Properties

Label 1620.3.t.d.1349.3
Level $1620$
Weight $3$
Character 1620.1349
Analytic conductor $44.142$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1620.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(44.1418028264\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.154550410641.1
Defining polynomial: \( x^{8} - 15x^{6} + 221x^{4} - 60x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.3
Root \(0.451318 - 0.260569i\) of defining polynomial
Character \(\chi\) \(=\) 1620.1349
Dual form 1620.3.t.d.269.3

$q$-expansion

\(f(q)\) \(=\) \(q+(2.11715 + 4.52964i) q^{5} +(-6.19588 + 3.57719i) q^{7} +O(q^{10})\) \(q+(2.11715 + 4.52964i) q^{5} +(-6.19588 + 3.57719i) q^{7} +(-4.39061 + 2.53492i) q^{11} +(2.70791 + 1.56341i) q^{13} -8.72842 q^{17} -20.1852 q^{19} +(-7.36421 + 12.7552i) q^{23} +(-16.0353 + 19.1799i) q^{25} +(34.4674 - 19.8997i) q^{29} +(19.6852 - 34.0959i) q^{31} +(-29.3210 - 20.4917i) q^{35} -34.8712i q^{37} +(-11.4891 - 6.63325i) q^{41} +(-57.6908 + 33.3078i) q^{43} +(-8.45683 - 14.6477i) q^{47} +(1.09262 - 1.89248i) q^{49} +4.62950 q^{53} +(-20.7779 - 14.5211i) q^{55} +(-22.3208 - 12.8869i) q^{59} +(6.09262 + 10.5527i) q^{61} +(-1.34864 + 15.5758i) q^{65} +(92.1581 + 53.2075i) q^{67} -101.487i q^{71} -23.2646i q^{73} +(18.1358 - 31.4121i) q^{77} +(33.2779 + 57.6390i) q^{79} +(-72.1421 - 124.954i) q^{83} +(-18.4794 - 39.5366i) q^{85} -154.553i q^{89} -22.3705 q^{91} +(-42.7353 - 91.4320i) q^{95} +(152.189 - 87.8664i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 3 q^{5} - 12 q^{17} + 12 q^{19} - 30 q^{23} - 9 q^{25} - 16 q^{31} - 90 q^{35} + 48 q^{47} - 78 q^{49} + 384 q^{53} + 94 q^{55} - 38 q^{61} + 138 q^{65} + 174 q^{77} + 6 q^{79} - 288 q^{83} + 100 q^{85} + 168 q^{91} + 318 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.11715 + 4.52964i 0.423431 + 0.905928i
\(6\) 0 0
\(7\) −6.19588 + 3.57719i −0.885126 + 0.511028i −0.872345 0.488891i \(-0.837402\pi\)
−0.0127808 + 0.999918i \(0.504068\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.39061 + 2.53492i −0.399146 + 0.230447i −0.686116 0.727493i \(-0.740686\pi\)
0.286969 + 0.957940i \(0.407352\pi\)
\(12\) 0 0
\(13\) 2.70791 + 1.56341i 0.208301 + 0.120262i 0.600521 0.799609i \(-0.294960\pi\)
−0.392221 + 0.919871i \(0.628293\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −8.72842 −0.513436 −0.256718 0.966486i \(-0.582641\pi\)
−0.256718 + 0.966486i \(0.582641\pi\)
\(18\) 0 0
\(19\) −20.1852 −1.06238 −0.531191 0.847252i \(-0.678255\pi\)
−0.531191 + 0.847252i \(0.678255\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.36421 + 12.7552i −0.320183 + 0.554573i −0.980526 0.196391i \(-0.937078\pi\)
0.660343 + 0.750964i \(0.270411\pi\)
\(24\) 0 0
\(25\) −16.0353 + 19.1799i −0.641413 + 0.767196i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 34.4674 19.8997i 1.18853 0.686198i 0.230558 0.973059i \(-0.425945\pi\)
0.957972 + 0.286860i \(0.0926116\pi\)
\(30\) 0 0
\(31\) 19.6852 34.0959i 0.635008 1.09987i −0.351505 0.936186i \(-0.614330\pi\)
0.986513 0.163680i \(-0.0523365\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −29.3210 20.4917i −0.837744 0.585476i
\(36\) 0 0
\(37\) 34.8712i 0.942465i −0.882009 0.471232i \(-0.843809\pi\)
0.882009 0.471232i \(-0.156191\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.4891 6.63325i −0.280223 0.161787i 0.353302 0.935509i \(-0.385059\pi\)
−0.633524 + 0.773723i \(0.718392\pi\)
\(42\) 0 0
\(43\) −57.6908 + 33.3078i −1.34165 + 0.774600i −0.987049 0.160420i \(-0.948715\pi\)
−0.354597 + 0.935019i \(0.615382\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.45683 14.6477i −0.179933 0.311652i 0.761925 0.647666i \(-0.224255\pi\)
−0.941857 + 0.336013i \(0.890921\pi\)
\(48\) 0 0
\(49\) 1.09262 1.89248i 0.0222985 0.0386221i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.62950 0.0873491 0.0436746 0.999046i \(-0.486094\pi\)
