Properties

Label 162.9.d.d.53.2
Level $162$
Weight $9$
Character 162.53
Analytic conductor $65.995$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,9,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9953348299\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.9.d.d.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.79796 - 5.65685i) q^{2} +(64.0000 - 110.851i) q^{4} +(-202.083 - 116.673i) q^{5} +(1766.00 + 3058.80i) q^{7} -1448.15i q^{8} +O(q^{10})\) \(q+(9.79796 - 5.65685i) q^{2} +(64.0000 - 110.851i) q^{4} +(-202.083 - 116.673i) q^{5} +(1766.00 + 3058.80i) q^{7} -1448.15i q^{8} -2640.00 q^{10} +(-17474.7 + 10089.0i) q^{11} +(20912.0 - 36220.6i) q^{13} +(34606.4 + 19980.0i) q^{14} +(-8192.00 - 14189.0i) q^{16} +94784.8i q^{17} -36304.0 q^{19} +(-25866.6 + 14934.1i) q^{20} +(-114144. + 197703. i) q^{22} +(-358208. - 206812. i) q^{23} +(-168088. - 291136. i) q^{25} -473185. i q^{26} +452096. q^{28} +(233127. - 134596. i) q^{29} +(235598. - 408068. i) q^{31} +(-160530. - 92681.9i) q^{32} +(536184. + 928698. i) q^{34} -824175. i q^{35} -3.00740e6 q^{37} +(-355705. + 205366. i) q^{38} +(-168960. + 292647. i) q^{40} +(1.48553e6 + 857669. i) q^{41} +(-1.81186e6 - 3.13823e6i) q^{43} +2.58278e6i q^{44} -4.67962e6 q^{46} +(-5.20882e6 + 3.00731e6i) q^{47} +(-3.35511e6 + 5.81122e6i) q^{49} +(-3.29383e6 - 1.90169e6i) q^{50} +(-2.67674e6 - 4.63624e6i) q^{52} +1.02767e7i q^{53} +4.70844e6 q^{55} +(4.42962e6 - 2.55744e6i) q^{56} +(1.52278e6 - 2.63753e6i) q^{58} +(-2.32797e6 - 1.34405e6i) q^{59} +(2.72032e6 + 4.71172e6i) q^{61} -5.33097e6i q^{62} -2.09715e6 q^{64} +(-8.45192e6 + 4.87972e6i) q^{65} +(3.06079e6 - 5.30144e6i) q^{67} +(1.05070e7 + 6.06623e6i) q^{68} +(-4.66224e6 - 8.07524e6i) q^{70} -2.11941e7i q^{71} -4.90312e7 q^{73} +(-2.94664e7 + 1.70124e7i) q^{74} +(-2.32346e6 + 4.02434e6i) q^{76} +(-6.17205e7 - 3.56343e7i) q^{77} +(-4.17888e6 - 7.23803e6i) q^{79} +3.82313e6i q^{80} +1.94068e7 q^{82} +(-4.45066e7 + 2.56959e7i) q^{83} +(1.10588e7 - 1.91544e7i) q^{85} +(-3.55051e7 - 2.04989e7i) q^{86} +(1.46104e7 + 2.53060e7i) q^{88} +1.07337e8i q^{89} +1.47722e8 q^{91} +(-4.58507e7 + 2.64719e7i) q^{92} +(-3.40238e7 + 5.89310e7i) q^{94} +(7.33642e6 + 4.23568e6i) q^{95} +(-1.02157e7 - 1.76940e7i) q^{97} +7.59175e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 256 q^{4} + 7064 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 256 q^{4} + 7064 q^{7} - 