
\(30\) 0 0
\(31\) 8.00000 13.8564i 0.0463498 0.0802801i −0.841920 0.539603i \(-0.818574\pi\)
0.888270 + 0.459323i \(0.151908\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −160.000 −0.772712
\(36\) 0 0
\(37\) −34.0000 −0.151069 −0.0755347 0.997143i \(-0.524066\pi\)
−0.0755347 + 0.997143i \(0.524066\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −195.000 + 337.750i −0.742778 + 1.28653i 0.208448 + 0.978033i \(0.433159\pi\)
−0.951226 + 0.308495i \(0.900175\pi\)
\(42\) 0 0
\(43\) 26.0000 + 45.0333i 0.0922084 + 0.159710i 0.908440 0.418015i \(-0.137274\pi\)
−0.816232 + 0.577725i \(0.803941\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 204.000 + 353.338i 0.633116 + 1.09659i 0.986911 + 0.161266i \(0.0515578\pi\)
−0.353795 + 0.935323i \(0.615109\pi\)
\(48\) 0 0
\(49\) −340.500 + 589.763i −0.992711 + 1.71943i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 114.000 0.295455 0.147727 0.989028i \(-0.452804\pi\)
0.147727 + 0.989028i \(0.452804\pi\)
\(54\) 0 0
\(55\) 180.000 0.441294
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 258.000 446.869i 0.569301 0.986058i −0.427335 0.904094i \(-0.640547\pi\)
0.996635 0.0819641i \(-0.0261193\pi\)
\(60\) 0 0
\(61\) 29.0000 + 50.2295i 0.0608700 + 0.105430i 0.894855 0.446358i \(-0.147279\pi\)
−0.833985 + 0.551788i \(0.813946\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −25.0000 43.3013i −0.0477057 0.0826286i
\(66\) 0 0
\(67\) 446.000 772.495i 0.813247 1.40859i −0.0973322 0.995252i \(-0.531031\pi\)
0.910580 0.413334i \(-0.135636\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 120.000 0.200583 0.100291 0.994958i \(-0.468022\pi\)
0.100291 + 0.994958i \(0.468022\pi\)
\(72\) 0 0
\(73\) −646.000 −1.03573 −0.517867 0.855461i \(-0.673274\pi\)
−0.517867 + 0.855461i \(0.673274\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 576.000 997.661i 0.852484 1.47655i
\(78\) 0 0
\(79\) 584.000 + 1011.52i 0.831711 + 1.44056i 0.896681 + 0.442678i \(0.145971\pi\)
−0.0649702 + 0.997887i \(0.520695\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −366.000 633.931i −0.484021 0.838348i 0.515811 0.856703i \(-0.327491\pi\)
−0.999832 + 0.0183540i \(0.994157\pi\)
\(84\) 0 0
\(85\) 195.000 337.750i 0.248832 0.430990i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1590.00 1.89370 0.946852 0.321669i \(-0.104244\pi\)
0.946852 + 0.321669i \(0.104244\pi\)
\(90\) 0 0
\(91\) −320.000 −0.368628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 350.000 606.218i 0.377992 0.654701i
\(96\) 0 0
\(97\) −97.0000 168.009i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 399.000 + 691.088i 0.393089 + 0.680850i 0.992855 0.119325i \(-0.0380731\pi\)
−0.599766 + 0.800175i \(0.704740\pi\)
\(102\) 0 0
\(103\) −136.000 + 235.559i −0.130102 + 0.225343i −0.923716 0.383079i \(-0.874864\pi\)
0.793614 + 0.608422i \(0.208197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −156.000 −0.140945 −0.0704724 0.997514i \(-0.522451\pi\)
−0.0704724 + 0.997514i \(0.522451\pi\)
\(108\) 0 0
\(109\) 1622.00 1.42532 0.712658 0.701512i \(-0.247491\pi\)
0.712658 + 0.701512i \(0.247491\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 537.000 930.111i 0.447051 0.774314i −0.551142 0.834411i \(-0.685808\pi\)
0.998193 + 0.0600972i \(0.0191411\pi\)
\(114\) 0 0