0.0436746 + 0.999046i \(0.486094\pi\)
\(54\) 0 0
\(55\) −20.7779 14.5211i −0.377780 0.264019i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −22.3208 12.8869i −0.378318 0.218422i 0.298768 0.954326i \(-0.403424\pi\)
−0.677086 + 0.735904i \(0.736758\pi\)
\(60\) 0 0
\(61\) 6.09262 + 10.5527i 0.0998791 + 0.172996i 0.911634 0.411002i \(-0.134821\pi\)
−0.811755 + 0.583998i \(0.801488\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.34864 + 15.5758i −0.0207482 + 0.239628i
\(66\) 0 0
\(67\) 92.1581 + 53.2075i 1.37549 + 0.794142i 0.991613 0.129240i \(-0.0412538\pi\)
0.383881 + 0.923382i \(0.374587\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 101.487i 1.42939i −0.699436 0.714695i \(-0.746565\pi\)
0.699436 0.714695i \(-0.253435\pi\)
\(72\) 0 0
\(73\) 23.2646i 0.318694i −0.987223 0.159347i \(-0.949061\pi\)
0.987223 0.159347i \(-0.0509388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.1358 31.4121i 0.235530 0.407950i
\(78\) 0 0
\(79\) 33.2779 + 57.6390i 0.421239 + 0.729607i 0.996061 0.0886713i \(-0.0282621\pi\)
−0.574822 + 0.818278i \(0.694929\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −72.1421 124.954i −0.869182 1.50547i −0.862834 0.505487i \(-0.831313\pi\)
−0.00634748 0.999980i \(-0.502020\pi\)
\(84\) 0 0
\(85\) −18.4794 39.5366i −0.217405 0.465136i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 154.553i 1.73655i −0.496085 0.868274i \(-0.665230\pi\)
0.496085 0.868274i \(-0.334770\pi\)
\(90\) 0 0
\(91\) −22.3705 −0.245830
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −42.7353 91.4320i −0.449845 0.962442i
\(96\) 0 0
\(97\) 152.189 87.8664i 1.56896 0.905839i 0.572669 0.819786i \(-0.305908\pi\)
0.996291 0.0860529i \(-0.0274254\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 129.456 74.7415i 1.28174 0.740014i 0.304576 0.952488i \(-0.401485\pi\)
0.977167 + 0.212474i \(0.0681520\pi\)
\(102\) 0 0
\(103\) 24.7835 + 14.3088i 0.240617 + 0.138920i 0.615460 0.788168i \(-0.288970\pi\)
−0.374843 + 0.927088i \(0.622304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −156.297 −1.46072 −0.730359 0.683064i \(-0.760647\pi\)
−0.730359 + 0.683064i \(0.760647\pi\)
\(108\) 0 0
\(109\) 8.55575 0.0784931 0.0392465 0.999230i \(-0.487504\pi\)
0.0392465 + 0.999230i \(0.487504\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −92.1852 + 159.670i −0.815799 + 1.41300i 0.0929544 + 0.995670i \(0.470369\pi\)
−0.908753 + 0.417334i \(0.862964\pi\)
\(114\) 0 0
\(115\) −73.3676 6.35254i −0.637979 0.0552395i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 54.0802 31.2232i 0.454456 0.262380i
\(120\) 0 0
\(121\) −47.6484 + 82.5294i −0.393788 + 0.682061i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −120.827 32.0274i −0.966619 0.256219i
\(126\) 0 0
\(127\) 40.7002i 0.320474i −0.987079 0.160237i \(-0.948774\pi\)
0.987079 0.160237i \(-0.0512259\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −69.3025 40.0118i −0.529026 0.305434i 0.211593 0.977358i \(-0.432135\pi\)
−0.740620 + 0.671924i \(0.765468\pi\)
\(132\) 0 0
\(133\) 125.065 72.2065i 0.940341 0.542906i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.53688 + 11.3222i 0.0477144 + 0.0826438i 0.888896 0.458109i \(-0.151473\pi\)
−0.841182 + 0.540752i \(0.818140\pi\)
\(138\) 0 0
\(139\) −72.1852 + 125.029i −0.519318 + 0.899486i 0.480430 + 0.877033i \(0.340481\pi\)
−0.999748 + 0.0224524i \(0.992853\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.8525 −0.110857
\(144\) 0 0
\(145\) 163.111 + 113.994i 1.12491 + 0.786166i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 46.9817 + 27.1249i 0.315313 + 0.182046i 0.649302 0.760531i \(-0.275061\pi\)
−0.333988 + 0.942577i \(0.608395\pi\)
\(150\) 0 0
\(151\) −10.5926 18.3470i −0.0701498 0.121503i 0.828817 0.559520i \(-0.189014\pi\)
