Properties

Label 1620.2.i.m.1081.2
Level $1620$
Weight $2$
Character 1620.1081
Analytic conductor $12.936$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,2,Mod(541,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.541");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1620.1081
Dual form 1620.2.i.m.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(1.36603 + 2.36603i) q^{7} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(1.36603 + 2.36603i) q^{7} +(0.866025 + 1.50000i) q^{11} +(-2.73205 + 4.73205i) q^{13} +4.73205 q^{17} -4.46410 q^{19} +(1.73205 - 3.00000i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-3.86603 - 6.69615i) q^{29} +(-2.96410 + 5.13397i) q^{31} -2.73205 q^{35} -6.19615 q^{37} +(-5.59808 + 9.69615i) q^{41} +(-1.63397 - 2.83013i) q^{43} +(-0.633975 - 1.09808i) q^{47} +(-0.232051 + 0.401924i) q^{49} +7.26795 q^{53} -1.73205 q^{55} +(-3.86603 + 6.69615i) q^{59} +(2.00000 + 3.46410i) q^{61} +(-2.73205 - 4.73205i) q^{65} +(-3.19615 + 5.53590i) q^{67} +11.1962 q^{71} -0.196152 q^{73} +(-2.36603 + 4.09808i) q^{77} +(7.19615 + 12.4641i) q^{79} +(-7.56218 - 13.0981i) q^{83} +(-2.36603 + 4.09808i) q^{85} -5.19615 q^{89} -14.9282 q^{91} +(2.23205 - 3.86603i) q^{95} +(-0.366025 - 0.633975i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} + 2 q^{7} - 4 q^{13} + 12 q^{17} - 4 q^{19} - 2 q^{25} - 12 q^{29} + 2 q^{31} - 4 q^{35} - 4 q^{37} - 12 q^{41} - 10 q^{43} - 6 q^{47} + 6 q^{49} + 36 q^{53} - 12 q^{59} + 8 q^{61} - 4 q^{65} + 8 q^{67} + 24 q^{71} + 20 q^{73} - 6 q^{77} + 8 q^{79} - 6 q^{83} - 6 q^{85} - 32 q^{91} + 2 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.36603 + 2.36603i 0.516309 + 0.894274i 0.999821 + 0.0189356i \(0.00602775\pi\)
−0.483512 + 0.875338i \(0.660639\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.866025 + 1.50000i 0.261116 + 0.452267i 0.966539 0.256520i \(-0.0825760\pi\)
−0.705422 + 0.708787i \(0.749243\pi\)
\(12\) 0 0
\(13\) −2.73205 + 4.73205i −0.757735 + 1.31243i 0.186269 + 0.982499i \(0.440360\pi\)
−0.944003 + 0.329936i \(0.892973\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.73205 1.14769 0.573845 0.818964i \(-0.305451\pi\)
0.573845 + 0.818964i \(0.305451\pi\)
\(18\) 0 0
\(19\) −4.46410 −1.02414 −0.512068 0.858945i \(-0.671120\pi\)
−0.512068 + 0.858945i \(0.671120\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i \(-0.715715\pi\)
0.988152 + 0.153481i \(0.0490483\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.86603 6.69615i −0.717903 1.24344i −0.961829 0.273651i \(-0.911769\pi\)
0.243926 0.969794i \(-0.421564\pi\)
\(30\) 0 0
\(31\) −2.96410 + 5.13397i −0.532368 + 0.922089i 0.466917 + 0.884301i \(0.345365\pi\)
−0.999286 + 0.0377881i \(0.987969\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.73205 −0.461801
\(36\) 0 0
\(37\) −6.19615 −1.01864 −0.509321 0.860577i \(-0.670103\pi\)
−0.509321 + 0.860577i \(0.670103\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.59808 + 9.69615i −0.874273 + 1.51428i −0.0167371 + 0.999860i \(0.505328\pi\)
−0.857536 + 0.514425i \(0.828006\pi\)
\(42\) 0 0
\(43\) −1.63397 2.83013i −0.249179 0.431590i 0.714119 0.700024i \(-0.246827\pi\)
−0.963298 + 0.268434i \(0.913494\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.633975 1.09808i −0.0924747 0.160171i 0.816077 0.577943i \(-0.196144\pi\)
−0.908552 + 0.417772i \(0.862811\pi\)
\(48\) 0 0
\(49\) −0.232051 + 0.401924i −0.0331501 + 0.0574177i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.26795 0.998330 0.499165 0.866507i \(-0.333640\pi\)
0.499165 + 0.866507i \(0.333640\pi\)
\(54\) 0 0
\(55\) −1.73205 −0.233550
