Properties

Label 1620.4.i.f.541.1
Level $1620$
Weight $4$
Character 1620.541
Analytic conductor $95.583$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(95.5830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1620.541
Dual form 1620.4.i.f.1081.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 - 4.33013i) q^{5} +(14.0000 - 24.2487i) q^{7} +(-12.0000 + 20.7846i) q^{11} +(35.0000 + 60.6218i) q^{13} -102.000 q^{17} +20.0000 q^{19} +(-36.0000 - 62.3538i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(153.000 - 265.004i) q^{29} +(68.0000 + 117.779i) q^{31} -140.000 q^{35} -214.000 q^{37} +(-75.0000 - 129.904i) q^{41} +(146.000 - 252.879i) q^{43} +(-36.0000 + 62.3538i) q^{47} +(-220.500 - 381.917i) q^{49} +414.000 q^{53} +120.000 q^{55} +(-372.000 - 644.323i) q^{59} +(209.000 - 361.999i) q^{61} +(175.000 - 303.109i) q^{65} +(-94.0000 - 162.813i) q^{67} -480.000 q^{71} +434.000 q^{73} +(336.000 + 581.969i) q^{77} +(-676.000 + 1170.87i) q^{79} +(-306.000 + 530.008i) q^{83} +(255.000 + 441.673i) q^{85} +30.0000 q^{89} +1960.00 q^{91} +(-50.0000 - 86.6025i) q^{95} +(143.000 - 247.683i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{5} + 28 q^{7} - 24 q^{11} + 70 q^{13} - 204 q^{17} + 40 q^{19} - 72 q^{23} - 25 q^{25} + 306 q^{29} + 136 q^{31} - 280 q^{35} - 428 q^{37} - 150 q^{41} + 292 q^{43} - 72 q^{47} - 441 q^{49} + 828 q^{53}+ \cdots + 286 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 14.0000 24.2487i 0.755929 1.30931i −0.188982 0.981981i \(-0.560519\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −12.0000 + 20.7846i −0.328921 + 0.569709i −0.982298 0.187324i \(-0.940018\pi\)
0.653377 + 0.757033i \(0.273352\pi\)
\(12\) 0 0
\(13\) 35.0000 + 60.6218i 0.746712 + 1.29334i 0.949391 + 0.314098i \(0.101702\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −102.000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 20.0000 0.241490 0.120745 0.992684i \(-0.461472\pi\)
0.120745 + 0.992684i \(0.461472\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −36.0000 62.3538i −0.326370 0.565290i 0.655418 0.755266i \(-0.272492\pi\)
−0.981789 + 0.189976i \(0.939159\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 153.000 265.004i 0.979703 1.69690i 0.316253 0.948675i \(-0.397575\pi\)
0.663450 0.748220i \(-0.269091\pi\)
\(30\) 0 0
\(31\) 68.0000 + 117.779i 0.393973 + 0.682381i 0.992970 0.118370i \(-0.0377670\pi\)
−0.598997 + 0.800752i \(0.704434\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −140.000 −0.676123
\(36\) 0 0
\(37\) −214.000 −0.950848 −0.475424 0.879757i \(-0.657705\pi\)
−0.475424 + 0.879757i \(0.657705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −75.0000 129.904i −0.285684 0.494819i 0.687091 0.726571i \(-0.258887\pi\)
−0.972775 + 0.231753i \(0.925554\pi\)
\(42\) 0 0
\(43\) 146.000 252.879i 0.517786 0.896831i −0.482001 0.876171i \(-0.660090\pi\)
0.999787 0.0206606i \(-0.00657693\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −36.0000 + 62.3538i −0.111726 + 0.193516i −0.916466 0.400112i \(-0.868971\pi\)
0.804740 + 0.593627i \(0.202305\pi\)
\(48\) 0 0
\(49\) −220.500 381.917i −0.642857 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 414.000 1.07297 0.536484 0.843911i \(-0.319752\pi\)
0.536484 + 0.843911i \(0.319752\pi\)
\(54\) 0 0
\(55\) 120.000 0.294196
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −372.000 644.323i −0.820852 1.42176i −0.905048 0.425308i \(-0.860166\pi\)
0.0841964 0.996449i \(-0.473168\pi\)
\(60\) 0 0
\(61\) 209.000 361.999i 0.438684 0.759823i −0.558905 0.829232i \(-0.688778\pi\)