−0.898967 + 0.438017i \(0.855681\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 196.119 + 16.9810i 1.26528 + 0.109555i
\(156\) 0 0
\(157\) −91.7458 52.9695i −0.584368 0.337385i 0.178499 0.983940i \(-0.442876\pi\)
−0.762867 + 0.646555i \(0.776209\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 105.373i 0.654489i
\(162\) 0 0
\(163\) 154.746i 0.949361i 0.880158 + 0.474680i \(0.157436\pi\)
−0.880158 + 0.474680i \(0.842564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −75.8336 + 131.348i −0.454094 + 0.786513i −0.998636 0.0522205i \(-0.983370\pi\)
0.544542 + 0.838734i \(0.316703\pi\)
\(168\) 0 0
\(169\) −79.6115 137.891i −0.471074 0.815924i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −155.599 269.505i −0.899416 1.55783i −0.828243 0.560370i \(-0.810659\pi\)
−0.0711731 0.997464i \(-0.522674\pi\)
\(174\) 0 0
\(175\) 30.7427 176.198i 0.175672 1.00684i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 211.170i 1.17972i −0.807505 0.589861i \(-0.799183\pi\)
0.807505 0.589861i \(-0.200817\pi\)
\(180\) 0 0
\(181\) 149.297 0.824844 0.412422 0.910993i \(-0.364683\pi\)
0.412422 + 0.910993i \(0.364683\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 157.954 73.8277i 0.853806 0.399069i
\(186\) 0 0
\(187\) 38.3231 22.1258i 0.204936 0.118320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.9278 + 12.0827i −0.109570 + 0.0632602i −0.553783 0.832661i \(-0.686816\pi\)
0.444214 + 0.895921i \(0.353483\pi\)
\(192\) 0 0
\(193\) −288.086 166.327i −1.49267 0.861796i −0.492709 0.870194i \(-0.663993\pi\)
−0.999965 + 0.00839799i \(0.997327\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −279.568 −1.41913 −0.709564 0.704641i \(-0.751108\pi\)
−0.709564 + 0.704641i \(0.751108\pi\)
\(198\) 0 0
\(199\) −161.185 −0.809976 −0.404988 0.914322i \(-0.632724\pi\)
−0.404988 + 0.914322i \(0.632724\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −142.370 + 246.593i −0.701332 + 1.21474i
\(204\) 0 0
\(205\) 5.72200 66.0852i 0.0279122 0.322367i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 88.6255 51.1680i 0.424046 0.244823i
\(210\) 0 0
\(211\) 46.0926 79.8348i 0.218448 0.378364i −0.735885 0.677106i \(-0.763234\pi\)
0.954334 + 0.298742i \(0.0965671\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −273.013 190.801i −1.26983 0.887446i
\(216\) 0 0
\(217\) 281.672i 1.29803i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −23.6357 13.6461i −0.106949 0.0617471i
\(222\) 0 0
\(223\) −171.189 + 98.8361i −0.767664 + 0.443211i −0.832041 0.554715i \(-0.812827\pi\)
0.0643766 + 0.997926i \(0.479494\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.3642 + 28.3436i 0.0720890 + 0.124862i 0.899817 0.436268i \(-0.143700\pi\)
−0.827728 + 0.561130i \(0.810367\pi\)
\(228\) 0 0
\(229\) −175.463 + 303.911i −0.766215 + 1.32712i 0.173388 + 0.984854i \(0.444529\pi\)
−0.939602 + 0.342269i \(0.888805\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 399.827 1.71600 0.857999 0.513652i \(-0.171708\pi\)
0.857999 + 0.513652i \(0.171708\pi\)
\(234\) 0 0
\(235\) 48.4443 69.3178i 0.206146 0.294969i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −314.965 181.845i −1.31784 0.760858i −0.334463 0.942409i \(-0.608555\pi\)
−0.983381 + 0.181551i \(0.941888\pi\)
\(240\) 0 0
\(241\) −113.834 197.166i −0.472339 0.818115i 0.527160 0.849766i \(-0.323257\pi\)
−0.999499 + 0.0316513i \(0.989923\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.8855 + 0.942523i 0.0444307 + 0.00384703i
\(246\) 0 0
\(247\) −54.6598 31.5578i −0.221295 0.127765i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 227.988i 0.908319i −0.890920 0.454160i \(-0.849940\pi\)
0.890920 0.454160i \(-0.150060\pi\)
\(252\) 0 0
\(253\) 74.6707i 0.295141i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 228.019 394.940i 0.887233 1.53673i 0.0441002 0.999027i \(-0.485958\pi\)