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.86603 + 6.69615i −0.503314 + 0.871765i 0.496679 + 0.867934i \(0.334553\pi\)
−0.999993 + 0.00383049i \(0.998781\pi\)
\(60\) 0 0
\(61\) 2.00000 + 3.46410i 0.256074 + 0.443533i 0.965187 0.261562i \(-0.0842377\pi\)
−0.709113 + 0.705095i \(0.750904\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.73205 4.73205i −0.338869 0.586939i
\(66\) 0 0
\(67\) −3.19615 + 5.53590i −0.390472 + 0.676318i −0.992512 0.122149i \(-0.961022\pi\)
0.602040 + 0.798466i \(0.294355\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.1962 1.32874 0.664369 0.747404i \(-0.268700\pi\)
0.664369 + 0.747404i \(0.268700\pi\)
\(72\) 0 0
\(73\) −0.196152 −0.0229579 −0.0114790 0.999934i \(-0.503654\pi\)
−0.0114790 + 0.999934i \(0.503654\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.36603 + 4.09808i −0.269634 + 0.467019i
\(78\) 0 0
\(79\) 7.19615 + 12.4641i 0.809630 + 1.40232i 0.913120 + 0.407690i \(0.133666\pi\)
−0.103490 + 0.994631i \(0.533001\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.56218 13.0981i −0.830057 1.43770i −0.897992 0.440011i \(-0.854975\pi\)
0.0679356 0.997690i \(-0.478359\pi\)
\(84\) 0 0
\(85\) −2.36603 + 4.09808i −0.256631 + 0.444499i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.19615 −0.550791 −0.275396 0.961331i \(-0.588809\pi\)
−0.275396 + 0.961331i \(0.588809\pi\)
\(90\) 0 0
\(91\) −14.9282 −1.56490
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.23205 3.86603i 0.229004 0.396646i
\(96\) 0 0
\(97\) −0.366025 0.633975i −0.0371642 0.0643704i 0.846845 0.531840i \(-0.178499\pi\)
−0.884009 + 0.467469i \(0.845166\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.06218 + 5.30385i 0.304698 + 0.527753i 0.977194 0.212348i \(-0.0681111\pi\)
−0.672496 + 0.740101i \(0.734778\pi\)
\(102\) 0 0
\(103\) −9.19615 + 15.9282i −0.906124 + 1.56945i −0.0867223 + 0.996233i \(0.527639\pi\)
−0.819402 + 0.573220i \(0.805694\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.46410 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(108\) 0 0
\(109\) −7.92820 −0.759384 −0.379692 0.925113i \(-0.623970\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.169873 + 0.294229i −0.0159803 + 0.0276787i −0.873905 0.486097i \(-0.838420\pi\)
0.857925 + 0.513776i \(0.171754\pi\)
\(114\) 0 0
\(115\) 1.73205 + 3.00000i 0.161515 + 0.279751i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.46410 + 11.1962i 0.592563 + 1.02635i
\(120\) 0 0
\(121\) 4.00000 6.92820i 0.363636 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.19615 0.372348 0.186174 0.982517i \(-0.440391\pi\)
0.186174 + 0.982517i \(0.440391\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.13397 8.89230i 0.448557 0.776924i −0.549735 0.835339i \(-0.685271\pi\)
0.998292 + 0.0584149i \(0.0186046\pi\)
\(132\) 0 0
\(133\) −6.09808 10.5622i −0.528770 0.915857i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.19615 + 3.80385i 0.187630 + 0.324985i 0.944460 0.328628i \(-0.106586\pi\)
−0.756830 + 0.653612i \(0.773253\pi\)
\(138\) 0 0
\(139\) −7.69615 + 13.3301i −0.652779 + 1.13065i 0.329666 + 0.944097i \(0.393064\pi\)
−0.982446 + 0.186549i \(0.940270\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.46410 −0.791428
\(144\) 0 0
\(145\) 7.73205 0.642112
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) 8.69615 + 15.0622i 0.707683 + 1.22574i 0.965715 + 0.259606i \(0.0835928\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.96410 5.13397i −0.238082 0.412371i
\(156\) 0 0
\(157\) −1.63397 + 2.83013i −0.130405 + 0.225869i −0.923833 0.382796i \(-0.874961\pi\)
