Newspace parameters
Level: | \( N \) | \(=\) | \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1620.t (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(44.1418028264\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
269.1 | 0 | 0 | 0 | −4.98895 | − | 0.332280i | 0 | −0.607949 | − | 0.351000i | 0 | 0 | 0 | ||||||||||||||
269.2 | 0 | 0 | 0 | −4.98514 | − | 0.385228i | 0 | −6.51924 | − | 3.76389i | 0 | 0 | 0 | ||||||||||||||
269.3 | 0 | 0 | 0 | −4.91882 | − | 0.897339i | 0 | 10.9644 | + | 6.33031i | 0 | 0 | 0 | ||||||||||||||
269.4 | 0 | 0 | 0 | −4.58175 | + | 2.00188i | 0 | 9.28893 | + | 5.36297i | 0 | 0 | 0 | ||||||||||||||
269.5 | 0 | 0 | 0 | −4.45514 | − | 2.26973i | 0 | −2.97789 | − | 1.71928i | 0 | 0 | 0 | ||||||||||||||
269.6 | 0 | 0 | 0 | −4.02456 | + | 2.96697i | 0 | −9.28893 | − | 5.36297i | 0 | 0 | 0 | ||||||||||||||
269.7 | 0 | 0 | 0 | −2.76464 | − | 4.16614i | 0 | −4.03229 | − | 2.32805i | 0 | 0 | 0 | ||||||||||||||
269.8 | 0 | 0 | 0 | −2.22566 | − | 4.47732i | 0 | 4.03229 | + | 2.32805i | 0 | 0 | 0 | ||||||||||||||
269.9 | 0 | 0 | 0 | −2.20671 | + | 4.48669i | 0 | 0.607949 | + | 0.351000i | 0 | 0 | 0 | ||||||||||||||
269.10 | 0 | 0 | 0 | −2.15895 | + | 4.50987i | 0 | 6.51924 | + | 3.76389i | 0 | 0 | 0 | ||||||||||||||
269.11 | 0 | 0 | 0 | −1.68229 | + | 4.70849i | 0 | −10.9644 | − | 6.33031i | 0 | 0 | 0 | ||||||||||||||
269.12 | 0 | 0 | 0 | −0.261925 | + | 4.99313i | 0 | 2.97789 | + | 1.71928i | 0 | 0 | 0 | ||||||||||||||
269.13 | 0 | 0 | 0 | 0.261925 | − | 4.99313i | 0 | 2.97789 | + | 1.71928i | 0 | 0 | 0 | ||||||||||||||
269.14 | 0 | 0 | 0 | 1.68229 | − | 4.70849i | 0 | −10.9644 | − | 6.33031i | 0 | 0 | 0 | ||||||||||||||
269.15 | 0 | 0 | 0 | 2.15895 | − | 4.50987i | 0 | 6.51924 | + | 3.76389i | 0 | 0 | 0 | ||||||||||||||
269.16 | 0 | 0 | 0 | 2.20671 | − | 4.48669i | 0 | 0.607949 | + | 0.351000i | 0 | 0 | 0 | ||||||||||||||
269.17 | 0 | 0 | 0 | 2.22566 | + | 4.47732i | 0 | 4.03229 | + | 2.32805i | 0 | 0 | 0 | ||||||||||||||
269.18 | 0 | 0 | 0 | 2.76464 | + | 4.16614i | 0 | −4.03229 | − | 2.32805i | 0 | 0 | 0 | ||||||||||||||
269.19 | 0 | 0 | 0 | 4.02456 | − | 2.96697i | 0 | −9.28893 | − | 5.36297i | 0 | 0 | 0 | ||||||||||||||
269.20 | 0 | 0 | 0 | 4.45514 | + | 2.26973i | 0 | −2.97789 | − | 1.71928i | 0 | 0 | 0 | ||||||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
45.h | odd | 6 | 1 | inner |
45.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1620.3.t.f | 48 | |
3.b | odd | 2 | 1 | inner | 1620.3.t.f | 48 | |
5.b | even | 2 | 1 | inner | 1620.3.t.f | 48 | |
9.c | even | 3 | 1 | 1620.3.b.a | ✓ | 24 | |
9.c | even | 3 | 1 | inner | 1620.3.t.f | 48 | |
9.d | odd | 6 | 1 | 1620.3.b.a | ✓ | 24 | |
9.d | odd | 6 | 1 | inner | 1620.3.t.f | 48 | |
15.d | odd | 2 | 1 | inner | 1620.3.t.f | 48 | |
45.h | odd | 6 | 1 | 1620.3.b.a | ✓ | 24 | |
45.h | odd | 6 | 1 | inner | 1620.3.t.f | 48 | |
45.j | even | 6 | 1 | 1620.3.b.a | ✓ | 24 | |
45.j | even | 6 | 1 | inner | 1620.3.t.f | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1620.3.b.a | ✓ | 24 | 9.c | even | 3 | 1 | |
1620.3.b.a | ✓ | 24 | 9.d | odd | 6 | 1 | |
1620.3.b.a | ✓ | 24 | 45.h | odd | 6 | 1 | |
1620.3.b.a | ✓ | 24 | 45.j | even | 6 | 1 | |
1620.3.t.f | 48 | 1.a | even | 1 | 1 | trivial | |
1620.3.t.f | 48 | 3.b | odd | 2 | 1 | inner | |
1620.3.t.f | 48 | 5.b | even | 2 | 1 | inner | |
1620.3.t.f | 48 | 9.c | even | 3 | 1 | inner | |
1620.3.t.f | 48 | 9.d | odd | 6 | 1 | inner | |
1620.3.t.f | 48 | 15.d | odd | 2 | 1 | inner | |
1620.3.t.f | 48 | 45.h | odd | 6 | 1 | inner | |
1620.3.t.f | 48 | 45.j | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1620, [\chi])\):
\( T_{7}^{24} - 366 T_{7}^{22} + 88353 T_{7}^{20} - 12104630 T_{7}^{18} + 1195527555 T_{7}^{16} - 72024338430 T_{7}^{14} + 3106792494870 T_{7}^{12} - 76507326662148 T_{7}^{10} + \cdots + 17\!\cdots\!36 \)
|
\( T_{17}^{12} - 1662 T_{17}^{10} + 827391 T_{17}^{8} - 157133482 T_{17}^{6} + 10180375374 T_{17}^{4} - 42366144912 T_{17}^{2} + 41987187424 \)
|