0.843133 0.537705i \(-0.180709\pi\)
\(258\) 0 0
\(259\) 124.741 + 216.058i 0.481625 + 0.834200i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −93.2716 161.551i −0.354645 0.614263i 0.632412 0.774632i \(-0.282065\pi\)
−0.987057 + 0.160369i \(0.948732\pi\)
\(264\) 0 0
\(265\) 9.80137 + 20.9700i 0.0369863 + 0.0791320i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 337.157i 1.25337i 0.779272 + 0.626686i \(0.215589\pi\)
−0.779272 + 0.626686i \(0.784411\pi\)
\(270\) 0 0
\(271\) 58.2590 0.214978 0.107489 0.994206i \(-0.465719\pi\)
0.107489 + 0.994206i \(0.465719\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.7853 124.860i 0.0792193 0.454035i
\(276\) 0 0
\(277\) −287.718 + 166.114i −1.03869 + 0.599691i −0.919463 0.393176i \(-0.871376\pi\)
−0.119231 + 0.992866i \(0.538043\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 97.2509 56.1478i 0.346089 0.199814i −0.316873 0.948468i \(-0.602633\pi\)
0.662961 + 0.748654i \(0.269299\pi\)
\(282\) 0 0
\(283\) 282.303 + 162.987i 0.997536 + 0.575927i 0.907518 0.420013i \(-0.137974\pi\)
0.0900175 + 0.995940i \(0.471308\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 94.9137 0.330710
\(288\) 0 0
\(289\) −212.815 −0.736383
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −35.9811 + 62.3212i −0.122803 + 0.212700i −0.920872 0.389865i \(-0.872522\pi\)
0.798069 + 0.602566i \(0.205855\pi\)
\(294\) 0 0
\(295\) 11.1165 128.389i 0.0376832 0.435216i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −39.8832 + 23.0266i −0.133389 + 0.0770119i
\(300\) 0 0
\(301\) 238.297 412.742i 0.791684 1.37124i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −34.9011 + 49.9392i −0.114430 + 0.163735i
\(306\) 0 0
\(307\) 245.900i 0.800977i −0.916302 0.400488i \(-0.868841\pi\)
0.916302 0.400488i \(-0.131159\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 60.0756 + 34.6847i 0.193169 + 0.111526i 0.593465 0.804860i \(-0.297759\pi\)
−0.400296 + 0.916386i \(0.631093\pi\)
\(312\) 0 0
\(313\) 189.364 109.330i 0.604998 0.349296i −0.166007 0.986125i \(-0.553088\pi\)
0.771005 + 0.636829i \(0.219754\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 37.2158 + 64.4597i 0.117400 + 0.203343i 0.918737 0.394871i \(-0.129211\pi\)
−0.801337 + 0.598214i \(0.795877\pi\)
\(318\) 0 0
\(319\) −100.889 + 174.744i −0.316265 + 0.547787i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 176.185 0.545465
\(324\) 0 0
\(325\) −73.4082 + 26.8676i −0.225871 + 0.0826696i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 104.795 + 60.5034i 0.318526 + 0.183901i
\(330\) 0 0
\(331\) 110.111 + 190.719i 0.332663 + 0.576189i 0.983033 0.183428i \(-0.0587195\pi\)
−0.650370 + 0.759618i \(0.725386\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −45.8981 + 530.092i −0.137009 + 1.58236i
\(336\) 0 0
\(337\) 21.3402 + 12.3208i 0.0633240 + 0.0365601i 0.531328 0.847166i \(-0.321693\pi\)
−0.468004 + 0.883726i \(0.655027\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 199.602i 0.585343i
\(342\) 0 0
\(343\) 334.931i 0.976475i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −73.7779 + 127.787i −0.212616 + 0.368262i −0.952533 0.304437i \(-0.901532\pi\)
0.739916 + 0.672699i \(0.234865\pi\)
\(348\) 0 0
\(349\) 251.575 + 435.740i 0.720844 + 1.24854i 0.960662 + 0.277721i \(0.0895790\pi\)
−0.239818 + 0.970818i \(0.577088\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −118.358 205.002i −0.335292 0.580742i 0.648249 0.761428i \(-0.275501\pi\)
−0.983541 + 0.180686i \(0.942168\pi\)
\(354\) 0 0
\(355\) 459.699 214.863i 1.29493 0.605248i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 195.871i 0.545601i −0.962071 0.272800i \(-0.912050\pi\)
0.962071 0.272800i \(-0.0879499\pi\)
\(360\) 0 0
\(361\) 46.4443 0.128654
