Defining parameters
Level: | \( N \) | \(=\) | \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1620.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(972\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1620, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1368 | 96 | 1272 |
Cusp forms | 1224 | 96 | 1128 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1620, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1620.3.t.a | $8$ | $44.142$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q+(\beta _{2}-\beta _{7})q^{5}+\beta _{1}q^{7}+(-3\beta _{1}-2\beta _{4}+\cdots)q^{11}+\cdots\) |
1620.3.t.b | $8$ | $44.142$ | 8.0.12960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{5}-2\beta _{4}q^{7}+(\beta _{2}+2\beta _{5}+2\beta _{6}+\cdots)q^{11}+\cdots\) |
1620.3.t.c | $8$ | $44.142$ | 8.0.\(\cdots\).6 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{2}+\beta _{5}+\beta _{6})q^{5}+\beta _{3}q^{7}-7\beta _{4}q^{11}+\cdots\) |
1620.3.t.d | $8$ | $44.142$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(3\) | \(0\) | \(q+(-\beta _{2}+\beta _{7})q^{5}+\beta _{1}q^{7}+(3\beta _{1}+2\beta _{4}+\cdots)q^{11}+\cdots\) |
1620.3.t.e | $16$ | $44.142$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{5}+(-\beta _{3}+\beta _{7})q^{7}+\beta _{14}q^{11}+\cdots\) |
1620.3.t.f | $48$ | $44.142$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(1620, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1620, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(810, [\chi])\)\(^{\oplus 2}\)