0.793428 + 0.608665i \(0.208295\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.46410 0.745876
\(162\) 0 0
\(163\) 18.7321 1.46721 0.733604 0.679577i \(-0.237837\pi\)
0.733604 + 0.679577i \(0.237837\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5622 + 18.2942i −0.817326 + 1.41565i 0.0903199 + 0.995913i \(0.471211\pi\)
−0.907646 + 0.419737i \(0.862122\pi\)
\(168\) 0 0
\(169\) −8.42820 14.5981i −0.648323 1.12293i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.1244 21.0000i −0.921798 1.59660i −0.796632 0.604465i \(-0.793387\pi\)
−0.125166 0.992136i \(-0.539946\pi\)
\(174\) 0 0
\(175\) 1.36603 2.36603i 0.103262 0.178855i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.1244 0.906217 0.453108 0.891455i \(-0.350315\pi\)
0.453108 + 0.891455i \(0.350315\pi\)
\(180\) 0 0
\(181\) −16.4641 −1.22377 −0.611884 0.790948i \(-0.709588\pi\)
−0.611884 + 0.790948i \(0.709588\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.09808 5.36603i 0.227775 0.394518i
\(186\) 0 0
\(187\) 4.09808 + 7.09808i 0.299681 + 0.519063i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.52628 + 16.5000i 0.689297 + 1.19390i 0.972065 + 0.234710i \(0.0754140\pi\)
−0.282768 + 0.959188i \(0.591253\pi\)
\(192\) 0 0
\(193\) 5.29423 9.16987i 0.381087 0.660062i −0.610131 0.792301i \(-0.708883\pi\)
0.991218 + 0.132239i \(0.0422165\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.8564 0.987228 0.493614 0.869681i \(-0.335676\pi\)
0.493614 + 0.869681i \(0.335676\pi\)
\(198\) 0 0
\(199\) 15.8564 1.12403 0.562015 0.827127i \(-0.310026\pi\)
0.562015 + 0.827127i \(0.310026\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.5622 18.2942i 0.741320 1.28400i
\(204\) 0 0
\(205\) −5.59808 9.69615i −0.390987 0.677209i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.86603 6.69615i −0.267419 0.463183i
\(210\) 0 0
\(211\) 9.96410 17.2583i 0.685957 1.18811i −0.287178 0.957877i \(-0.592717\pi\)
0.973135 0.230235i \(-0.0739496\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.26795 0.222872
\(216\) 0 0
\(217\) −16.1962 −1.09947
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.9282 + 22.3923i −0.869645 + 1.50627i
\(222\) 0 0
\(223\) 2.92820 + 5.07180i 0.196087 + 0.339633i 0.947256 0.320477i \(-0.103843\pi\)
−0.751169 + 0.660110i \(0.770510\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.0981 + 22.6865i 0.869350 + 1.50576i 0.862662 + 0.505780i \(0.168795\pi\)
0.00668763 + 0.999978i \(0.497871\pi\)
\(228\) 0 0
\(229\) 8.92820 15.4641i 0.589992 1.02190i −0.404240 0.914653i \(-0.632464\pi\)
0.994233 0.107244i \(-0.0342026\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.5885 −1.61084 −0.805422 0.592702i \(-0.798061\pi\)
−0.805422 + 0.592702i \(0.798061\pi\)
\(234\) 0 0
\(235\) 1.26795 0.0827119
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.26795 7.39230i 0.276071 0.478168i −0.694334 0.719653i \(-0.744301\pi\)
0.970405 + 0.241484i \(0.0776343\pi\)
\(240\) 0 0
\(241\) −5.16025 8.93782i −0.332401 0.575736i 0.650581 0.759437i \(-0.274525\pi\)
−0.982982 + 0.183701i \(0.941192\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.232051 0.401924i −0.0148252 0.0256780i
\(246\) 0 0
\(247\) 12.1962 21.1244i 0.776023 1.34411i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.5359 −1.29621 −0.648107 0.761549i \(-0.724439\pi\)
−0.648107 + 0.761549i \(0.724439\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.73205 13.3923i 0.482312 0.835389i −0.517482 0.855694i \(-0.673130\pi\)
0.999794 + 0.0203052i \(0.00646380\pi\)
\(258\) 0 0