\(115\) 480.000 + 831.384i 0.389219 + 0.674148i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1248.00 2161.60i −0.961378 1.66516i
\(120\) 0 0
\(121\) 17.5000 30.3109i 0.0131480 0.0227730i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1528.00 −1.06762 −0.533811 0.845604i \(-0.679241\pi\)
−0.533811 + 0.845604i \(0.679241\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1206.00 2088.85i 0.804341 1.39316i −0.112394 0.993664i \(-0.535852\pi\)
0.916735 0.399496i \(-0.130815\pi\)
\(132\) 0 0
\(133\) −2240.00 3879.79i −1.46040 2.52948i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1053.00 + 1823.85i 0.656671 + 1.13739i 0.981472 + 0.191605i \(0.0613691\pi\)
−0.324802 + 0.945782i \(0.605298\pi\)
\(138\) 0 0
\(139\) 278.000 481.510i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 360.000 0.210522
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1209.00 + 2094.05i −0.664732 + 1.15135i 0.314625 + 0.949216i \(0.398121\pi\)
−0.979358 + 0.202134i \(0.935212\pi\)
\(150\) 0 0
\(151\) −1420.00 2459.51i −0.765285 1.32551i −0.940096 0.340910i \(-0.889265\pi\)
0.174812 0.984602i \(-0.444068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −40.0000 69.2820i −0.0207282 0.0359024i
\(156\) 0 0
\(157\) −1027.00 + 1778.82i −0.522061 + 0.904236i 0.477610 + 0.878572i \(0.341503\pi\)
−0.999671 + 0.0256636i \(0.991830\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6144.00 3.00755
\(162\) 0 0
\(163\) −460.000 −0.221043 −0.110521 0.993874i \(-0.535252\pi\)
−0.110521 + 0.993874i \(0.535252\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1008.00 1745.91i 0.467074 0.808996i −0.532218 0.846607i \(-0.678641\pi\)
0.999292 + 0.0376110i \(0.0119748\pi\)
\(168\) 0 0
\(169\) 1048.50 + 1816.06i 0.477242 + 0.826607i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −309.000 535.204i −0.135797 0.235207i 0.790105 0.612972i \(-0.210026\pi\)
−0.925902 + 0.377765i \(0.876693\pi\)
\(174\) 0 0
\(175\) −400.000 + 692.820i −0.172784 + 0.299270i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2964.00 1.23765 0.618826 0.785528i \(-0.287609\pi\)
0.618826 + 0.785528i \(0.287609\pi\)
\(180\) 0 0
\(181\) −370.000 −0.151944 −0.0759721 0.997110i \(-0.524206\pi\)
−0.0759721 + 0.997110i \(0.524206\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −85.0000 + 147.224i −0.0337801 + 0.0585089i
\(186\) 0 0
\(187\) 1404.00 + 2431.80i 0.549041 + 0.950967i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 552.000 + 956.092i 0.209117 + 0.362201i 0.951437 0.307845i \(-0.0996078\pi\)
−0.742320 + 0.670046i \(0.766274\pi\)
\(192\) 0 0
\(193\) 1199.00 2076.73i 0.447181 0.774540i −0.551020 0.834492i \(-0.685761\pi\)
0.998201 + 0.0599518i \(0.0190947\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1278.00 −0.462202 −0.231101 0.972930i \(-0.574233\pi\)
−0.231101 + 0.972930i \(0.574233\pi\)
\(198\) 0 0
\(199\) 4472.00 1.59302 0.796512 0.604623i \(-0.206676\pi\)
0.796512 + 0.604623i \(0.206676\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 96.0000 166.277i 0.0331915 0.0574894i
\(204\) 0 0
\(205\) 975.000 + 1688.75i 0.332180 + 0.575353i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2520.00 + 4364.77i 0.834029 + 1.44458i
\(210\) 0 0
\(211\) −670.000 + 1160.47i −0.218600 + 0.378627i −0.954380 0.298594i \(-0.903482\pi\)