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 105.381 49.2548i 0.288714 0.134945i
\(366\) 0 0
\(367\) −294.237 + 169.878i −0.801737 + 0.462883i −0.844078 0.536220i \(-0.819852\pi\)
0.0423414 + 0.999103i \(0.486518\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −28.6838 + 16.5606i −0.0773150 + 0.0446378i
\(372\) 0 0
\(373\) 468.502 + 270.490i 1.25604 + 0.725174i 0.972302 0.233729i \(-0.0750928\pi\)
0.283736 + 0.958902i \(0.408426\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 124.446 0.330095
\(378\) 0 0
\(379\) −432.926 −1.14229 −0.571143 0.820851i \(-0.693500\pi\)
−0.571143 + 0.820851i \(0.693500\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −239.488 + 414.806i −0.625296 + 1.08304i 0.363188 + 0.931716i \(0.381688\pi\)
−0.988484 + 0.151328i \(0.951645\pi\)
\(384\) 0 0
\(385\) 180.682 + 15.6444i 0.469304 + 0.0406347i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −293.747 + 169.595i −0.755134 + 0.435977i −0.827546 0.561398i \(-0.810264\pi\)
0.0724120 + 0.997375i \(0.476930\pi\)
\(390\) 0 0
\(391\) 64.2779 111.333i 0.164394 0.284738i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −190.630 + 272.767i −0.482606 + 0.690550i
\(396\) 0 0
\(397\) 113.042i 0.284740i −0.989814 0.142370i \(-0.954528\pi\)
0.989814 0.142370i \(-0.0454723\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 413.764 + 238.887i 1.03183 + 0.595728i 0.917509 0.397716i \(-0.130197\pi\)
0.114323 + 0.993444i \(0.463530\pi\)
\(402\) 0 0
\(403\) 106.612 61.5523i 0.264545 0.152735i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 88.3957 + 153.106i 0.217188 + 0.376181i
\(408\) 0 0
\(409\) −338.685 + 586.620i −0.828081 + 1.43428i 0.0714602 + 0.997443i \(0.477234\pi\)
−0.899541 + 0.436835i \(0.856099\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 184.396 0.446479
\(414\) 0 0
\(415\) 413.260 591.324i 0.995807 1.42488i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 298.060 + 172.085i 0.711360 + 0.410704i 0.811564 0.584263i \(-0.198616\pi\)
−0.100205 + 0.994967i \(0.531950\pi\)
\(420\) 0 0
\(421\) −14.7959 25.6272i −0.0351446 0.0608723i 0.847918 0.530127i \(-0.177856\pi\)
−0.883063 + 0.469255i \(0.844523\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 139.963 167.410i 0.329324 0.393906i
\(426\) 0 0
\(427\) −75.4983 43.5890i −0.176811 0.102082i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 724.253i 1.68040i 0.542276 + 0.840201i \(0.317563\pi\)
−0.542276 + 0.840201i \(0.682437\pi\)
\(432\) 0 0
\(433\) 96.6100i 0.223118i −0.993758 0.111559i \(-0.964416\pi\)
0.993758 0.111559i \(-0.0355844\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 148.648 257.467i 0.340156 0.589168i
\(438\) 0 0
\(439\) −50.6115 87.6617i −0.115288 0.199685i 0.802607 0.596508i \(-0.203446\pi\)
−0.917895 + 0.396824i \(0.870112\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 188.760 + 326.942i 0.426094 + 0.738017i 0.996522 0.0833307i \(-0.0265558\pi\)
−0.570427 + 0.821348i \(0.693222\pi\)
\(444\) 0 0
\(445\) 700.069 327.212i 1.57319 0.735308i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 654.974i 1.45874i 0.684120 + 0.729369i \(0.260186\pi\)
−0.684120 + 0.729369i \(0.739814\pi\)
\(450\) 0 0
\(451\) 67.2590 0.149133
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −47.3618 101.330i −0.104092 0.222704i
\(456\) 0 0
\(457\) −278.492 + 160.787i −0.609391 + 0.351832i −0.772727 0.634739i \(-0.781108\pi\)
0.163336 + 0.986570i \(0.447774\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −403.145 + 232.756i −0.874500 + 0.504893i −0.868841 0.495091i \(-0.835135\pi\)
−0.00565911 + 0.999984i \(0.501801\pi\)
\(462\) 0 0
\(463\) −217.268 125.440i −0.469262 0.270928i 0.246669 0.969100i \(-0.420664\pi\)
−0.715931 + 0.698171i \(0.753997\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 246.259 0.527321 0.263661 0.964616i \(-0.415070\pi\)