10560 q^{10} + 83648 q^{13} - 32768 q^{16} - 145216 q^{19} - 456576 q^{22} - 672350 q^{25} + 1808384 q^{28} + 942392 q^{31} + 2144736 q^{34} - 12029608 q^{37} - 675840 q^{40} - 7247440 q^{43} - 18718464 q^{46} - 13420446 q^{49} - 10706944 q^{52} + 18833760 q^{55} + 6091104 q^{58} + 10881260 q^{61} - 8388608 q^{64} + 12243152 q^{67} - 18648960 q^{70} - 196124608 q^{73} - 9293824 q^{76} - 16715512 q^{79} + 77627328 q^{82} + 44235180 q^{85} + 58441728 q^{88} + 590889472 q^{91} - 136095360 q^{94} - 40862656 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.79796 5.65685i 0.612372 0.353553i
\(3\) 0 0
\(4\) 64.0000 110.851i 0.250000 0.433013i
\(5\) −202.083 116.673i −0.323333 0.186676i 0.329544 0.944140i \(-0.393105\pi\)
−0.652877 + 0.757464i \(0.726438\pi\)
\(6\) 0 0
\(7\) 1766.00 + 3058.80i 0.735527 + 1.27397i 0.954492 + 0.298237i \(0.0963986\pi\)
−0.218965 + 0.975733i \(0.570268\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) −2640.00 −0.264000
\(11\) −17474.7 + 10089.0i −1.19354 + 0.689092i −0.959108 0.283040i \(-0.908657\pi\)
−0.234435 + 0.972132i \(0.575324\pi\)
\(12\) 0 0
\(13\) 20912.0 36220.6i 0.732187 1.26819i −0.223759 0.974644i \(-0.571833\pi\)
0.955946 0.293541i \(-0.0948337\pi\)
\(14\) 34606.4 + 19980.0i 0.900833 + 0.520096i
\(15\) 0 0
\(16\) −8192.00 14189.0i −0.125000 0.216506i
\(17\) 94784.8i 1.13486i 0.823421 + 0.567431i \(0.192063\pi\)
−0.823421 + 0.567431i \(0.807937\pi\)
\(18\) 0 0
\(19\) −36304.0 −0.278574 −0.139287 0.990252i \(-0.544481\pi\)
−0.139287 + 0.990252i \(0.544481\pi\)
\(20\) −25866.6 + 14934.1i −0.161666 + 0.0933381i
\(21\) 0 0
\(22\) −114144. + 197703.i −0.487262 + 0.843962i
\(23\) −358208. 206812.i −1.28004 0.739033i −0.303187 0.952931i \(-0.598051\pi\)
−0.976856 + 0.213898i \(0.931384\pi\)
\(24\) 0 0
\(25\) −168088. 291136.i −0.430304 0.745308i
\(26\) 473185.i 1.03547i
\(27\) 0 0
\(28\) 452096. 0.735527
\(29\) 233127. 134596.i 0.329609 0.190300i −0.326058 0.945350i \(-0.605721\pi\)
0.655668 + 0.755050i \(0.272387\pi\)
\(30\) 0 0
\(31\) 235598. 408068.i 0.255108 0.441861i −0.709817 0.704387i \(-0.751222\pi\)
0.964925 + 0.262526i \(0.0845555\pi\)
\(32\) −160530. 92681.9i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 536184. + 928698.i 0.401234 + 0.694958i
\(35\) 824175.i 0.549221i
\(36\) 0 0
\(37\) −3.00740e6 −1.60467 −0.802333 0.596877i \(-0.796408\pi\)
−0.802333 + 0.596877i \(0.796408\pi\)
