Properties

Label 1620.3.g.a
Level $1620$
Weight $3$
Character orbit 1620.g
Analytic conductor $44.142$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,3,Mod(161,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1620.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.1418028264\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + ( - 2 \beta_{3} - 4) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{5} + ( - 2 \beta_{3} - 4) q^{7} + (\beta_{2} + 6 \beta_1) q^{11} + ( - 2 \beta_{3} - 10) q^{13} + ( - \beta_{2} - 6 \beta_1) q^{17} + (2 \beta_{3} - 19) q^{19} + ( - 4 \beta_{2} - 12 \beta_1) q^{23} - 5 q^{25} + ( - 10 \beta_{2} + 12 \beta_1) q^{29} + (14 \beta_{3} + 2) q^{31} + (10 \beta_{2} + 4 \beta_1) q^{35} + 14 q^{37} + 15 \beta_{2} q^{41} + ( - 8 \beta_{3} + 11) q^{43} + (34 \beta_{2} + 6 \beta_1) q^{47} + (16 \beta_{3} + 27) q^{49} + ( - 14 \beta_{2} - 6 \beta_1) q^{53} + (\beta_{3} + 30) q^{55} + (29 \beta_{2} + 6 \beta_1) q^{59} + (6 \beta_{3} - 22) q^{61} + (10 \beta_{2} + 10 \beta_1) q^{65} + (24 \beta_{3} - 7) q^{67} + (36 \beta_{2} - 18 \beta_1) q^{71} + ( - 6 \beta_{3} - 37) q^{73} + ( - 64 \beta_{2} - 30 \beta_1) q^{77} + (6 \beta_{3} + 80) q^{79} - 52 \beta_{2} q^{83} + ( - \beta_{3} - 30) q^{85} + ( - 24 \beta_{2} + 24 \beta_1) q^{89} + (28 \beta_{3} + 100) q^{91} + ( - 10 \beta_{2} + 19 \beta_1) q^{95} + (26 \beta_{3} - 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 16 q^{7} - 40 q^{13} - 76 q^{19} - 20 q^{25} + 8 q^{31} + 56 q^{37} + 44 q^{43} + 108 q^{49} + 120 q^{55} - 88 q^{61} - 28 q^{67} - 148 q^{73} + 320 q^{79} - 120 q^{85} + 400 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{2} - 5 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 10\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{2} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
1.93649 + 1.11803i
−1.93649 + 1.11803i
1.93649 1.11803i
−1.93649 1.11803i
0 0 0 2.23607i 0 −11.7460 0 0 0
161.2 0 0 0 2.23607i 0 3.74597 0 0 0
161.3 0 0 0 2.23607i 0 −11.7460 0 0 0
161.4 0 0 0 2.23607i 0 3.74597 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1620.3.g.a 4
3.b odd 2 1 inner 1620.3.g.a 4
9.c even 3 1 180.3.o.a 4
9.c even 3 1 540.3.o.a 4
9.d odd 6 1 180.3.o.a 4
9.d odd 6 1 540.3.o.a 4
36.f odd 6 1 720.3.bs.a 4
36.f odd 6 1 2160.3.bs.a 4
36.h even 6 1 720.3.bs.a 4
36.h even 6 1 2160.3.bs.a 4
45.h odd 6 1 900.3.p.b 4
45.h odd 6 1 2700.3.p.a 4
45.j even 6 1 900.3.p.b 4
45.j even 6 1 2700.3.p.a 4
45.k odd 12 2 900.3.u.b 8
45.k odd 12 2 2700.3.u.a 8
45.l even 12 2 900.3.u.b 8
45.l even 12 2 2700.3.u.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.3.o.a 4 9.c even 3 1
180.3.o.a 4 9.d odd 6 1
540.3.o.a 4 9.c even 3 1
540.3.o.a 4 9.d odd 6 1
720.3.bs.a 4 36.f odd 6 1
720.3.bs.a 4 36.h even 6 1
900.3.p.b 4 45.h odd 6 1
900.3.p.b 4 45.j even 6 1
900.3.u.b 8 45.k odd 12 2
900.3.u.b 8 45.l even 12 2
1620.3.g.a 4 1.a even 1 1 trivial
1620.3.g.a 4 3.b odd 2 1 inner
2160.3.bs.a 4 36.f odd 6 1
2160.3.bs.a 4 36.h even 6 1
2700.3.p.a 4 45.h odd 6 1
2700.3.p.a 4 45.j even 6 1
2700.3.u.a 8 45.k odd 12 2
2700.3.u.a 8 45.l even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 8T_{7} - 44 \) acting on \(S_{3}^{\mathrm{new}}(1620, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 8 T - 44)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 366 T^{2} + 31329 \) Copy content Toggle raw display
$13$ \( (T^{2} + 20 T + 40)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 366 T^{2} + 31329 \) Copy content Toggle raw display
$19$ \( (T^{2} + 38 T + 301)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 1536 T^{2} + 451584 \) Copy content Toggle raw display
$29$ \( T^{4} + 2040 T^{2} + 176400 \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 2936)^{2} \) Copy content Toggle raw display
$37$ \( (T - 14)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 675)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 22 T - 839)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 7296 T^{2} + 10810944 \) Copy content Toggle raw display
$53$ \( T^{4} + 1536 T^{2} + 166464 \) Copy content Toggle raw display
$59$ \( T^{4} + 5406 T^{2} + 5489649 \) Copy content Toggle raw display
$61$ \( (T^{2} + 44 T - 56)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 14 T - 8591)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 11016 T^{2} + 5143824 \) Copy content Toggle raw display
$73$ \( (T^{2} + 74 T + 829)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 160 T + 5860)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 8112)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 9216 T^{2} + 1327104 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 10139)^{2} \) Copy content Toggle raw display
show more
show less