0.997588 + 0.0694095i \(0.0221115\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 175.000 303.109i 0.333940 0.578400i
\(66\) 0 0
\(67\) −94.0000 162.813i −0.171402 0.296877i 0.767508 0.641039i \(-0.221496\pi\)
−0.938910 + 0.344162i \(0.888163\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −480.000 −0.802331 −0.401166 0.916006i \(-0.631395\pi\)
−0.401166 + 0.916006i \(0.631395\pi\)
\(72\) 0 0
\(73\) 434.000 0.695834 0.347917 0.937525i \(-0.386889\pi\)
0.347917 + 0.937525i \(0.386889\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 336.000 + 581.969i 0.497283 + 0.861319i
\(78\) 0 0
\(79\) −676.000 + 1170.87i −0.962733 + 1.66750i −0.247148 + 0.968978i \(0.579494\pi\)
−0.715585 + 0.698526i \(0.753840\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −306.000 + 530.008i −0.404673 + 0.700914i −0.994283 0.106774i \(-0.965948\pi\)
0.589610 + 0.807688i \(0.299281\pi\)
\(84\) 0 0
\(85\) 255.000 + 441.673i 0.325396 + 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 30.0000 0.0357303 0.0178651 0.999840i \(-0.494313\pi\)
0.0178651 + 0.999840i \(0.494313\pi\)
\(90\) 0 0
\(91\) 1960.00 2.25784
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −50.0000 86.6025i −0.0539989 0.0935288i
\(96\) 0 0
\(97\) 143.000 247.683i 0.149685 0.259262i −0.781426 0.623998i \(-0.785507\pi\)
0.931111 + 0.364736i \(0.118841\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −771.000 + 1335.41i −0.759578 + 1.31563i 0.183488 + 0.983022i \(0.441261\pi\)
−0.943066 + 0.332606i \(0.892072\pi\)
\(102\) 0 0
\(103\) −586.000 1014.98i −0.560585 0.970962i −0.997445 0.0714329i \(-0.977243\pi\)
0.436860 0.899530i \(-0.356091\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1956.00 −1.76723 −0.883615 0.468214i \(-0.844898\pi\)
−0.883615 + 0.468214i \(0.844898\pi\)
\(108\) 0 0
\(109\) −1858.00 −1.63270 −0.816349 0.577559i \(-0.804005\pi\)
−0.816349 + 0.577559i \(0.804005\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 87.0000 + 150.688i 0.0724272 + 0.125448i 0.899965 0.435963i \(-0.143592\pi\)
−0.827537 + 0.561411i \(0.810259\pi\)
\(114\) 0 0
\(115\) −180.000 + 311.769i −0.145957 + 0.252805i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1428.00 + 2473.37i −1.10004 + 1.90532i
\(120\) 0 0
\(121\) 377.500 + 653.849i 0.283621 + 0.491247i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2068.00 −1.44492 −0.722462 0.691411i \(-0.756990\pi\)
−0.722462 + 0.691411i \(0.756990\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 156.000 + 270.200i 0.104044 + 0.180210i 0.913347 0.407181i \(-0.133488\pi\)
−0.809303 + 0.587391i \(0.800155\pi\)
\(132\) 0 0
\(133\) 280.000 484.974i 0.182549 0.316185i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1323.00 2291.50i 0.825048 1.42902i −0.0768354 0.997044i \(-0.524482\pi\)
0.901883 0.431981i \(-0.142185\pi\)
\(138\) 0 0
\(139\) 638.000 + 1105.05i 0.389313 + 0.674309i 0.992357 0.123398i \(-0.0393792\pi\)
−0.603045 + 0.797707i \(0.706046\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1680.00 −0.982438
\(144\) 0 0
\(145\) −1530.00 −0.876273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1599.00 2769.55i −0.879162 1.52275i −0.852262 0.523116i \(-0.824770\pi\)
−0.0269006 0.999638i \(-0.508564\pi\)
\(150\) 0 0
\(151\) 380.000 658.179i 0.204794 0.354714i −0.745273 0.666760i \(-0.767681\pi\)
0.950067 + 0.312045i \(0.101014\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 340.000 588.897i 0.176190 0.305170i
\(156\) 0 0
\(157\) 83.0000 + 143.760i 0.0421919 + 0.0730784i 0.886350 0.463016i \(-0.153233\pi\)
−0.844158 + 0.536094i \(0.819899\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2016.00 −0.986851