\(38\) −355705. + 205366.i −0.170591 + 0.0984907i
\(39\) 0 0
\(40\) −168960. + 292647.i −0.0660000 + 0.114315i
\(41\) 1.48553e6 + 857669.i 0.525708 + 0.303518i 0.739267 0.673412i \(-0.235172\pi\)
−0.213559 + 0.976930i \(0.568505\pi\)
\(42\) 0 0
\(43\) −1.81186e6 3.13823e6i −0.529969 0.917934i −0.999389 0.0349586i \(-0.988870\pi\)
0.469419 0.882975i \(-0.344463\pi\)
\(44\) 2.58278e6i 0.689092i
\(45\) 0 0
\(46\) −4.67962e6 −1.04515
\(47\) −5.20882e6 + 3.00731e6i −1.06745 + 0.616293i −0.927484 0.373864i \(-0.878033\pi\)
−0.139966 + 0.990156i \(0.544699\pi\)
\(48\) 0 0
\(49\) −3.35511e6 + 5.81122e6i −0.582000 + 1.00805i
\(50\) −3.29383e6 1.90169e6i −0.527013 0.304271i
\(51\) 0 0
\(52\) −2.67674e6 4.63624e6i −0.366094 0.634093i
\(53\) 1.02767e7i 1.30241i 0.758901 + 0.651206i \(0.225737\pi\)
−0.758901 + 0.651206i \(0.774263\pi\)
\(54\) 0 0
\(55\) 4.70844e6 0.514548
\(56\) 4.42962e6 2.55744e6i 0.450416 0.260048i
\(57\) 0 0
\(58\) 1.52278e6 2.63753e6i 0.134563 0.233069i
\(59\) −2.32797e6 1.34405e6i −0.192118 0.110919i 0.400856 0.916141i \(-0.368713\pi\)
−0.592974 + 0.805222i \(0.702046\pi\)
\(60\) 0 0
\(61\) 2.72032e6 + 4.71172e6i 0.196472 + 0.340299i 0.947382 0.320105i \(-0.103718\pi\)
−0.750910 + 0.660404i \(0.770385\pi\)
\(62\) 5.33097e6i 0.360778i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) −8.45192e6 + 4.87972e6i −0.473480 + 0.273364i
\(66\) 0 0
\(67\) 3.06079e6 5.30144e6i 0.151892 0.263084i −0.780031 0.625741i \(-0.784797\pi\)
0.931923 + 0.362657i \(0.118130\pi\)
\(68\) 1.05070e7 + 6.06623e6i 0.491410 + 0.283716i
\(69\) 0 0
\(70\) −4.66224e6 8.07524e6i −0.194179 0.336328i
\(71\) 2.11941e7i 0.834029i −0.908900 0.417014i \(-0.863076\pi\)
0.908900 0.417014i \(-0.136924\pi\)
\(72\) 0 0
\(73\) −4.90312e7 −1.72656 −0.863278 0.504729i \(-0.831593\pi\)
−0.863278 + 0.504729i \(0.831593\pi\)
\(74\) −2.94664e7 + 1.70124e7i −0.982653 + 0.567335i
\(75\) 0 0
\(76\) −2.32346e6 + 4.02434e6i −0.0696434 + 0.120626i
\(77\) −6.17205e7 3.56343e7i −1.75577 1.01369i
\(78\) 0 0
\(79\) −4.17888e6 7.23803e6i −0.107288 0.185828i 0.807383 0.590028i \(-0.200883\pi\)
−0.914671 + 0.404200i \(0.867550\pi\)
\(80\) 3.82313e6i 0.0933381i
\(81\) 0 0
\(82\) 1.94068e7 0.429239
\(83\) −4.45066e7 + 2.56959e7i −0.937804 + 0.541441i −0.889271 0.457380i \(-0.848788\pi\)
−0.0485328 + 0.998822i \(0.515455\pi\)
\(84\) 0 0
\(85\) 1.10588e7 1.91544e7i 0.211852 0.366938i
\(86\) −3.55051e7 2.04989e7i −0.649077 0.374745i