0.735780 + 0.677221i \(0.236816\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 260.000 0.0824737
\(216\) 0 0
\(217\) −512.000 −0.160170
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 390.000 675.500i 0.118707 0.205606i
\(222\) 0 0
\(223\) −1180.00 2043.82i −0.354344 0.613741i 0.632662 0.774428i \(-0.281962\pi\)
−0.987005 + 0.160687i \(0.948629\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 690.000 + 1195.12i 0.201748 + 0.349439i 0.949092 0.314999i \(-0.102004\pi\)
−0.747343 + 0.664438i \(0.768671\pi\)
\(228\) 0 0
\(229\) −847.000 + 1467.05i −0.244416 + 0.423341i −0.961967 0.273164i \(-0.911930\pi\)
0.717551 + 0.696506i \(0.245263\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5190.00 1.45926 0.729631 0.683841i \(-0.239692\pi\)
0.729631 + 0.683841i \(0.239692\pi\)
\(234\) 0 0
\(235\) 2040.00 0.566276
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1176.00 2036.89i 0.318281 0.551279i −0.661849 0.749638i \(-0.730228\pi\)
0.980129 + 0.198359i \(0.0635612\pi\)
\(240\) 0 0
\(241\) 1751.00 + 3032.82i 0.468016 + 0.810627i 0.999332 0.0365464i \(-0.0116357\pi\)
−0.531316 + 0.847174i \(0.678302\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1702.50 + 2948.82i 0.443954 + 0.768951i
\(246\) 0 0
\(247\) 700.000 1212.44i 0.180324 0.312330i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4788.00 −1.20405 −0.602024 0.798478i \(-0.705639\pi\)
−0.602024 + 0.798478i \(0.705639\pi\)
\(252\) 0 0
\(253\) −6912.00 −1.71760
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 753.000 1304.23i 0.182766 0.316560i −0.760055 0.649858i \(-0.774828\pi\)
0.942821 + 0.333298i \(0.108162\pi\)
\(258\) 0 0
\(259\) 544.000 + 942.236i 0.130512 + 0.226053i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −216.000 374.123i −0.0506431 0.0877164i 0.839593 0.543217i \(-0.182794\pi\)
−0.890236 + 0.455500i \(0.849460\pi\)
\(264\) 0 0
\(265\) 285.000 493.634i 0.0660657 0.114429i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −54.0000 −0.0122395 −0.00611977 0.999981i \(-0.501948\pi\)
−0.00611977 + 0.999981i \(0.501948\pi\)
\(270\) 0 0
\(271\) −6496.00 −1.45610 −0.728051 0.685522i \(-0.759574\pi\)
−0.728051 + 0.685522i \(0.759574\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 450.000 779.423i 0.0986764 0.170913i
\(276\) 0 0
\(277\) 233.000 + 403.568i 0.0505401 + 0.0875381i 0.890189 0.455592i \(-0.150572\pi\)
−0.839649 + 0.543130i \(0.817239\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2427.00 4203.69i −0.515241 0.892423i −0.999844 0.0176890i \(-0.994369\pi\)
0.484603 0.874734i \(-0.338964\pi\)
\(282\) 0 0
\(283\) 2258.00 3910.97i 0.474290 0.821495i −0.525276 0.850932i \(-0.676038\pi\)
0.999567 + 0.0294368i \(0.00937136\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12480.0 2.56680
\(288\) 0 0
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4287.00 7425.30i 0.854775 1.48051i −0.0220777 0.999756i \(-0.507028\pi\)
0.876853 0.480758i \(-0.159639\pi\)
\(294\) 0 0
\(295\) −1290.00 2234.35i −0.254599 0.440978i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 960.000 + 1662.77i 0.185680 + 0.321607i
\(300\) 0 0
\(301\) 832.000 1441.07i 0.159321 0.275952i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 290.000 0.0544438
\(306\) 0 0
\(307\) 3476.00 0.646208 0.323104 0.946363i \(-0.395274\pi\)