\(259\) −8.46410 14.6603i −0.525934 0.910944i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.1244 21.0000i −0.747620 1.29492i −0.948961 0.315394i \(-0.897863\pi\)
0.201341 0.979521i \(-0.435470\pi\)
\(264\) 0 0
\(265\) −3.63397 + 6.29423i −0.223233 + 0.386651i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.2679 0.991874 0.495937 0.868358i \(-0.334825\pi\)
0.495937 + 0.868358i \(0.334825\pi\)
\(270\) 0 0
\(271\) 16.7846 1.01959 0.509796 0.860295i \(-0.329721\pi\)
0.509796 + 0.860295i \(0.329721\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.866025 1.50000i 0.0522233 0.0904534i
\(276\) 0 0
\(277\) −2.56218 4.43782i −0.153946 0.266643i 0.778729 0.627361i \(-0.215865\pi\)
−0.932675 + 0.360718i \(0.882532\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6603 + 25.3923i 0.874557 + 1.51478i 0.857233 + 0.514928i \(0.172181\pi\)
0.0173240 + 0.999850i \(0.494485\pi\)
\(282\) 0 0
\(283\) −8.26795 + 14.3205i −0.491479 + 0.851266i −0.999952 0.00981191i \(-0.996877\pi\)
0.508473 + 0.861078i \(0.330210\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.5885 −1.80558
\(288\) 0 0
\(289\) 5.39230 0.317194
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.2942 21.2942i 0.718237 1.24402i −0.243461 0.969911i \(-0.578283\pi\)
0.961698 0.274112i \(-0.0883837\pi\)
\(294\) 0 0
\(295\) −3.86603 6.69615i −0.225089 0.389865i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.46410 + 16.3923i 0.547323 + 0.947991i
\(300\) 0 0
\(301\) 4.46410 7.73205i 0.257307 0.445668i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −1.80385 −0.102951 −0.0514755 0.998674i \(-0.516392\pi\)
−0.0514755 + 0.998674i \(0.516392\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.25833 + 14.3038i −0.468287 + 0.811097i −0.999343 0.0362398i \(-0.988462\pi\)
0.531056 + 0.847337i \(0.321795\pi\)
\(312\) 0 0
\(313\) −7.46410 12.9282i −0.421896 0.730745i 0.574229 0.818695i \(-0.305302\pi\)
−0.996125 + 0.0879495i \(0.971969\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.56218 + 2.70577i 0.0877406 + 0.151971i 0.906556 0.422086i \(-0.138702\pi\)
−0.818815 + 0.574057i \(0.805369\pi\)
\(318\) 0 0
\(319\) 6.69615 11.5981i 0.374913 0.649368i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −21.1244 −1.17539
\(324\) 0 0
\(325\) 5.46410 0.303094
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.73205 3.00000i 0.0954911 0.165395i
\(330\) 0 0
\(331\) 14.6962 + 25.4545i 0.807774 + 1.39910i 0.914403 + 0.404806i \(0.132661\pi\)
−0.106629 + 0.994299i \(0.534006\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.19615 5.53590i −0.174624 0.302458i
\(336\) 0 0
\(337\) 17.1244 29.6603i 0.932823 1.61570i 0.154353 0.988016i \(-0.450671\pi\)
0.778471 0.627681i \(-0.215996\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.2679 −0.556041
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.9019 18.8827i 0.585246 1.01368i −0.409599 0.912266i \(-0.634331\pi\)
0.994845 0.101410i \(-0.0323354\pi\)
\(348\) 0 0
\(349\) 12.5000 + 21.6506i 0.669110 + 1.15893i 0.978153 + 0.207884i \(0.0666577\pi\)
−0.309044 + 0.951048i \(0.600009\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.4904 25.0981i −0.771245 1.33584i −0.936881 0.349649i \(-0.886301\pi\)
0.165636 0.986187i \(-0.447032\pi\)
\(354\) 0 0
\(355\) −5.59808 + 9.69615i −0.297115 + 0.514618i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.33975 −0.492933 −0.246466 0.969151i \(-0.579270\pi\)
−0.246466 + 0.969151i \(0.579270\pi\)
\(360\) 0 0
\(361\) 0.928203 0.0488528
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.0980762 0.169873i 0.00513354 0.00889156i
\(366\) 0 0
\(367\) 13.1962 + 22.8564i 0.688834 + 1.19309i 0.972216 + 0.234088i \(0.0752102\pi\)