\(87\) 0 0
\(88\) 1.46104e7 + 2.53060e7i 0.243631 + 0.421981i
\(89\) 1.07337e8i 1.71076i 0.517997 + 0.855382i \(0.326678\pi\)
−0.517997 + 0.855382i \(0.673322\pi\)
\(90\) 0 0
\(91\) 1.47722e8 2.15417
\(92\) −4.58507e7 + 2.64719e7i −0.640021 + 0.369517i
\(93\) 0 0
\(94\) −3.40238e7 + 5.89310e7i −0.435785 + 0.754801i
\(95\) 7.33642e6 + 4.23568e6i 0.0900720 + 0.0520031i
\(96\) 0 0
\(97\) −1.02157e7 1.76940e7i −0.115393 0.199867i 0.802544 0.596593i \(-0.203479\pi\)
−0.917937 + 0.396727i \(0.870146\pi\)
\(98\) 7.59175e7i 0.823072i
\(99\) 0 0
\(100\) −4.30304e7 −0.430304
\(101\) −1.46863e8 + 8.47915e7i −1.41133 + 0.814830i −0.995513 0.0946199i \(-0.969836\pi\)
−0.415813 + 0.909450i \(0.636503\pi\)
\(102\) 0 0
\(103\) 1.49126e7 2.58294e7i 0.132497 0.229491i −0.792142 0.610337i \(-0.791034\pi\)
0.924638 + 0.380846i \(0.124367\pi\)
\(104\) −5.24531e7 3.02838e7i −0.448371 0.258867i
\(105\) 0 0
\(106\) 5.81336e7 + 1.00690e8i 0.460472 + 0.797562i
\(107\) 1.22823e8i 0.937014i −0.883460 0.468507i \(-0.844792\pi\)
0.883460 0.468507i \(-0.155208\pi\)
\(108\) 0 0
\(109\) −4.88844e7 −0.346310 −0.173155 0.984895i \(-0.555396\pi\)
−0.173155 + 0.984895i \(0.555396\pi\)
\(110\) 4.61331e7 2.66350e7i 0.315095 0.181920i
\(111\) 0 0
\(112\) 2.89341e7 5.01154e7i 0.183882 0.318492i
\(113\) −1.63891e8 9.46226e7i −1.00518 0.580338i −0.0953999 0.995439i \(-0.530413\pi\)
−0.909775 + 0.415101i \(0.863746\pi\)
\(114\) 0 0
\(115\) 4.82585e7 + 8.35862e7i 0.275920 + 0.477907i
\(116\) 3.44565e7i 0.190300i
\(117\) 0 0
\(118\) −3.04124e7 −0.156864
\(119\) −2.89928e8 + 1.67390e8i −1.44578 + 0.834722i
\(120\) 0 0
\(121\) 9.63964e7 1.66963e8i 0.449696 0.778897i
\(122\) 5.33071e7 + 3.07769e7i 0.240628 + 0.138926i
\(123\) 0 0
\(124\) −3.01565e7 5.22327e7i −0.127554 0.220930i
\(125\) 1.69595e8i 0.694662i
\(126\) 0 0
\(127\) 3.39908e8 1.30661 0.653306 0.757094i \(-0.273381\pi\)
0.653306 + 0.757094i \(0.273381\pi\)
\(128\) −2.05478e7 + 1.18633e7i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −5.52077e7 + 9.56225e7i −0.193297 + 0.334801i
\(131\) −6.66178e7 3.84618e7i −0.226207 0.130600i 0.382614 0.923908i \(-0.375024\pi\)
−0.608821 + 0.793308i \(0.708357\pi\)
\(132\) 0 0
\(133\) −6.41129e7 1.11047e8i −0.204898 0.354894i
\(134\) 6.92577e7i 0.214807i
\(135\) 0 0
\(136\) 1.37263e8 0.401234
\(137\) 1.10729e8 6.39295e7i 0.314326 0.181476i −0.334535 0.942383i \(-0.608579\pi\)
0.648860 + 0.760907i \(0.275246\pi\)