0.263661 + 0.964616i \(0.415070\pi\)
\(468\) 0 0
\(469\) −761.334 −1.62331
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 168.865 292.483i 0.357009 0.618357i
\(474\) 0 0
\(475\) 323.677 387.151i 0.681425 0.815055i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −151.565 + 87.5060i −0.316419 + 0.182685i −0.649795 0.760109i \(-0.725145\pi\)
0.333376 + 0.942794i \(0.391812\pi\)
\(480\) 0 0
\(481\) 54.5180 94.4280i 0.113343 0.196316i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 720.211 + 503.335i 1.48497 + 1.03781i
\(486\) 0 0
\(487\) 28.9906i 0.0595289i 0.999557 + 0.0297645i \(0.00947573\pi\)
−0.999557 + 0.0297645i \(0.990524\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −843.832 487.187i −1.71860 0.992234i −0.921493 0.388394i \(-0.873030\pi\)
−0.797106 0.603840i \(-0.793637\pi\)
\(492\) 0 0
\(493\) −300.846 + 173.693i −0.610234 + 0.352319i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 363.038 + 628.800i 0.730458 + 1.26519i
\(498\) 0 0
\(499\) −313.093 + 542.292i −0.627440 + 1.08676i 0.360623 + 0.932711i \(0.382564\pi\)
−0.988064 + 0.154047i \(0.950769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 71.5197 0.142186 0.0710932 0.997470i \(-0.477351\pi\)
0.0710932 + 0.997470i \(0.477351\pi\)
\(504\) 0 0
\(505\) 612.630 + 428.150i 1.21313 + 0.847822i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 807.392 + 466.148i 1.58623 + 0.915812i 0.993920 + 0.110103i \(0.0351182\pi\)
0.592312 + 0.805708i \(0.298215\pi\)
\(510\) 0 0
\(511\) 83.2221 + 144.145i 0.162861 + 0.282084i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.3431 + 142.554i −0.0239672 + 0.276805i
\(516\) 0 0
\(517\) 74.2613 + 42.8748i 0.143639 + 0.0829299i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 373.070i 0.716066i 0.933709 + 0.358033i \(0.116552\pi\)
−0.933709 + 0.358033i \(0.883448\pi\)
\(522\) 0 0
\(523\) 828.480i 1.58409i 0.610461 + 0.792046i \(0.290984\pi\)
−0.610461 + 0.792046i \(0.709016\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −171.821 + 297.603i −0.326036 + 0.564711i
\(528\) 0 0
\(529\) 156.037 + 270.264i 0.294966 + 0.510896i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −20.7410 35.9245i −0.0389137 0.0674005i
\(534\) 0 0
\(535\) −330.904 707.968i −0.618513 1.32331i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.0789i 0.0205545i
\(540\) 0 0
\(541\) −50.5935 −0.0935184 −0.0467592 0.998906i \(-0.514889\pi\)
−0.0467592 + 0.998906i \(0.514889\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.1138 + 38.7545i 0.0332364 + 0.0711091i
\(546\) 0 0
\(547\) 420.083 242.535i 0.767976 0.443391i −0.0641762 0.997939i \(-0.520442\pi\)
0.832152 + 0.554547i \(0.187109\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −695.733 + 401.681i −1.26267 + 0.729004i
\(552\) 0 0
\(553\) −412.371 238.083i −0.745699 0.430529i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 198.372 0.356144 0.178072 0.984017i \(-0.443014\pi\)
0.178072 + 0.984017i \(0.443014\pi\)
\(558\) 0 0
\(559\) −208.295 −0.372621
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 330.420 572.304i 0.586892 1.01653i −0.407745 0.913096i \(-0.633685\pi\)
0.994637 0.103430i \(-0.0329819\pi\)
\(564\) 0 0
\(565\) −918.416 79.5212i −1.62552 0.140745i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 141.157 81.4970i 0.248079 0.143229i −0.370805 0.928711i \(-0.620918\pi\)
0.618884 + 0.785482i \(0.287585\pi\)
\(570\) 0 0
\(571\) −131.316 + 227.445i −0.229975 + 0.398328i −0.957800 0.287434i \(-0.907198\pi\)
0.727826 + 0.685762i \(0.240531\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −126.556 345.778i −0.220097 0.601353i
\(576\) 0 0
\(577\) 532.551i 0.922966i 0.887149 + 0.461483i \(0.152682\pi\)
−0.887149 + 0.461483i \(0.847318\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 893.967 + 516.132i 1.53867 + 0.888352i