−0.283382 + 0.959007i \(0.591456\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.92820 + 17.1962i 0.515447 + 0.892780i
\(372\) 0 0
\(373\) 7.02628 12.1699i 0.363807 0.630132i −0.624777 0.780803i \(-0.714810\pi\)
0.988584 + 0.150671i \(0.0481434\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.2487 2.17592
\(378\) 0 0
\(379\) 4.53590 0.232993 0.116497 0.993191i \(-0.462834\pi\)
0.116497 + 0.993191i \(0.462834\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.12436 15.8038i 0.466233 0.807539i −0.533023 0.846100i \(-0.678944\pi\)
0.999256 + 0.0385616i \(0.0122776\pi\)
\(384\) 0 0
\(385\) −2.36603 4.09808i −0.120584 0.208857i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.7321 + 23.7846i 0.696243 + 1.20593i 0.969760 + 0.244061i \(0.0784796\pi\)
−0.273517 + 0.961867i \(0.588187\pi\)
\(390\) 0 0
\(391\) 8.19615 14.1962i 0.414497 0.717930i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.3923 −0.724155
\(396\) 0 0
\(397\) 37.3205 1.87306 0.936531 0.350584i \(-0.114017\pi\)
0.936531 + 0.350584i \(0.114017\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.39230 + 12.8038i −0.369154 + 0.639394i −0.989434 0.144987i \(-0.953686\pi\)
0.620279 + 0.784381i \(0.287019\pi\)
\(402\) 0 0
\(403\) −16.1962 28.0526i −0.806788 1.39740i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.36603 9.29423i −0.265984 0.460698i
\(408\) 0 0
\(409\) 8.92820 15.4641i 0.441471 0.764651i −0.556328 0.830963i \(-0.687790\pi\)
0.997799 + 0.0663124i \(0.0211234\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.1244 −1.03946
\(414\) 0 0
\(415\) 15.1244 0.742425
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.7321 18.5885i 0.524295 0.908106i −0.475305 0.879821i \(-0.657662\pi\)
0.999600 0.0282844i \(-0.00900441\pi\)
\(420\) 0 0
\(421\) −6.89230 11.9378i −0.335910 0.581814i 0.647749 0.761854i \(-0.275711\pi\)
−0.983659 + 0.180040i \(0.942377\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.36603 4.09808i −0.114769 0.198786i
\(426\) 0 0
\(427\) −5.46410 + 9.46410i −0.264426 + 0.458000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.5885 1.61790 0.808950 0.587878i \(-0.200037\pi\)
0.808950 + 0.587878i \(0.200037\pi\)
\(432\) 0 0
\(433\) 11.4641 0.550930 0.275465 0.961311i \(-0.411168\pi\)
0.275465 + 0.961311i \(0.411168\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.73205 + 13.3923i −0.369874 + 0.640641i
\(438\) 0 0
\(439\) −3.30385 5.72243i −0.157684 0.273117i 0.776349 0.630303i \(-0.217069\pi\)
−0.934033 + 0.357186i \(0.883736\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.6340 + 32.2750i 0.885327 + 1.53343i 0.845339 + 0.534231i \(0.179399\pi\)
0.0399883 + 0.999200i \(0.487268\pi\)
\(444\) 0 0
\(445\) 2.59808 4.50000i 0.123161 0.213320i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −24.1244 −1.13850 −0.569249 0.822165i \(-0.692766\pi\)
−0.569249 + 0.822165i \(0.692766\pi\)
\(450\) 0 0
\(451\) −19.3923 −0.913148
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.46410 12.9282i 0.349922 0.606084i
\(456\) 0 0
\(457\) −11.0981 19.2224i −0.519146 0.899187i −0.999752 0.0222510i \(-0.992917\pi\)
0.480606 0.876936i \(-0.340417\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.79423 + 8.30385i 0.223289 + 0.386749i 0.955805 0.294002i \(-0.0949871\pi\)
−0.732515 + 0.680750i \(0.761654\pi\)
\(462\) 0 0
\(463\) 1.19615 2.07180i 0.0555899 0.0962846i −0.836891 0.547369i \(-0.815629\pi\)
0.892481 + 0.451085i \(0.148963\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.1962 −1.21221 −0.606107 0.795383i \(-0.707270\pi\)
−0.606107 + 0.795383i \(0.707270\pi\)