\(138\) 0 0
\(139\) −4.54464e6 + 7.87155e6i −0.0121742 + 0.0210863i −0.872048 0.489420i \(-0.837209\pi\)
0.859874 + 0.510506i \(0.170542\pi\)
\(140\) −9.13609e7 5.27472e7i −0.237820 0.137305i
\(141\) 0 0
\(142\) −1.19892e8 2.07659e8i −0.294874 0.510736i
\(143\) 8.43925e8i 2.01818i
\(144\) 0 0
\(145\) −6.28145e7 −0.142098
\(146\) −4.80405e8 + 2.77362e8i −1.05730 + 0.610430i
\(147\) 0 0
\(148\) −1.92474e8 + 3.33374e8i −0.401166 + 0.694841i
\(149\) −1.60391e8 9.26018e7i −0.325413 0.187877i 0.328390 0.944542i \(-0.393494\pi\)
−0.653803 + 0.756665i \(0.726827\pi\)
\(150\) 0 0
\(151\) 1.67801e8 + 2.90639e8i 0.322764 + 0.559044i 0.981057 0.193717i \(-0.0620545\pi\)
−0.658293 + 0.752762i \(0.728721\pi\)
\(152\) 5.25738e7i 0.0984907i
\(153\) 0 0
\(154\) −8.06313e8 −1.43358
\(155\) −9.52207e7 + 5.49757e7i −0.164970 + 0.0952453i
\(156\) 0 0
\(157\) 1.00815e8 1.74617e8i 0.165931 0.287401i −0.771054 0.636769i \(-0.780270\pi\)
0.936986 + 0.349368i \(0.113604\pi\)
\(158\) −8.18890e7 4.72786e7i −0.131400 0.0758641i
\(159\) 0 0
\(160\) 2.16269e7 + 3.74589e7i 0.0330000 + 0.0571577i
\(161\) 1.46092e9i 2.17431i
\(162\) 0 0
\(163\) −5.27661e8 −0.747488 −0.373744 0.927532i \(-0.621926\pi\)
−0.373744 + 0.927532i \(0.621926\pi\)
\(164\) 1.90147e8 1.09782e8i 0.262854 0.151759i
\(165\) 0 0
\(166\) −2.90716e8 + 5.03535e8i −0.382857 + 0.663128i
\(167\) 1.57284e8 + 9.08077e7i 0.202217 + 0.116750i 0.597689 0.801728i \(-0.296086\pi\)
−0.395472 + 0.918478i \(0.629419\pi\)
\(168\) 0 0
\(169\) −4.66758e8 8.08449e8i −0.572196 0.991073i
\(170\) 2.50232e8i 0.299604i
\(171\) 0 0
\(172\) −4.63836e8 −0.529969
\(173\) −6.11812e7 + 3.53230e7i −0.0683020 + 0.0394342i −0.533762 0.845635i \(-0.679222\pi\)
0.465460 + 0.885069i \(0.345889\pi\)
\(174\) 0 0
\(175\) 5.93685e8 1.02829e9i 0.633000 1.09639i
\(176\) 2.86305e8 + 1.65298e8i 0.298386 + 0.172273i
\(177\) 0 0
\(178\) 6.07191e8 + 1.05169e9i 0.604847 + 1.04763i
\(179\) 7.90371e7i 0.0769873i −0.999259 0.0384936i \(-0.987744\pi\)
0.999259 0.0384936i \(-0.0122559\pi\)
\(180\) 0 0
\(181\) 5.48168e8 0.510739 0.255370 0.966844i \(-0.417803\pi\)
0.255370 + 0.966844i \(0.417803\pi\)
\(182\) 1.44738e9 8.35644e8i 1.31916 0.761615i
\(183\) 0 0
\(184\) −2.99495e8 + 5.18741e8i −0.261288 + 0.452564i
\(185\) 6.07745e8 + 3.50881e8i 0.518841 + 0.299553i
\(186\) 0 0
\(187\) −9.56284e8 1.65633e9i −0.782025 1.35451i
\(188\) 7.69872e8i 0.616293i
\(189\) 0 0