0.323104 + 0.946363i \(0.395274\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1212.00 2099.25i 0.220985 0.382757i −0.734123 0.679017i \(-0.762406\pi\)
0.955107 + 0.296260i \(0.0957396\pi\)
\(312\) 0 0
\(313\) 779.000 + 1349.27i 0.140676 + 0.243659i 0.927751 0.373199i \(-0.121739\pi\)
−0.787075 + 0.616857i \(0.788406\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4269.00 7394.12i −0.756375 1.31008i −0.944688 0.327971i \(-0.893635\pi\)
0.188313 0.982109i \(-0.439698\pi\)
\(318\) 0 0
\(319\) −108.000 + 187.061i −0.0189556 + 0.0328321i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10920.0 1.88113
\(324\) 0 0
\(325\) −250.000 −0.0426692
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6528.00 11306.8i 1.09392 1.89473i
\(330\) 0 0
\(331\) 494.000 + 855.633i 0.0820323 + 0.142084i 0.904123 0.427273i \(-0.140526\pi\)
−0.822090 + 0.569357i \(0.807192\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2230.00 3862.47i −0.363695 0.629939i
\(336\) 0 0
\(337\) −1273.00 + 2204.90i −0.205771 + 0.356405i −0.950378 0.311097i \(-0.899303\pi\)
0.744607 + 0.667503i \(0.232637\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 576.000 0.0914726
\(342\) 0 0
\(343\) 10816.0 1.70265
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4278.00 7409.71i 0.661830 1.14632i −0.318304 0.947989i \(-0.603113\pi\)
0.980134 0.198335i \(-0.0635533\pi\)
\(348\) 0 0
\(349\) 1853.00 + 3209.49i 0.284209 + 0.492264i 0.972417 0.233249i \(-0.0749358\pi\)
−0.688208 + 0.725513i \(0.741602\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5697.00 + 9867.49i 0.858982 + 1.48780i 0.872901 + 0.487898i \(0.162236\pi\)
−0.0139186 + 0.999903i \(0.504431\pi\)
\(354\) 0 0
\(355\) 300.000 519.615i 0.0448517 0.0776854i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 264.000 0.0388117 0.0194058 0.999812i \(-0.493823\pi\)
0.0194058 + 0.999812i \(0.493823\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1615.00 + 2797.26i −0.231597 + 0.401138i
\(366\) 0 0
\(367\) −5116.00 8861.17i −0.727665 1.26035i −0.957868 0.287210i \(-0.907272\pi\)
0.230203 0.973143i \(-0.426061\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1824.00 3159.26i −0.255249 0.442104i
\(372\) 0 0
\(373\) 281.000 486.706i 0.0390070 0.0675622i −0.845863 0.533401i \(-0.820914\pi\)
0.884870 + 0.465838i \(0.154247\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 60.0000 0.00819670
\(378\) 0 0
\(379\) −7228.00 −0.979624 −0.489812 0.871828i \(-0.662935\pi\)
−0.489812 + 0.871828i \(0.662935\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2868.00 + 4967.52i −0.382632 + 0.662738i −0.991438 0.130582i \(-0.958316\pi\)
0.608806 + 0.793319i \(0.291649\pi\)
\(384\) 0 0
\(385\) −2880.00 4988.31i −0.381243 0.660332i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4593.00 7955.31i −0.598649 1.03689i −0.993021 0.117939i \(-0.962371\pi\)
0.394372 0.918951i \(-0.370962\pi\)
\(390\) 0 0
\(391\) −7488.00 + 12969.6i −0.968502 + 1.67750i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5840.00 0.743905
\(396\) 0 0
\(397\) −394.000 −0.0498093 −0.0249047 0.999690i \(-0.507928\pi\)
−0.0249047 + 0.999690i \(0.507928\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −807.000 + 1397.77i −0.100498 + 0.174067i −0.911890 0.410435i \(-0.865377\pi\)
0.811392 + 0.584502i \(0.198710\pi\)
\(402\) 0 0
