# Properties

 Label 1620.2.a.h Level $1620$ Weight $2$ Character orbit 1620.a Self dual yes Analytic conductor $12.936$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1620,2,Mod(1,1620)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1620, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1620.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1620 = 2^{2} \cdot 3^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1620.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$12.9357651274$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{5} + (\beta - 1) q^{7}+O(q^{10})$$ q + q^5 + (b - 1) * q^7 $$q + q^{5} + (\beta - 1) q^{7} + \beta q^{11} + ( - 2 \beta + 2) q^{13} + ( - \beta + 3) q^{17} + (2 \beta - 1) q^{19} + 2 \beta q^{23} + q^{25} + ( - \beta + 6) q^{29} + ( - 4 \beta - 1) q^{31} + (\beta - 1) q^{35} + (3 \beta - 1) q^{37} + ( - 3 \beta + 6) q^{41} + (\beta + 5) q^{43} + (\beta + 3) q^{47} + ( - 2 \beta - 3) q^{49} + (\beta + 9) q^{53} + \beta q^{55} + ( - \beta + 6) q^{59} - 4 q^{61} + ( - 2 \beta + 2) q^{65} + ( - 6 \beta - 4) q^{67} + ( - 3 \beta + 6) q^{71} + (3 \beta + 5) q^{73} + ( - \beta + 3) q^{77} + (6 \beta - 4) q^{79} + ( - 7 \beta + 3) q^{83} + ( - \beta + 3) q^{85} + 3 \beta q^{89} + (4 \beta - 8) q^{91} + (2 \beta - 1) q^{95} + ( - \beta - 1) q^{97}+O(q^{100})$$ q + q^5 + (b - 1) * q^7 + b * q^11 + (-2*b + 2) * q^13 + (-b + 3) * q^17 + (2*b - 1) * q^19 + 2*b * q^23 + q^25 + (-b + 6) * q^29 + (-4*b - 1) * q^31 + (b - 1) * q^35 + (3*b - 1) * q^37 + (-3*b + 6) * q^41 + (b + 5) * q^43 + (b + 3) * q^47 + (-2*b - 3) * q^49 + (b + 9) * q^53 + b * q^55 + (-b + 6) * q^59 - 4 * q^61 + (-2*b + 2) * q^65 + (-6*b - 4) * q^67 + (-3*b + 6) * q^71 + (3*b + 5) * q^73 + (-b + 3) * q^77 + (6*b - 4) * q^79 + (-7*b + 3) * q^83 + (-b + 3) * q^85 + 3*b * q^89 + (4*b - 8) * q^91 + (2*b - 1) * q^95 + (-b - 1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} - 2 q^{7}+O(q^{10})$$ 2 * q + 2 * q^5 - 2 * q^7 $$2 q + 2 q^{5} - 2 q^{7} + 4 q^{13} + 6 q^{17} - 2 q^{19} + 2 q^{25} + 12 q^{29} - 2 q^{31} - 2 q^{35} - 2 q^{37} + 12 q^{41} + 10 q^{43} + 6 q^{47} - 6 q^{49} + 18 q^{53} + 12 q^{59} - 8 q^{61} + 4 q^{65} - 8 q^{67} + 12 q^{71} + 10 q^{73} + 6 q^{77} - 8 q^{79} + 6 q^{83} + 6 q^{85} - 16 q^{91} - 2 q^{95} - 2 q^{97}+O(q^{100})$$ 2 * q + 2 * q^5 - 2 * q^7 + 4 * q^13 + 6 * q^17 - 2 * q^19 + 2 * q^25 + 12 * q^29 - 2 * q^31 - 2 * q^35 - 2 * q^37 + 12 * q^41 + 10 * q^43 + 6 * q^47 - 6 * q^49 + 18 * q^53 + 12 * q^59 - 8 * q^61 + 4 * q^65 - 8 * q^67 + 12 * q^71 + 10 * q^73 + 6 * q^77 - 8 * q^79 + 6 * q^83 + 6 * q^85 - 16 * q^91 - 2 * q^95 - 2 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
0 0 0 1.00000 0 −2.73205 0 0 0
1.2 0 0 0 1.00000 0 0.732051 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1620.2.a.h yes 2
3.b odd 2 1 1620.2.a.g 2
4.b odd 2 1 6480.2.a.bp 2
5.b even 2 1 8100.2.a.s 2
5.c odd 4 2 8100.2.d.l 4
9.c even 3 2 1620.2.i.m 4
9.d odd 6 2 1620.2.i.n 4
12.b even 2 1 6480.2.a.bh 2
15.d odd 2 1 8100.2.a.t 2
15.e even 4 2 8100.2.d.m 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1620.2.a.g 2 3.b odd 2 1
1620.2.a.h yes 2 1.a even 1 1 trivial
1620.2.i.m 4 9.c even 3 2
1620.2.i.n 4 9.d odd 6 2
6480.2.a.bh 2 12.b even 2 1
6480.2.a.bp 2 4.b odd 2 1
8100.2.a.s 2 5.b even 2 1
8100.2.a.t 2 15.d odd 2 1
8100.2.d.l 4 5.c odd 4 2
8100.2.d.m 4 15.e even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1620))$$:

 $$T_{7}^{2} + 2T_{7} - 2$$ T7^2 + 2*T7 - 2 $$T_{11}^{2} - 3$$ T11^2 - 3 $$T_{17}^{2} - 6T_{17} + 6$$ T17^2 - 6*T17 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} + 2T - 2$$
$11$ $$T^{2} - 3$$
$13$ $$T^{2} - 4T - 8$$
$17$ $$T^{2} - 6T + 6$$
$19$ $$T^{2} + 2T - 11$$
$23$ $$T^{2} - 12$$
$29$ $$T^{2} - 12T + 33$$
$31$ $$T^{2} + 2T - 47$$
$37$ $$T^{2} + 2T - 26$$
$41$ $$T^{2} - 12T + 9$$
$43$ $$T^{2} - 10T + 22$$
$47$ $$T^{2} - 6T + 6$$
$53$ $$T^{2} - 18T + 78$$
$59$ $$T^{2} - 12T + 33$$
$61$ $$(T + 4)^{2}$$
$67$ $$T^{2} + 8T - 92$$
$71$ $$T^{2} - 12T + 9$$
$73$ $$T^{2} - 10T - 2$$
$79$ $$T^{2} + 8T - 92$$
$83$ $$T^{2} - 6T - 138$$
$89$ $$T^{2} - 27$$
$97$ $$T^{2} + 2T - 2$$