\(190\) 9.58426e7 0.0735435
\(191\) 1.94507e9 1.12299e9i 1.46151 0.843803i 0.462428 0.886657i \(-0.346978\pi\)
0.999081 + 0.0428538i \(0.0136450\pi\)
\(192\) 0 0
\(193\) −3.27788e8 + 5.67745e8i −0.236245 + 0.409189i −0.959634 0.281252i \(-0.909250\pi\)
0.723389 + 0.690441i \(0.242584\pi\)
\(194\) −2.00185e8 1.15577e8i −0.141327 0.0815952i
\(195\) 0 0
\(196\) 4.29454e8 + 7.43837e8i 0.291000 + 0.504026i
\(197\) 4.48231e8i 0.297603i −0.988867 0.148801i \(-0.952458\pi\)
0.988867 0.148801i \(-0.0475415\pi\)
\(198\) 0 0
\(199\) 7.34930e8 0.468634 0.234317 0.972160i \(-0.424715\pi\)
0.234317 + 0.972160i \(0.424715\pi\)
\(200\) −4.21610e8 + 2.43417e8i −0.263506 + 0.152135i
\(201\) 0 0
\(202\) −9.59307e8 + 1.66157e9i −0.576172 + 0.997959i
\(203\) 8.23403e8 + 4.75392e8i 0.484873 + 0.279942i
\(204\) 0 0
\(205\) −2.00133e8 3.46640e8i −0.113319 0.196274i
\(206\) 3.37434e8i 0.187379i
\(207\) 0 0
\(208\) −6.85244e8 −0.366094
\(209\) 6.34400e8 3.66271e8i 0.332490 0.191963i
\(210\) 0 0
\(211\) 1.63400e9 2.83017e9i 0.824370 1.42785i −0.0780291 0.996951i \(-0.524863\pi\)
0.902400 0.430900i \(-0.141804\pi\)
\(212\) 1.13918e9 + 6.57707e8i 0.563961 + 0.325603i
\(213\) 0 0
\(214\) −6.94794e8 1.20342e9i −0.331284 0.573802i
\(215\) 8.45578e8i 0.395731i
\(216\) 0 0
\(217\) 1.66426e9 0.750556
\(218\) −4.78968e8 + 2.76532e8i −0.212070 + 0.122439i
\(219\) 0 0
\(220\) 3.01340e8 5.21936e8i 0.128637 0.222806i
\(221\) 3.43317e9 + 1.98214e9i 1.43922 + 0.830932i
\(222\) 0 0
\(223\) 1.90420e9 + 3.29818e9i 0.770005 + 1.33369i 0.937559 + 0.347825i \(0.113080\pi\)
−0.167554 + 0.985863i \(0.553587\pi\)
\(224\) 6.54705e8i 0.260048i
\(225\) 0 0
\(226\) −2.14107e9 −0.820722
\(227\) 3.76419e9 2.17325e9i 1.41765 0.818478i 0.421554 0.906803i \(-0.361485\pi\)
0.996092 + 0.0883248i \(0.0281513\pi\)
\(228\) 0 0
\(229\) 1.43198e9 2.48027e9i 0.520711 0.901897i −0.478999 0.877815i \(-0.659000\pi\)
0.999710 0.0240820i \(-0.00766629\pi\)
\(230\) 9.45670e8 + 5.45983e8i 0.337931 + 0.195105i
\(231\) 0 0
\(232\) −1.94915e8 3.37603e8i −0.0672813 0.116535i
\(233\) 5.57102e8i 0.189022i 0.995524 + 0.0945108i \(0.0301287\pi\)
−0.995524 + 0.0945108i \(0.969871\pi\)
\(234\) 0 0
\(235\) 1.40348e9 0.460189
\(236\) −2.97980e8 + 1.72039e8i −0.0960591 + 0.0554597i
\(237\) 0 0
\(238\) −1.89380e9 + 3.28016e9i −0.590237 + 1.02232i
\(239\) −1.13303e9 6.54155e8i −0.347256 0.200488i 0.316220 0.948686i \(-0.397586\pi\)
−0.663476 + 0.748198i \(0.730920\pi\)