\(162\) 0 0
\(163\) 3020.00 1.45119 0.725597 0.688120i \(-0.241564\pi\)
0.725597 + 0.688120i \(0.241564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −492.000 852.169i −0.227977 0.394867i 0.729232 0.684267i \(-0.239878\pi\)
−0.957208 + 0.289400i \(0.906544\pi\)
\(168\) 0 0
\(169\) −1351.50 + 2340.87i −0.615157 + 1.06548i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 981.000 1699.14i 0.431122 0.746725i −0.565849 0.824509i \(-0.691451\pi\)
0.996970 + 0.0777846i \(0.0247846\pi\)
\(174\) 0 0
\(175\) 350.000 + 606.218i 0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −576.000 −0.240515 −0.120258 0.992743i \(-0.538372\pi\)
−0.120258 + 0.992743i \(0.538372\pi\)
\(180\) 0 0
\(181\) −1210.00 −0.496898 −0.248449 0.968645i \(-0.579921\pi\)
−0.248449 + 0.968645i \(0.579921\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 535.000 + 926.647i 0.212616 + 0.368262i
\(186\) 0 0
\(187\) 1224.00 2120.03i 0.478651 0.829048i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1692.00 2930.63i 0.640989 1.11022i −0.344224 0.938888i \(-0.611858\pi\)
0.985212 0.171337i \(-0.0548088\pi\)
\(192\) 0 0
\(193\) 1019.00 + 1764.96i 0.380048 + 0.658262i 0.991069 0.133352i \(-0.0425742\pi\)
−0.611021 + 0.791614i \(0.709241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4098.00 −1.48208 −0.741042 0.671459i \(-0.765668\pi\)
−0.741042 + 0.671459i \(0.765668\pi\)
\(198\) 0 0
\(199\) −2248.00 −0.800786 −0.400393 0.916343i \(-0.631126\pi\)
−0.400393 + 0.916343i \(0.631126\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4284.00 7420.11i −1.48117 2.56546i
\(204\) 0 0
\(205\) −375.000 + 649.519i −0.127762 + 0.221290i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −240.000 + 415.692i −0.0794313 + 0.137579i
\(210\) 0 0
\(211\) −1630.00 2823.24i −0.531819 0.921138i −0.999310 0.0371398i \(-0.988175\pi\)
0.467491 0.883998i \(-0.345158\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1460.00 −0.463122
\(216\) 0 0
\(217\) 3808.00 1.19126
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3570.00 6183.42i −1.08663 1.88209i
\(222\) 0 0
\(223\) 1490.00 2580.76i 0.447434 0.774978i −0.550784 0.834648i \(-0.685671\pi\)
0.998218 + 0.0596693i \(0.0190046\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1590.00 + 2753.96i −0.464899 + 0.805228i −0.999197 0.0400678i \(-0.987243\pi\)
0.534298 + 0.845296i \(0.320576\pi\)
\(228\) 0 0
\(229\) −1687.00 2921.97i −0.486813 0.843184i 0.513072 0.858345i \(-0.328507\pi\)
−0.999885 + 0.0151611i \(0.995174\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1950.00 −0.548278 −0.274139 0.961690i \(-0.588393\pi\)
−0.274139 + 0.961690i \(0.588393\pi\)
\(234\) 0 0
\(235\) 360.000 0.0999311
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1116.00 + 1932.97i 0.302042 + 0.523152i 0.976598 0.215071i \(-0.0689984\pi\)
−0.674556 + 0.738223i \(0.735665\pi\)
\(240\) 0 0
\(241\) 911.000 1577.90i 0.243497 0.421748i −0.718211 0.695825i \(-0.755039\pi\)
0.961708 + 0.274077i \(0.0883722\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1102.50 + 1909.59i −0.287494 + 0.497955i
\(246\) 0 0
\(247\) 700.000 + 1212.44i 0.180324 + 0.312330i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1488.00 −0.374190 −0.187095 0.982342i \(-0.559907\pi\)
−0.187095 + 0.982342i \(0.559907\pi\)
\(252\) 0 0
\(253\) 1728.00 0.429401
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1497.00 2592.88i −0.363347 0.629336i 0.625162 0.780495i \(-0.285033\pi\)
−0.988510 + 0.151159i \(0.951700\pi\)
\(258\) 0 0
\(259\) −2996.00 + 5189.22i −0.718774 + 1.24495i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1236.00 + 2140.81i −0.289791 + 0.501933i −0.973760 0.227579i \(-0.926919\pi\)
