Properties

Label 1620.2.a
Level $1620$
Weight $2$
Character orbit 1620.a
Rep. character $\chi_{1620}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $10$
Sturm bound $648$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(648\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1620))\).

Total New Old
Modular forms 360 16 344
Cusp forms 289 16 273
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(5\)
Plus space\(+\)\(6\)
Minus space\(-\)\(10\)

Trace form

\( 16 q - 4 q^{7} + O(q^{10}) \) \( 16 q - 4 q^{7} - 4 q^{13} + 8 q^{19} + 16 q^{25} + 8 q^{31} - 4 q^{37} + 20 q^{43} + 24 q^{49} + 32 q^{61} + 32 q^{67} + 32 q^{73} - 16 q^{79} - 12 q^{85} - 8 q^{91} + 32 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1620))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
1620.2.a.a 1620.a 1.a $1$ $12.936$ \(\Q\) None 1620.2.a.a \(0\) \(0\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-4q^{7}-3q^{11}-4q^{13}+5q^{19}+\cdots\)
1620.2.a.b 1620.a 1.a $1$ $12.936$ \(\Q\) None 180.2.i.a \(0\) \(0\) \(-1\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}-4q^{13}+6q^{17}+2q^{19}+\cdots\)
1620.2.a.c 1620.a 1.a $1$ $12.936$ \(\Q\) None 1620.2.a.c \(0\) \(0\) \(-1\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}+3q^{11}-4q^{13}+6q^{17}+\cdots\)
1620.2.a.d 1620.a 1.a $1$ $12.936$ \(\Q\) None 1620.2.a.a \(0\) \(0\) \(1\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-4q^{7}+3q^{11}-4q^{13}+5q^{19}+\cdots\)
1620.2.a.e 1620.a 1.a $1$ $12.936$ \(\Q\) None 180.2.i.a \(0\) \(0\) \(1\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-q^{7}-4q^{13}-6q^{17}+2q^{19}+\cdots\)
1620.2.a.f 1620.a 1.a $1$ $12.936$ \(\Q\) None 1620.2.a.c \(0\) \(0\) \(1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-3q^{11}-4q^{13}-6q^{17}+\cdots\)
1620.2.a.g 1620.a 1.a $2$ $12.936$ \(\Q(\sqrt{3}) \) None 1620.2.a.g \(0\) \(0\) \(-2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+(-1+\beta )q^{7}-\beta q^{11}+(2-2\beta )q^{13}+\cdots\)
1620.2.a.h 1620.a 1.a $2$ $12.936$ \(\Q(\sqrt{3}) \) None 1620.2.a.g \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+(-1+\beta )q^{7}+\beta q^{11}+(2-2\beta )q^{13}+\cdots\)
1620.2.a.i 1620.a 1.a $3$ $12.936$ 3.3.564.1 None 180.2.i.b \(0\) \(0\) \(-3\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+(1-\beta _{1})q^{7}-\beta _{2}q^{11}+(2+\beta _{2})q^{13}+\cdots\)
1620.2.a.j 1620.a 1.a $3$ $12.936$ 3.3.564.1 None 180.2.i.b \(0\) \(0\) \(3\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+(1-\beta _{1})q^{7}+\beta _{2}q^{11}+(2+\beta _{2})q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1620))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1620)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(405))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(540))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(810))\)\(^{\oplus 2}\)