\(403\) −80.0000 138.564i −0.00988855 0.0171275i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −612.000 1060.02i −0.0745349 0.129098i
\(408\) 0 0
\(409\) −517.000 + 895.470i −0.0625037 + 0.108260i −0.895584 0.444893i \(-0.853242\pi\)
0.833080 + 0.553152i \(0.186575\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16512.0 −1.96732
\(414\) 0 0
\(415\) −3660.00 −0.432921
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1854.00 3211.22i 0.216167 0.374412i −0.737466 0.675384i \(-0.763978\pi\)
0.953633 + 0.300972i \(0.0973112\pi\)
\(420\) 0 0
\(421\) 2465.00 + 4269.51i 0.285360 + 0.494259i 0.972697 0.232081i \(-0.0745534\pi\)
−0.687336 + 0.726340i \(0.741220\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −975.000 1688.75i −0.111281 0.192744i
\(426\) 0 0
\(427\) 928.000 1607.34i 0.105173 0.182166i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2592.00 0.289680 0.144840 0.989455i \(-0.453733\pi\)
0.144840 + 0.989455i \(0.453733\pi\)
\(432\) 0 0
\(433\) 2162.00 0.239952 0.119976 0.992777i \(-0.461718\pi\)
0.119976 + 0.992777i \(0.461718\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13440.0 + 23278.8i −1.47122 + 2.54822i
\(438\) 0 0
\(439\) −676.000 1170.87i −0.0734937 0.127295i 0.826937 0.562295i \(-0.190082\pi\)
−0.900430 + 0.435000i \(0.856748\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2766.00 + 4790.85i 0.296652 + 0.513816i 0.975368 0.220585i \(-0.0707967\pi\)
−0.678716 + 0.734401i \(0.737463\pi\)
\(444\) 0 0
\(445\) 3975.00 6884.90i 0.423445 0.733428i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3198.00 0.336131 0.168066 0.985776i \(-0.446248\pi\)
0.168066 + 0.985776i \(0.446248\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −800.000 + 1385.64i −0.0824276 + 0.142769i
\(456\) 0 0
\(457\) 755.000 + 1307.70i 0.0772810 + 0.133855i 0.902076 0.431577i \(-0.142043\pi\)
−0.824795 + 0.565432i \(0.808709\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8043.00 + 13930.9i 0.812581 + 1.40743i 0.911052 + 0.412292i \(0.135272\pi\)
−0.0984709 + 0.995140i \(0.531395\pi\)
\(462\) 0 0
\(463\) −2692.00 + 4662.68i −0.270211 + 0.468020i −0.968916 0.247391i \(-0.920427\pi\)
0.698704 + 0.715410i \(0.253760\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2604.00 0.258027 0.129014 0.991643i \(-0.458819\pi\)
0.129014 + 0.991643i \(0.458819\pi\)
\(468\) 0 0
\(469\) −28544.0 −2.81032
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −936.000 + 1621.20i −0.0909880 + 0.157596i
\(474\) 0 0
\(475\) −1750.00 3031.09i −0.169043 0.292791i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5568.00 + 9644.06i 0.531124 + 0.919934i 0.999340 + 0.0363199i \(0.0115635\pi\)
−0.468216 + 0.883614i \(0.655103\pi\)
\(480\) 0 0
\(481\) −170.000 + 294.449i −0.0161150 + 0.0279121i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −970.000 −0.0908153
\(486\) 0 0
\(487\) 14624.0 1.36073 0.680366 0.732872i \(-0.261821\pi\)
0.680366 + 0.732872i \(0.261821\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5922.00 10257.2i 0.544310 0.942772i −0.454340 0.890828i \(-0.650125\pi\)
0.998650 0.0519440i \(-0.0165417\pi\)
\(492\) 0 0
\(493\) 234.000 + 405.300i 0.0213769 + 0.0370259i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1920.00 3325.54i −0.173287 0.300142i
\(498\) 0 0