0.683969 + 0.729511i \(0.260252\pi\)
\(264\) 0 0
\(265\) −1035.00 1792.67i −0.239923 0.415558i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3954.00 −0.896207 −0.448103 0.893982i \(-0.647900\pi\)
−0.448103 + 0.893982i \(0.647900\pi\)
\(270\) 0 0
\(271\) −2176.00 −0.487759 −0.243879 0.969806i \(-0.578420\pi\)
−0.243879 + 0.969806i \(0.578420\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −300.000 519.615i −0.0657843 0.113942i
\(276\) 0 0
\(277\) −517.000 + 895.470i −0.112143 + 0.194237i −0.916634 0.399728i \(-0.869105\pi\)
0.804491 + 0.593964i \(0.202438\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3327.00 + 5762.53i −0.706307 + 1.22336i 0.259911 + 0.965633i \(0.416307\pi\)
−0.966218 + 0.257727i \(0.917027\pi\)
\(282\) 0 0
\(283\) 878.000 + 1520.74i 0.184423 + 0.319430i 0.943382 0.331709i \(-0.107625\pi\)
−0.758959 + 0.651138i \(0.774292\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4200.00 −0.863826
\(288\) 0 0
\(289\) 5491.00 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1617.00 + 2800.73i 0.322410 + 0.558431i 0.980985 0.194085i \(-0.0621737\pi\)
−0.658575 + 0.752515i \(0.728840\pi\)
\(294\) 0 0
\(295\) −1860.00 + 3221.61i −0.367096 + 0.635829i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2520.00 4364.77i 0.487409 0.844218i
\(300\) 0 0
\(301\) −4088.00 7080.62i −0.782819 1.35588i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2090.00 −0.392371
\(306\) 0 0
\(307\) 2036.00 0.378504 0.189252 0.981929i \(-0.439394\pi\)
0.189252 + 0.981929i \(0.439394\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −48.0000 83.1384i −0.00875187 0.0151587i 0.861616 0.507560i \(-0.169453\pi\)
−0.870368 + 0.492402i \(0.836119\pi\)
\(312\) 0 0
\(313\) −601.000 + 1040.96i −0.108532 + 0.187983i −0.915176 0.403055i \(-0.867948\pi\)
0.806644 + 0.591038i \(0.201282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1899.00 + 3289.16i −0.336462 + 0.582769i −0.983765 0.179464i \(-0.942564\pi\)
0.647303 + 0.762233i \(0.275897\pi\)
\(318\) 0 0
\(319\) 3672.00 + 6360.09i 0.644491 + 1.11629i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2040.00 −0.351420
\(324\) 0 0
\(325\) −1750.00 −0.298685
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1008.00 + 1745.91i 0.168914 + 0.292568i
\(330\) 0 0
\(331\) 2834.00 4908.63i 0.470606 0.815114i −0.528828 0.848729i \(-0.677369\pi\)
0.999435 + 0.0336145i \(0.0107018\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −470.000 + 814.064i −0.0766533 + 0.132767i
\(336\) 0 0
\(337\) 227.000 + 393.176i 0.0366928 + 0.0635538i 0.883789 0.467886i \(-0.154984\pi\)
−0.847096 + 0.531440i \(0.821651\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3264.00 −0.518345
\(342\) 0 0
\(343\) −2744.00 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2802.00 4853.21i −0.433485 0.750818i 0.563686 0.825989i \(-0.309383\pi\)
−0.997171 + 0.0751715i \(0.976050\pi\)
\(348\) 0 0
\(349\) 5633.00 9756.64i 0.863976 1.49645i −0.00408463 0.999992i \(-0.501300\pi\)
0.868060 0.496458i \(-0.165366\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3213.00 + 5565.08i −0.484450 + 0.839091i −0.999840 0.0178638i \(-0.994313\pi\)
0.515391 + 0.856955i \(0.327647\pi\)
\(354\) 0 0
\(355\) 1200.00 + 2078.46i 0.179407 + 0.310742i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6936.00 −1.01969 −0.509844 0.860267i \(-0.670297\pi\)
−0.509844 + 0.860267i \(0.670297\pi\)
\(360\) 0 0
\(361\) −6459.00 −0.941682
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1085.00 1879.28i −0.155593 0.269495i