\(468\) 0 0
\(469\) −17.4641 −0.806417
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.83013 4.90192i 0.130129 0.225391i
\(474\) 0 0
\(475\) 2.23205 + 3.86603i 0.102414 + 0.177385i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.66987 2.89230i −0.0762984 0.132153i 0.825352 0.564619i \(-0.190977\pi\)
−0.901650 + 0.432466i \(0.857644\pi\)
\(480\) 0 0
\(481\) 16.9282 29.3205i 0.771860 1.33690i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.732051 0.0332407
\(486\) 0 0
\(487\) −30.5359 −1.38371 −0.691857 0.722035i \(-0.743207\pi\)
−0.691857 + 0.722035i \(0.743207\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.13397 + 3.69615i −0.0963049 + 0.166805i −0.910152 0.414273i \(-0.864036\pi\)
0.813848 + 0.581078i \(0.197369\pi\)
\(492\) 0 0
\(493\) −18.2942 31.6865i −0.823931 1.42709i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.2942 + 26.4904i 0.686040 + 1.18826i
\(498\) 0 0
\(499\) −13.6962 + 23.7224i −0.613124 + 1.06196i 0.377587 + 0.925974i \(0.376754\pi\)
−0.990711 + 0.135988i \(0.956579\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.3205 1.57486 0.787432 0.616402i \(-0.211410\pi\)
0.787432 + 0.616402i \(0.211410\pi\)
\(504\) 0 0
\(505\) −6.12436 −0.272530
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.3923 + 23.1962i −0.593603 + 1.02815i 0.400139 + 0.916455i \(0.368962\pi\)
−0.993742 + 0.111697i \(0.964371\pi\)
\(510\) 0 0
\(511\) −0.267949 0.464102i −0.0118534 0.0205306i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.19615 15.9282i −0.405231 0.701880i
\(516\) 0 0
\(517\) 1.09808 1.90192i 0.0482933 0.0836465i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.3923 0.455295 0.227648 0.973744i \(-0.426897\pi\)
0.227648 + 0.973744i \(0.426897\pi\)
\(522\) 0 0
\(523\) 3.60770 0.157753 0.0788767 0.996884i \(-0.474867\pi\)
0.0788767 + 0.996884i \(0.474867\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −14.0263 + 24.2942i −0.610994 + 1.05827i
\(528\) 0 0
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −30.5885 52.9808i −1.32493 2.29485i
\(534\) 0 0
\(535\) 1.73205 3.00000i 0.0748831 0.129701i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.803848 −0.0346242
\(540\) 0 0
\(541\) 2.46410 0.105940 0.0529700 0.998596i \(-0.483131\pi\)
0.0529700 + 0.998596i \(0.483131\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.96410 6.86603i 0.169803 0.294108i
\(546\) 0 0
\(547\) −2.39230 4.14359i −0.102288 0.177167i 0.810339 0.585961i \(-0.199283\pi\)
−0.912627 + 0.408794i \(0.865950\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.2583 + 29.8923i 0.735230 + 1.27346i
\(552\) 0 0
\(553\) −19.6603 + 34.0526i −0.836039 + 1.44806i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.39230 0.186108 0.0930540 0.995661i \(-0.470337\pi\)
0.0930540 + 0.995661i \(0.470337\pi\)
\(558\) 0 0
\(559\) 17.8564 0.755246
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.3660 19.6865i 0.479021 0.829688i −0.520690 0.853746i \(-0.674325\pi\)
0.999711 + 0.0240575i \(0.00765849\pi\)
\(564\) 0 0
\(565\) −0.169873 0.294229i −0.00714661 0.0123783i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.5263 37.2846i −0.902429 1.56305i −0.824332 0.566106i \(-0.808449\pi\)
−0.0780964 0.996946i \(-0.524884\pi\)
\(570\) 0 0
\(571\) −0.428203 + 0.741670i −0.0179197 + 0.0310379i −0.874846 0.484401i \(-0.839038\pi\)
0.856926 + 0.515439i \(0.172371\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.46410 −0.144463
\(576\) 0 0
\(577\) 11.8038 0.491401 0.245700 0.969346i \(-0.420982\pi\)
0.245700 + 0.969346i \(0.420982\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20.6603 35.7846i 0.857132 1.48460i