\(499\) 5642.00 9772.23i 0.506154 0.876684i −0.493821 0.869564i \(-0.664400\pi\)
0.999975 0.00712011i \(-0.00226642\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4032.00 −0.357412 −0.178706 0.983903i \(-0.557191\pi\)
−0.178706 + 0.983903i \(0.557191\pi\)
\(504\) 0 0
\(505\) 3990.00 0.351589
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8781.00 + 15209.1i −0.764658 + 1.32443i 0.175769 + 0.984431i \(0.443759\pi\)
−0.940427 + 0.339995i \(0.889575\pi\)
\(510\) 0 0
\(511\) 10336.0 + 17902.5i 0.894790 + 1.54982i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 680.000 + 1177.79i 0.0581833 + 0.100776i
\(516\) 0 0
\(517\) −7344.00 + 12720.2i −0.624736 + 1.08208i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3162.00 −0.265892 −0.132946 0.991123i \(-0.542444\pi\)
−0.132946 + 0.991123i \(0.542444\pi\)
\(522\) 0 0
\(523\) 6764.00 0.565524 0.282762 0.959190i \(-0.408749\pi\)
0.282762 + 0.959190i \(0.408749\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 624.000 1080.80i 0.0515785 0.0893366i
\(528\) 0 0
\(529\) −12348.5 21388.2i −1.01492 1.75789i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1950.00 + 3377.50i 0.158469 + 0.274476i
\(534\) 0 0
\(535\) −390.000 + 675.500i −0.0315162 + 0.0545877i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −24516.0 −1.95914
\(540\) 0 0
\(541\) 17798.0 1.41441 0.707205 0.707009i \(-0.249956\pi\)
0.707205 + 0.707009i \(0.249956\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4055.00 7023.47i 0.318710 0.552022i
\(546\) 0 0
\(547\) 9998.00 + 17317.0i 0.781506 + 1.35361i 0.931064 + 0.364855i \(0.118881\pi\)
−0.149559 + 0.988753i \(0.547785\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 420.000 + 727.461i 0.0324730 + 0.0562448i
\(552\) 0 0
\(553\) 18688.0 32368.6i 1.43706 2.48906i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11094.0 −0.843928 −0.421964 0.906613i \(-0.638659\pi\)
−0.421964 + 0.906613i \(0.638659\pi\)
\(558\) 0 0
\(559\) 520.000 0.0393446
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 450.000 779.423i 0.0336860 0.0583459i −0.848691 0.528889i \(-0.822609\pi\)
0.882377 + 0.470543i \(0.155942\pi\)
\(564\) 0 0
\(565\) −2685.00 4650.56i −0.199927 0.346284i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3957.00 + 6853.73i 0.291540 + 0.504962i 0.974174 0.225799i \(-0.0724991\pi\)
−0.682634 + 0.730760i \(0.739166\pi\)
\(570\) 0 0
\(571\) 1190.00 2061.14i 0.0872153 0.151061i −0.819118 0.573625i \(-0.805537\pi\)
0.906333 + 0.422564i \(0.138870\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4800.00 0.348128
\(576\) 0 0
\(577\) −25726.0 −1.85613 −0.928065 0.372417i \(-0.878529\pi\)
−0.928065 + 0.372417i \(0.878529\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11712.0 + 20285.8i −0.836309 + 1.44853i
\(582\) 0 0
\(583\) 2052.00 + 3554.17i 0.145772 + 0.252485i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1806.00 + 3128.08i 0.126987 + 0.219949i 0.922508 0.385978i \(-0.126136\pi\)
−0.795521 + 0.605926i \(0.792803\pi\)
\(588\) 0 0
\(589\) 1120.00 1939.90i 0.0783511 0.135708i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2898.00 −0.200686 −0.100343 0.994953i \(-0.531994\pi\)
−0.100343 + 0.994953i \(0.531994\pi\)
\(594\) 0 0
\(595\) −12480.0 −0.859883
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1332.00 2307.09i 0.0908582 0.157371i −0.817014 0.576617i \(-0.804372\pi\)