\(366\) 0 0
\(367\) 194.000 336.018i 0.0275932 0.0477929i −0.851899 0.523706i \(-0.824549\pi\)
0.879492 + 0.475913i \(0.157882\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5796.00 10039.0i 0.811087 1.40484i
\(372\) 0 0
\(373\) 4031.00 + 6981.90i 0.559564 + 0.969193i 0.997533 + 0.0702027i \(0.0223646\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21420.0 2.92622
\(378\) 0 0
\(379\) −3388.00 −0.459182 −0.229591 0.973287i \(-0.573739\pi\)
−0.229591 + 0.973287i \(0.573739\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3492.00 + 6048.32i 0.465882 + 0.806932i 0.999241 0.0389576i \(-0.0124037\pi\)
−0.533359 + 0.845889i \(0.679070\pi\)
\(384\) 0 0
\(385\) 1680.00 2909.85i 0.222392 0.385193i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1263.00 + 2187.58i −0.164619 + 0.285128i −0.936520 0.350615i \(-0.885973\pi\)
0.771901 + 0.635743i \(0.219306\pi\)
\(390\) 0 0
\(391\) 3672.00 + 6360.09i 0.474939 + 0.822618i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6760.00 0.861095
\(396\) 0 0
\(397\) 6146.00 0.776975 0.388487 0.921454i \(-0.372998\pi\)
0.388487 + 0.921454i \(0.372998\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4893.00 + 8474.92i 0.609339 + 1.05541i 0.991350 + 0.131248i \(0.0418983\pi\)
−0.382011 + 0.924158i \(0.624768\pi\)
\(402\) 0 0
\(403\) −4760.00 + 8244.56i −0.588368 + 1.01908i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2568.00 4447.91i 0.312754 0.541706i
\(408\) 0 0
\(409\) 443.000 + 767.299i 0.0535573 + 0.0927640i 0.891561 0.452900i \(-0.149611\pi\)
−0.838004 + 0.545664i \(0.816277\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20832.0 −2.48202
\(414\) 0 0
\(415\) 3060.00 0.361951
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5676.00 9831.12i −0.661792 1.14626i −0.980144 0.198285i \(-0.936463\pi\)
0.318353 0.947972i \(-0.396870\pi\)
\(420\) 0 0
\(421\) −5095.00 + 8824.80i −0.589822 + 1.02160i 0.404433 + 0.914568i \(0.367469\pi\)
−0.994255 + 0.107034i \(0.965865\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1275.00 2208.36i 0.145521 0.252050i
\(426\) 0 0
\(427\) −5852.00 10136.0i −0.663227 1.14874i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2448.00 −0.273587 −0.136794 0.990600i \(-0.543680\pi\)
−0.136794 + 0.990600i \(0.543680\pi\)
\(432\) 0 0
\(433\) −7078.00 −0.785559 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −720.000 1247.08i −0.0788153 0.136512i
\(438\) 0 0
\(439\) 9044.00 15664.7i 0.983250 1.70304i 0.333779 0.942651i \(-0.391676\pi\)
0.649470 0.760387i \(-0.274991\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1926.00 3335.93i 0.206562 0.357776i −0.744067 0.668105i \(-0.767106\pi\)
0.950629 + 0.310329i \(0.100439\pi\)
\(444\) 0 0
\(445\) −75.0000 129.904i −0.00798953 0.0138383i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6522.00 −0.685506 −0.342753 0.939426i \(-0.611359\pi\)
−0.342753 + 0.939426i \(0.611359\pi\)
\(450\) 0 0
\(451\) 3600.00 0.375870
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4900.00 8487.05i −0.504869 0.874459i
\(456\) 0 0
\(457\) −1045.00 + 1809.99i −0.106965 + 0.185269i −0.914539 0.404497i \(-0.867447\pi\)
0.807574 + 0.589766i \(0.200780\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4947.00 + 8568.46i −0.499793 + 0.865668i −1.00000 0.000238537i \(-0.999924\pi\)
0.500207 + 0.865906i \(0.333257\pi\)
\(462\) 0 0
\(463\) −1522.00 2636.18i −0.152772 0.264609i 0.779474 0.626435i \(-0.215487\pi\)
−0.932245 + 0.361826i \(0.882153\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10236.0 −1.01427 −0.507137 0.861866i \(-0.669296\pi\)
−0.507137 + 0.861866i \(0.669296\pi\)