\(582\) 0 0
\(583\) −20.3263 + 11.7354i −0.0348651 + 0.0201294i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −463.797 803.320i −0.790114 1.36852i −0.925896 0.377778i \(-0.876688\pi\)
0.135782 0.990739i \(-0.456645\pi\)
\(588\) 0 0
\(589\) −397.352 + 688.233i −0.674621 + 1.16848i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 890.336 1.50141 0.750705 0.660638i \(-0.229714\pi\)
0.750705 + 0.660638i \(0.229714\pi\)
\(594\) 0 0
\(595\) 255.926 + 178.860i 0.430128 + 0.300604i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −897.856 518.378i −1.49893 0.865405i −0.498926 0.866644i \(-0.666272\pi\)
−0.999999 + 0.00123933i \(0.999606\pi\)
\(600\) 0 0
\(601\) −432.908 749.819i −0.720313 1.24762i −0.960874 0.276985i \(-0.910665\pi\)
0.240561 0.970634i \(-0.422669\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −474.708 41.1026i −0.784641 0.0679382i
\(606\) 0 0
\(607\) −613.671 354.303i −1.01099 0.583695i −0.0995083 0.995037i \(-0.531727\pi\)
−0.911481 + 0.411342i \(0.865060\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 52.8860i 0.0865565i
\(612\) 0 0
\(613\) 677.814i 1.10573i −0.833270 0.552866i \(-0.813534\pi\)
0.833270 0.552866i \(-0.186466\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 237.031 410.551i 0.384168 0.665398i −0.607486 0.794331i \(-0.707822\pi\)
0.991653 + 0.128933i \(0.0411551\pi\)
\(618\) 0 0
\(619\) −161.593 279.888i −0.261056 0.452162i 0.705467 0.708743i \(-0.250737\pi\)
−0.966523 + 0.256581i \(0.917404\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 552.865 + 957.590i 0.887424 + 1.53706i
\(624\) 0 0
\(625\) −110.737 615.112i −0.177180 0.984179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 304.370i 0.483896i
\(630\) 0 0
\(631\) 977.669 1.54940 0.774698 0.632331i \(-0.217902\pi\)
0.774698 + 0.632331i \(0.217902\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 184.358 86.1687i 0.290327 0.135699i
\(636\) 0 0
\(637\) 5.91745 3.41644i 0.00928956 0.00536333i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 212.376 122.615i 0.331320 0.191288i −0.325107 0.945677i \(-0.605400\pi\)
0.656427 + 0.754390i \(0.272067\pi\)
\(642\) 0 0
\(643\) −211.718 122.236i −0.329267 0.190102i 0.326249 0.945284i \(-0.394215\pi\)
−0.655515 + 0.755182i \(0.727549\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 866.779 1.33969 0.669844 0.742501i \(-0.266361\pi\)
0.669844 + 0.742501i \(0.266361\pi\)
\(648\) 0 0
\(649\) 130.669 0.201339
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 320.599 555.294i 0.490963 0.850373i −0.508983 0.860777i \(-0.669978\pi\)
0.999946 + 0.0104037i \(0.00331165\pi\)
\(654\) 0 0
\(655\) 34.5151 398.627i 0.0526948 0.608590i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −668.130 + 385.745i −1.01385 + 0.585349i −0.912318 0.409483i \(-0.865709\pi\)
−0.101536 + 0.994832i \(0.532376\pi\)
\(660\) 0 0
\(661\) 398.038 689.422i 0.602175 1.04300i −0.390316 0.920681i \(-0.627634\pi\)
0.992491 0.122317i \(-0.0390324\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 591.852 + 413.629i 0.890004 + 0.621999i
\(666\) 0 0
\(667\) 586.184i 0.878836i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −53.5007 30.8886i −0.0797327 0.0460337i
\(672\) 0 0
\(673\) 604.767 349.162i 0.898613 0.518815i 0.0218633 0.999761i \(-0.493040\pi\)
0.876750 + 0.480946i \(0.159707\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 216.827 + 375.556i 0.320277 + 0.554736i 0.980545 0.196294i \(-0.0628908\pi\)
−0.660268 + 0.751030i \(0.729557\pi\)
\(678\) 0 0
\(679\) −628.630 + 1088.82i −0.925818 + 1.60356i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1112.83 −1.62933 −0.814663 0.579935i \(-0.803078\pi\)
−0.814663 + 0.579935i \(0.803078\pi\)
\(684\) 0 0