0.907872 + 0.419246i \(0.137706\pi\)
\(600\) 0 0
\(601\) 251.000 + 434.745i 0.0170358 + 0.0295068i 0.874418 0.485174i \(-0.161244\pi\)
−0.857382 + 0.514681i \(0.827910\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −87.5000 151.554i −0.00587997 0.0101844i
\(606\) 0 0
\(607\) −3988.00 + 6907.42i −0.266669 + 0.461884i −0.967999 0.250952i \(-0.919256\pi\)
0.701331 + 0.712836i \(0.252590\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4080.00 0.270146
\(612\) 0 0
\(613\) 20414.0 1.34505 0.672523 0.740076i \(-0.265210\pi\)
0.672523 + 0.740076i \(0.265210\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3171.00 + 5492.33i −0.206904 + 0.358368i −0.950738 0.309997i \(-0.899672\pi\)
0.743834 + 0.668365i \(0.233005\pi\)
\(618\) 0 0
\(619\) −11338.0 19638.0i −0.736208 1.27515i −0.954191 0.299197i \(-0.903281\pi\)
0.217983 0.975952i \(-0.430052\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25440.0 44063.4i −1.63601 2.83365i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2652.00 −0.168112
\(630\) 0 0
\(631\) −7048.00 −0.444654 −0.222327 0.974972i \(-0.571365\pi\)
−0.222327 + 0.974972i \(0.571365\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3820.00 + 6616.43i −0.238728 + 0.413488i
\(636\) 0 0
\(637\) 3405.00 + 5897.63i 0.211791 + 0.366833i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10143.0 17568.2i −0.624999 1.08253i −0.988541 0.150952i \(-0.951766\pi\)
0.363542 0.931578i \(-0.381567\pi\)
\(642\) 0 0
\(643\) 8054.00 13949.9i 0.493964 0.855570i −0.506012 0.862526i \(-0.668881\pi\)
0.999976 + 0.00695598i \(0.00221417\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27456.0 −1.66833 −0.834163 0.551518i \(-0.814049\pi\)
−0.834163 + 0.551518i \(0.814049\pi\)
\(648\) 0 0
\(649\) 18576.0 1.12353
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6261.00 + 10844.4i −0.375210 + 0.649882i −0.990358 0.138529i \(-0.955763\pi\)
0.615149 + 0.788411i \(0.289096\pi\)
\(654\) 0 0
\(655\) −6030.00 10444.3i −0.359712 0.623040i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8154.00 14123.1i −0.481995 0.834840i 0.517791 0.855507i \(-0.326754\pi\)
−0.999786 + 0.0206670i \(0.993421\pi\)
\(660\) 0 0
\(661\) −16039.0 + 27780.4i −0.943789 + 1.63469i −0.185632 + 0.982619i \(0.559433\pi\)
−0.758157 + 0.652072i \(0.773900\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −22400.0 −1.30622
\(666\) 0 0
\(667\) −1152.00 −0.0668750
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1044.00 + 1808.26i −0.0600643 + 0.104034i
\(672\) 0 0
\(673\) −2305.00 3992.38i −0.132023 0.228670i 0.792434 0.609958i \(-0.208814\pi\)
−0.924456 + 0.381288i \(0.875480\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5391.00 + 9337.49i 0.306046 + 0.530087i 0.977494 0.210965i \(-0.0676606\pi\)
−0.671448 + 0.741052i \(0.734327\pi\)
\(678\) 0 0
\(679\) −3104.00 + 5376.29i −0.175435 + 0.303863i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2892.00 −0.162019 −0.0810097 0.996713i \(-0.525814\pi\)
−0.0810097 + 0.996713i \(0.525814\pi\)
\(684\) 0 0
\(685\) 10530.0 0.587344
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 570.000 987.269i 0.0315171 0.0545892i
\(690\) 0 0
\(691\) 14786.0 + 25610.1i 0.814017 + 1.40992i 0.910031 + 0.414539i \(0.136057\pi\)