\(468\) 0 0
\(469\) −5264.00 −0.518271
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3504.00 + 6069.11i 0.340622 + 0.589974i
\(474\) 0 0
\(475\) −250.000 + 433.013i −0.0241490 + 0.0418273i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5748.00 9955.83i 0.548294 0.949673i −0.450098 0.892979i \(-0.648611\pi\)
0.998392 0.0566937i \(-0.0180558\pi\)
\(480\) 0 0
\(481\) −7490.00 12973.1i −0.710010 1.22977i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1430.00 −0.133882
\(486\) 0 0
\(487\) −15316.0 −1.42512 −0.712561 0.701610i \(-0.752465\pi\)
−0.712561 + 0.701610i \(0.752465\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5808.00 10059.8i −0.533832 0.924624i −0.999219 0.0395165i \(-0.987418\pi\)
0.465387 0.885107i \(-0.345915\pi\)
\(492\) 0 0
\(493\) −15606.0 + 27030.4i −1.42568 + 2.46935i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6720.00 + 11639.4i −0.606505 + 1.05050i
\(498\) 0 0
\(499\) −7498.00 12986.9i −0.672658 1.16508i −0.977147 0.212563i \(-0.931819\pi\)
0.304489 0.952516i \(-0.401514\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21648.0 1.91896 0.959480 0.281778i \(-0.0909240\pi\)
0.959480 + 0.281778i \(0.0909240\pi\)
\(504\) 0 0
\(505\) 7710.00 0.679387
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1689.00 + 2925.43i 0.147080 + 0.254750i 0.930147 0.367187i \(-0.119679\pi\)
−0.783067 + 0.621937i \(0.786346\pi\)
\(510\) 0 0
\(511\) 6076.00 10523.9i 0.526001 0.911060i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2930.00 + 5074.91i −0.250701 + 0.434228i
\(516\) 0 0
\(517\) −864.000 1496.49i −0.0734984 0.127303i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16158.0 1.35872 0.679362 0.733804i \(-0.262257\pi\)
0.679362 + 0.733804i \(0.262257\pi\)
\(522\) 0 0
\(523\) −76.0000 −0.00635420 −0.00317710 0.999995i \(-0.501011\pi\)
−0.00317710 + 0.999995i \(0.501011\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6936.00 12013.5i −0.573315 0.993010i
\(528\) 0 0
\(529\) 3491.50 6047.46i 0.286965 0.497038i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5250.00 9093.27i 0.426647 0.738974i
\(534\) 0 0
\(535\) 4890.00 + 8469.73i 0.395165 + 0.684445i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10584.0 0.845798
\(540\) 0 0
\(541\) 9278.00 0.737324 0.368662 0.929563i \(-0.379816\pi\)
0.368662 + 0.929563i \(0.379816\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4645.00 + 8045.38i 0.365082 + 0.632341i
\(546\) 0 0
\(547\) −7282.00 + 12612.8i −0.569206 + 0.985894i 0.427438 + 0.904044i \(0.359416\pi\)
−0.996645 + 0.0818497i \(0.973917\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3060.00 5300.08i 0.236589 0.409784i
\(552\) 0 0
\(553\) 18928.0 + 32784.3i 1.45552 + 2.52103i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2154.00 −0.163856 −0.0819281 0.996638i \(-0.526108\pi\)
−0.0819281 + 0.996638i \(0.526108\pi\)
\(558\) 0 0
\(559\) 20440.0 1.54655
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4350.00 7534.42i −0.325632 0.564011i 0.656008 0.754754i \(-0.272244\pi\)
−0.981640 + 0.190743i \(0.938910\pi\)
\(564\) 0 0
\(565\) 435.000 753.442i 0.0323904 0.0561019i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2097.00 3632.11i 0.154501 0.267603i −0.778377 0.627798i \(-0.783956\pi\)
0.932877 + 0.360195i \(0.117290\pi\)
\(570\) 0 0
\(571\) 4010.00 + 6945.52i 0.293894 + 0.509039i 0.974727 0.223400i \(-0.0717155\pi\)
−0.680833 + 0.732438i \(0.738382\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1800.00 0.130548
\(576\) 0 0
\(577\) −2686.00 −0.193795 −0.0968974 0.995294i \(-0.530892\pi\)