\(582\) 0 0
\(583\) 6.29423 + 10.9019i 0.260680 + 0.451512i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.90192 + 3.29423i 0.0785008 + 0.135967i 0.902603 0.430473i \(-0.141653\pi\)
−0.824102 + 0.566441i \(0.808320\pi\)
\(588\) 0 0
\(589\) 13.2321 22.9186i 0.545217 0.944344i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.0718 0.947445 0.473723 0.880674i \(-0.342910\pi\)
0.473723 + 0.880674i \(0.342910\pi\)
\(594\) 0 0
\(595\) −12.9282 −0.530005
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.20577 + 12.4808i −0.294420 + 0.509950i −0.974850 0.222863i \(-0.928460\pi\)
0.680430 + 0.732813i \(0.261793\pi\)
\(600\) 0 0
\(601\) 12.1603 + 21.0622i 0.496027 + 0.859144i 0.999990 0.00458144i \(-0.00145832\pi\)
−0.503962 + 0.863726i \(0.668125\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.00000 + 6.92820i 0.162623 + 0.281672i
\(606\) 0 0
\(607\) −1.29423 + 2.24167i −0.0525311 + 0.0909866i −0.891095 0.453816i \(-0.850062\pi\)
0.838564 + 0.544803i \(0.183396\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.92820 0.280285
\(612\) 0 0
\(613\) 24.3923 0.985196 0.492598 0.870257i \(-0.336047\pi\)
0.492598 + 0.870257i \(0.336047\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 + 10.3923i −0.241551 + 0.418378i −0.961156 0.276005i \(-0.910989\pi\)
0.719605 + 0.694383i \(0.244323\pi\)
\(618\) 0 0
\(619\) 5.00000 + 8.66025i 0.200967 + 0.348085i 0.948840 0.315757i \(-0.102258\pi\)
−0.747873 + 0.663842i \(0.768925\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.09808 12.2942i −0.284378 0.492558i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.3205 −1.16909
\(630\) 0 0
\(631\) −0.0717968 −0.00285818 −0.00142909 0.999999i \(-0.500455\pi\)
−0.00142909 + 0.999999i \(0.500455\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.09808 + 3.63397i −0.0832596 + 0.144210i
\(636\) 0 0
\(637\) −1.26795 2.19615i −0.0502380 0.0870147i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.40192 11.0885i −0.252861 0.437968i 0.711451 0.702735i \(-0.248038\pi\)
−0.964312 + 0.264767i \(0.914705\pi\)
\(642\) 0 0
\(643\) −7.29423 + 12.6340i −0.287656 + 0.498235i −0.973250 0.229749i \(-0.926209\pi\)
0.685594 + 0.727985i \(0.259543\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.248711 −0.00977785 −0.00488893 0.999988i \(-0.501556\pi\)
−0.00488893 + 0.999988i \(0.501556\pi\)
\(648\) 0 0
\(649\) −13.3923 −0.525694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.26795 + 2.19615i −0.0496187 + 0.0859421i −0.889768 0.456413i \(-0.849134\pi\)
0.840149 + 0.542355i \(0.182467\pi\)
\(654\) 0 0
\(655\) 5.13397 + 8.89230i 0.200601 + 0.347451i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.26795 2.19615i −0.0493923 0.0855500i 0.840272 0.542165i \(-0.182395\pi\)
−0.889665 + 0.456615i \(0.849062\pi\)
\(660\) 0 0
\(661\) −7.69615 + 13.3301i −0.299346 + 0.518482i −0.975986 0.217831i \(-0.930102\pi\)
0.676641 + 0.736313i \(0.263435\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.1962 0.472947
\(666\) 0 0
\(667\) −26.7846 −1.03710
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.46410 + 6.00000i −0.133730 + 0.231627i
\(672\) 0 0
\(673\) 19.1962 + 33.2487i 0.739957 + 1.28164i 0.952514 + 0.304495i \(0.0984877\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.3205 + 35.1962i 0.780981 + 1.35270i 0.931371 + 0.364071i \(0.118614\pi\)
−0.150390 + 0.988627i \(0.548053\pi\)
\(678\) 0 0
\(679\) 1.00000 1.73205i 0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.4641 −0.821301 −0.410651 0.911793i \(-0.634698\pi\)
−0.410651 + 0.911793i \(0.634698\pi\)