\(685\) −37.4460 + 53.5806i −0.0546656 + 0.0782198i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.5363 + 7.23782i 0.0181949 + 0.0105048i
\(690\) 0 0
\(691\) −248.871 431.058i −0.360161 0.623817i 0.627826 0.778354i \(-0.283945\pi\)
−0.987987 + 0.154536i \(0.950612\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −719.162 62.2687i −1.03477 0.0895952i
\(696\) 0 0
\(697\) 100.282 + 57.8978i 0.143876 + 0.0830671i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 660.713i 0.942529i 0.881992 + 0.471264i \(0.156202\pi\)
−0.881992 + 0.471264i \(0.843798\pi\)
\(702\) 0 0
\(703\) 703.884i 1.00126i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −534.729 + 926.178i −0.756336 + 1.31001i
\(708\) 0 0
\(709\) 506.779 + 877.767i 0.714780 + 1.23803i 0.963044 + 0.269342i \(0.0868063\pi\)
−0.248265 + 0.968692i \(0.579860\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 289.933 + 502.178i 0.406637 + 0.704317i
\(714\) 0 0
\(715\) −33.5622 71.8061i −0.0469401 0.100428i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1067.57i 1.48480i 0.669955 + 0.742402i \(0.266313\pi\)
−0.669955 + 0.742402i \(0.733687\pi\)
\(720\) 0 0
\(721\) −204.741 −0.283968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −171.020 + 980.180i −0.235890 + 1.35197i
\(726\) 0 0
\(727\) 760.856 439.281i 1.04657 0.604237i 0.124883 0.992172i \(-0.460145\pi\)
0.921687 + 0.387934i \(0.126811\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 503.549 290.724i 0.688850 0.397707i
\(732\) 0 0
\(733\) 66.6392 + 38.4742i 0.0909130 + 0.0524886i 0.544767 0.838587i \(-0.316618\pi\)
−0.453854 + 0.891076i \(0.649951\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −539.507 −0.732031
\(738\) 0 0
\(739\) −613.815 −0.830602 −0.415301 0.909684i \(-0.636324\pi\)
−0.415301 + 0.909684i \(0.636324\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 165.518 286.686i 0.222770 0.385849i −0.732878 0.680360i \(-0.761823\pi\)
0.955648 + 0.294511i \(0.0951568\pi\)
\(744\) 0 0
\(745\) −23.3986 + 270.238i −0.0314075 + 0.362735i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 968.396 559.104i 1.29292 0.746467i
\(750\) 0 0
\(751\) 248.426 430.287i 0.330794 0.572952i −0.651874 0.758327i \(-0.726017\pi\)
0.982668 + 0.185376i \(0.0593502\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 60.6790 86.8241i 0.0803695 0.114999i
\(756\) 0 0
\(757\) 1234.26i 1.63046i −0.579135 0.815232i \(-0.696610\pi\)
0.579135 0.815232i \(-0.303390\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 60.0756 + 34.6847i 0.0789430 + 0.0455777i 0.538952 0.842337i \(-0.318820\pi\)
−0.460009 + 0.887914i \(0.652154\pi\)
\(762\) 0 0
\(763\) −53.0104 + 30.6056i −0.0694762 + 0.0401121i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −40.2950 69.7930i −0.0525359 0.0909948i
\(768\) 0 0
\(769\) −555.426 + 962.026i −0.722271 + 1.25101i 0.237817 + 0.971310i \(0.423568\pi\)
−0.960088 + 0.279700i \(0.909765\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −733.074 −0.948349 −0.474174 0.880431i \(-0.657253\pi\)
−0.474174 + 0.880431i \(0.657253\pi\)
\(774\) 0 0
\(775\) 338.296 + 924.299i 0.436511 + 1.19264i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 231.911 + 133.894i 0.297703 + 0.171879i
\(780\) 0 0
\(781\) 257.261 + 445.589i 0.329399 + 0.570536i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 45.6927 527.720i 0.0582073 0.672255i
\(786\) 0 0
\(787\) 870.220 + 502.422i 1.10574 + 0.638402i 0.937724 0.347382i \(-0.112929\pi\)
0.168020 + 0.985784i \(0.446263\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1319.06i 1.66758i
\(792\) 0 0
\(793\) 38.1011i 0.0480468i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 310.550 537.889i 0.389649 0.674892i −0.602753 0.797928i \(-0.705930\pi\)
0.992402 + 0.123036i \(0.0392630\pi\)
\(798\) 0 0
\(799\) 73.8148 + 127.851i 0.0923839 + 0.160014i
\(800\) 0 0
\(801\) 0 0