−0.0968974 + 0.995294i \(0.530892\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8568.00 + 14840.2i 0.611808 + 1.05968i
\(582\) 0 0
\(583\) −4968.00 + 8604.83i −0.352922 + 0.611279i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1506.00 2608.47i 0.105893 0.183412i −0.808210 0.588895i \(-0.799563\pi\)
0.914103 + 0.405483i \(0.132897\pi\)
\(588\) 0 0
\(589\) 1360.00 + 2355.59i 0.0951406 + 0.164788i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15522.0 1.07489 0.537447 0.843298i \(-0.319389\pi\)
0.537447 + 0.843298i \(0.319389\pi\)
\(594\) 0 0
\(595\) 14280.0 0.983904
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9612.00 + 16648.5i 0.655652 + 1.13562i 0.981730 + 0.190280i \(0.0609396\pi\)
−0.326078 + 0.945343i \(0.605727\pi\)
\(600\) 0 0
\(601\) 3251.00 5630.90i 0.220651 0.382178i −0.734355 0.678766i \(-0.762515\pi\)
0.955006 + 0.296587i \(0.0958486\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1887.50 3269.25i 0.126839 0.219692i
\(606\) 0 0
\(607\) −14698.0 25457.7i −0.982823 1.70230i −0.651238 0.758874i \(-0.725750\pi\)
−0.331585 0.943425i \(-0.607583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5040.00 −0.333710
\(612\) 0 0
\(613\) −10006.0 −0.659280 −0.329640 0.944107i \(-0.606927\pi\)
−0.329640 + 0.944107i \(0.606927\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11559.0 + 20020.8i 0.754210 + 1.30633i 0.945766 + 0.324849i \(0.105313\pi\)
−0.191556 + 0.981482i \(0.561353\pi\)
\(618\) 0 0
\(619\) −7018.00 + 12155.5i −0.455698 + 0.789293i −0.998728 0.0504209i \(-0.983944\pi\)
0.543030 + 0.839713i \(0.317277\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 420.000 727.461i 0.0270095 0.0467819i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21828.0 1.38369
\(630\) 0 0
\(631\) −4288.00 −0.270527 −0.135264 0.990810i \(-0.543188\pi\)
−0.135264 + 0.990810i \(0.543188\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5170.00 + 8954.70i 0.323095 + 0.559617i
\(636\) 0 0
\(637\) 15435.0 26734.2i 0.960058 1.66287i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 657.000 1137.96i 0.0404835 0.0701195i −0.845074 0.534650i \(-0.820444\pi\)
0.885557 + 0.464530i \(0.153777\pi\)
\(642\) 0 0
\(643\) 314.000 + 543.864i 0.0192581 + 0.0333560i 0.875494 0.483229i \(-0.160536\pi\)
−0.856236 + 0.516585i \(0.827203\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10944.0 0.664997 0.332498 0.943104i \(-0.392108\pi\)
0.332498 + 0.943104i \(0.392108\pi\)
\(648\) 0 0
\(649\) 17856.0 1.07998
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 549.000 + 950.896i 0.0329005 + 0.0569853i 0.882007 0.471237i \(-0.156192\pi\)
−0.849106 + 0.528222i \(0.822859\pi\)
\(654\) 0 0
\(655\) 780.000 1351.00i 0.0465300 0.0805922i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 156.000 270.200i 0.00922139 0.0159719i −0.861378 0.507965i \(-0.830398\pi\)
0.870599 + 0.491993i \(0.163731\pi\)
\(660\) 0 0
\(661\) −4339.00 7515.37i −0.255322 0.442230i 0.709661 0.704543i \(-0.248848\pi\)
−0.964983 + 0.262313i \(0.915515\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2800.00 −0.163277
\(666\) 0 0
\(667\) −22032.0 −1.27898
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5016.00 + 8687.97i 0.288585 + 0.499844i
\(672\) 0 0
\(673\) 7235.00 12531.4i 0.414396 0.717756i −0.580969 0.813926i \(-0.697326\pi\)
0.995365 + 0.0961705i \(0.0306594\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5919.00 + 10252.0i −0.336020 + 0.582004i −0.983680 0.179925i \(-0.942414\pi\)
0.647660 + 0.761929i \(0.275748\pi\)
\(678\) 0 0
\(679\) −4004.00 6935.13i −0.226303 0.391967i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25548.0 1.43128 0.715642 0.698467i \(-0.246134\pi\)