\(684\) 0 0
\(685\) −4.39230 −0.167821
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.8564 + 34.3923i −0.756469 + 1.31024i
\(690\) 0 0
\(691\) 5.00000 + 8.66025i 0.190209 + 0.329452i 0.945319 0.326146i \(-0.105750\pi\)
−0.755110 + 0.655598i \(0.772417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.69615 13.3301i −0.291932 0.505641i
\(696\) 0 0
\(697\) −26.4904 + 45.8827i −1.00339 + 1.73793i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.8756 0.675154 0.337577 0.941298i \(-0.390393\pi\)
0.337577 + 0.941298i \(0.390393\pi\)
\(702\) 0 0
\(703\) 27.6603 1.04323
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.36603 + 14.4904i −0.314637 + 0.544967i
\(708\) 0 0
\(709\) −5.26795 9.12436i −0.197842 0.342672i 0.749986 0.661453i \(-0.230060\pi\)
−0.947828 + 0.318781i \(0.896727\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.2679 + 17.7846i 0.384538 + 0.666039i
\(714\) 0 0
\(715\) 4.73205 8.19615i 0.176969 0.306519i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.1962 0.641308 0.320654 0.947196i \(-0.396097\pi\)
0.320654 + 0.947196i \(0.396097\pi\)
\(720\) 0 0
\(721\) −50.2487 −1.87136
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.86603 + 6.69615i −0.143581 + 0.248689i
\(726\) 0 0
\(727\) 14.5885 + 25.2679i 0.541056 + 0.937136i 0.998844 + 0.0480749i \(0.0153086\pi\)
−0.457788 + 0.889061i \(0.651358\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.73205 13.3923i −0.285980 0.495332i
\(732\) 0 0
\(733\) −21.7846 + 37.7321i −0.804633 + 1.39367i 0.111906 + 0.993719i \(0.464305\pi\)
−0.916539 + 0.399946i \(0.869029\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.0718 −0.407835
\(738\) 0 0
\(739\) −26.1769 −0.962933 −0.481467 0.876464i \(-0.659896\pi\)
−0.481467 + 0.876464i \(0.659896\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.70577 + 4.68653i −0.0992651 + 0.171932i −0.911381 0.411564i \(-0.864983\pi\)
0.812116 + 0.583497i \(0.198316\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.73205 8.19615i −0.172905 0.299481i
\(750\) 0 0
\(751\) −20.3923 + 35.3205i −0.744126 + 1.28886i 0.206476 + 0.978452i \(0.433800\pi\)
−0.950602 + 0.310412i \(0.899533\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.3923 −0.632971
\(756\) 0 0
\(757\) −20.3923 −0.741171 −0.370585 0.928798i \(-0.620843\pi\)
−0.370585 + 0.928798i \(0.620843\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.0622 + 26.0885i −0.546004 + 0.945706i 0.452539 + 0.891744i \(0.350518\pi\)
−0.998543 + 0.0539615i \(0.982815\pi\)
\(762\) 0 0
\(763\) −10.8301 18.7583i −0.392077 0.679097i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.1244 36.5885i −0.762756 1.32113i
\(768\) 0 0
\(769\) −17.6244 + 30.5263i −0.635551 + 1.10081i 0.350848 + 0.936433i \(0.385893\pi\)
−0.986398 + 0.164373i \(0.947440\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.6603 −0.635195 −0.317598 0.948226i \(-0.602876\pi\)
−0.317598 + 0.948226i \(0.602876\pi\)
\(774\) 0 0
\(775\) 5.92820 0.212947
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.9904 43.2846i 0.895373 1.55083i
\(780\) 0 0
\(781\) 9.69615 + 16.7942i 0.346956 + 0.600945i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.63397 2.83013i −0.0583191 0.101012i
\(786\) 0 0
\(787\) 18.0981 31.3468i 0.645127 1.11739i −0.339145 0.940734i \(-0.610138\pi\)
0.984272 0.176658i \(-0.0565288\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.928203 −0.0330031
\(792\) 0 0
\(793\) −21.8564 −0.776144
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.6603 20.1962i 0.413027 0.715384i −0.582192 0.813052i \(-0.697805\pi\)
0.995219 +