−0.0960141 + 0.995380i \(0.530609\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1390.00 2407.55i −0.0758643 0.131401i
\(696\) 0 0
\(697\) −15210.0 + 26344.5i −0.826571 + 1.43166i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5766.00 −0.310669 −0.155334 0.987862i \(-0.549646\pi\)
−0.155334 + 0.987862i \(0.549646\pi\)
\(702\) 0 0
\(703\) −4760.00 −0.255372
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12768.0 22114.8i 0.679194 1.17640i
\(708\) 0 0
\(709\) −1663.00 2880.40i −0.0880892 0.152575i 0.818614 0.574344i \(-0.194743\pi\)
−0.906703 + 0.421769i \(0.861409\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1536.00 + 2660.43i 0.0806783 + 0.139739i
\(714\) 0 0
\(715\) 900.000 1558.85i 0.0470743 0.0815350i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7728.00 0.400843 0.200421 0.979710i \(-0.435769\pi\)
0.200421 + 0.979710i \(0.435769\pi\)
\(720\) 0 0
\(721\) 8704.00 0.449589
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 75.0000 129.904i 0.00384197 0.00665449i
\(726\) 0 0
\(727\) 10808.0 + 18720.0i 0.551371 + 0.955002i 0.998176 + 0.0603709i \(0.0192283\pi\)
−0.446805 + 0.894631i \(0.647438\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2028.00 + 3512.60i 0.102611 + 0.177727i
\(732\) 0 0
\(733\) −5059.00 + 8762.45i −0.254923 + 0.441539i −0.964875 0.262711i \(-0.915383\pi\)
0.709952 + 0.704250i \(0.248717\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32112.0 1.60497
\(738\) 0 0
\(739\) 10460.0 0.520673 0.260336 0.965518i \(-0.416167\pi\)
0.260336 + 0.965518i \(0.416167\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8616.00 14923.3i 0.425424 0.736857i −0.571035 0.820925i \(-0.693458\pi\)
0.996460 + 0.0840686i \(0.0267915\pi\)
\(744\) 0 0
\(745\) 6045.00 + 10470.2i 0.297277 + 0.514900i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2496.00 + 4323.20i 0.121765 + 0.210903i
\(750\) 0 0
\(751\) −13456.0 + 23306.5i −0.653817 + 1.13244i 0.328372 + 0.944548i \(0.393500\pi\)
−0.982189 + 0.187896i \(0.939833\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14200.0 −0.684491
\(756\) 0 0
\(757\) 13838.0 0.664400 0.332200 0.943209i \(-0.392209\pi\)
0.332200 + 0.943209i \(0.392209\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8619.00 + 14928.5i −0.410563 + 0.711116i −0.994951 0.100358i \(-0.968001\pi\)
0.584388 + 0.811474i \(0.301335\pi\)
\(762\) 0 0
\(763\) −25952.0 44950.2i −1.23136 2.13277i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2580.00 4468.69i −0.121458 0.210372i
\(768\) 0 0
\(769\) −10849.0 + 18791.0i −0.508745 + 0.881172i 0.491204 + 0.871045i \(0.336557\pi\)
−0.999949 + 0.0101275i \(0.996776\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18366.0 −0.854565 −0.427283 0.904118i \(-0.640529\pi\)
−0.427283 + 0.904118i \(0.640529\pi\)
\(774\) 0 0
\(775\) −400.000 −0.0185399
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27300.0 + 47285.0i −1.25561 + 2.17479i
\(780\) 0 0
\(781\) 2160.00 + 3741.23i 0.0989640 + 0.171411i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5135.00 + 8894.08i 0.233473 + 0.404386i
\(786\) 0 0
\(787\) 15158.0 26254.4i 0.686562 1.18916i −0.286381 0.958116i \(-0.592452\pi\)
0.972943 0.231045i \(-0.0742143\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −34368.0 −1.54486
\(792\) 0 0
\(793\) 580.000 0.0259728
\(794\) 0 0