0.715642 + 0.698467i \(0.246134\pi\)
\(684\) 0 0
\(685\) −13230.0 −0.737945
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14490.0 + 25097.4i 0.801197 + 1.38771i
\(690\) 0 0
\(691\) 9206.00 15945.3i 0.506820 0.877838i −0.493149 0.869945i \(-0.664154\pi\)
0.999969 0.00789325i \(-0.00251253\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3190.00 5525.24i 0.174106 0.301560i
\(696\) 0 0
\(697\) 7650.00 + 13250.2i 0.415731 + 0.720067i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8814.00 0.474893 0.237447 0.971401i \(-0.423690\pi\)
0.237447 + 0.971401i \(0.423690\pi\)
\(702\) 0 0
\(703\) −4280.00 −0.229621
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21588.0 + 37391.5i 1.14837 + 1.98904i
\(708\) 0 0
\(709\) 8657.00 14994.4i 0.458562 0.794253i −0.540323 0.841458i \(-0.681698\pi\)
0.998885 + 0.0472049i \(0.0150314\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4896.00 8480.12i 0.257162 0.445418i
\(714\) 0 0
\(715\) 4200.00 + 7274.61i 0.219680 + 0.380497i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 768.000 0.0398353 0.0199176 0.999802i \(-0.493660\pi\)
0.0199176 + 0.999802i \(0.493660\pi\)
\(720\) 0 0
\(721\) −32816.0 −1.69505
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3825.00 + 6625.09i 0.195941 + 0.339379i
\(726\) 0 0
\(727\) 9098.00 15758.2i 0.464135 0.803905i −0.535027 0.844835i \(-0.679699\pi\)
0.999162 + 0.0409295i \(0.0130319\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14892.0 + 25793.7i −0.753489 + 1.30508i
\(732\) 0 0
\(733\) 9071.00 + 15711.4i 0.457087 + 0.791699i 0.998806 0.0488616i \(-0.0155593\pi\)
−0.541718 + 0.840560i \(0.682226\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4512.00 0.225511
\(738\) 0 0
\(739\) −13660.0 −0.679961 −0.339981 0.940432i \(-0.610420\pi\)
−0.339981 + 0.940432i \(0.610420\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6384.00 11057.4i −0.315217 0.545972i 0.664267 0.747496i \(-0.268744\pi\)
−0.979484 + 0.201524i \(0.935411\pi\)
\(744\) 0 0
\(745\) −7995.00 + 13847.7i −0.393173 + 0.680996i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −27384.0 + 47430.5i −1.33590 + 2.31385i
\(750\) 0 0
\(751\) −11476.0 19877.0i −0.557610 0.965809i −0.997695 0.0678530i \(-0.978385\pi\)
0.440085 0.897956i \(-0.354948\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3800.00 −0.183174
\(756\) 0 0
\(757\) 15818.0 0.759465 0.379732 0.925096i \(-0.376016\pi\)
0.379732 + 0.925096i \(0.376016\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9279.00 16071.7i −0.442002 0.765570i 0.555836 0.831292i \(-0.312398\pi\)
−0.997838 + 0.0657221i \(0.979065\pi\)
\(762\) 0 0
\(763\) −26012.0 + 45054.1i −1.23420 + 2.13770i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26040.0 45102.6i 1.22588 2.12329i
\(768\) 0 0
\(769\) −7489.00 12971.3i −0.351184 0.608268i 0.635273 0.772287i \(-0.280887\pi\)
−0.986457 + 0.164019i \(0.947554\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8946.00 −0.416255 −0.208128 0.978102i \(-0.566737\pi\)
−0.208128 + 0.978102i \(0.566737\pi\)
\(774\) 0 0
\(775\) −3400.00 −0.157589
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1500.00 2598.08i −0.0689898 0.119494i
\(780\) 0 0
\(781\) 5760.00 9976.61i 0.263904 0.457095i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 415.000 718.801i 0.0188688 0.0326817i
\(786\) 0 0
\(787\) 9218.00 + 15966.0i 0.417517 + 0.723161i 0.995689 0.0927538i \(-0.0295669\pi\)
−0.578172 + 0.815915i \(0.696234\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4872.00 0.218999
\(792\) 0 0
\(793\) 29260.0 1.31028
\(794\) 0