\(240\) 0 0
\(241\) 2.42091e9 + 4.19314e9i 0.717647 + 1.24300i 0.961930 + 0.273297i \(0.0881140\pi\)
−0.244283 + 0.969704i \(0.578553\pi\)
\(242\) 2.18120e9i 0.635967i
\(243\) 0 0
\(244\) 6.96401e8 0.196472
\(245\) 1.35602e9 7.82899e8i 0.376359 0.217291i
\(246\) 0 0
\(247\) −7.59189e8 + 1.31495e9i −0.203968 + 0.353283i
\(248\) −5.90945e8 3.41182e8i −0.156221 0.0901945i
\(249\) 0 0
\(250\) 9.59376e8 + 1.66169e9i 0.245600 + 0.425392i
\(251\) 7.77711e9i 1.95940i −0.200466 0.979701i \(-0.564246\pi\)
0.200466 0.979701i \(-0.435754\pi\)
\(252\) 0 0
\(253\) 8.34610e9 2.03705
\(254\) 3.33041e9 1.92281e9i 0.800134 0.461957i
\(255\) 0 0
\(256\) −1.34218e8 + 2.32472e8i −0.0312500 + 0.0541266i
\(257\) −4.92074e9 2.84099e9i −1.12797 0.651234i −0.184547 0.982824i \(-0.559082\pi\)
−0.943424 + 0.331589i \(0.892415\pi\)
\(258\) 0 0
\(259\) −5.31107e9 9.19905e9i −1.18027 2.04430i
\(260\) 1.24921e9i 0.273364i
\(261\) 0 0
\(262\) −8.70292e8 −0.184697
\(263\) −9.05270e8 + 5.22658e8i −0.189215 + 0.109243i −0.591615 0.806221i \(-0.701509\pi\)
0.402400 + 0.915464i \(0.368176\pi\)
\(264\) 0 0
\(265\) 1.19901e9 2.07674e9i 0.243129 0.421113i
\(266\) −1.25635e9 7.25354e8i −0.250948 0.144885i
\(267\) 0 0
\(268\) −3.91781e8 6.78584e8i −0.0759458 0.131542i
\(269\) 4.92684e9i 0.940935i 0.882417 + 0.470467i \(0.155915\pi\)
−0.882417 + 0.470467i \(0.844085\pi\)
\(270\) 0 0
\(271\) −6.59224e9 −1.22224 −0.611119 0.791539i \(-0.709280\pi\)
−0.611119 + 0.791539i \(0.709280\pi\)
\(272\) 1.34490e9 7.76477e8i 0.245705 0.141858i
\(273\) 0 0
\(274\) 7.23280e8 1.25276e9i 0.128323 0.222262i
\(275\) 5.87454e9 + 3.39167e9i 1.02717 + 0.593038i
\(276\) 0 0
\(277\) 6.07949e7 + 1.05300e8i 0.0103264 + 0.0178858i 0.871142 0.491030i \(-0.163380\pi\)
−0.860816 + 0.508916i \(0.830046\pi\)
\(278\) 1.02834e8i 0.0172169i
\(279\) 0 0
\(280\) −1.19353e9 −0.194179
\(281\) −4.85527e9 + 2.80319e9i −0.778732 + 0.449601i −0.835981 0.548759i \(-0.815101\pi\)
0.0572486 + 0.998360i \(0.481767\pi\)
\(282\) 0 0
\(283\) −8.12798e8 + 1.40781e9i −0.126718 + 0.219481i −0.922403 0.386229i \(-0.873778\pi\)
0.795685 + 0.605710i \(0.207111\pi\)
\(284\) −2.34939e9 1.35642e9i −0.361145 0.208507i
\(285\) 0 0
\(286\) 4.77396e9 + 8.26874e9i 0.713534 + 1.23588i
\(287\) 6.05857e9i 0.892982i
\(288\) 0 0
\(289\) −2.00841e9 −0.287912
\(290\) −6.15454e8 + 3.55333e8i −0.0870169 + 0.0502392i
\(291\) 0 0
\(292\) −3.13799e9 + 5.43516e9i −0.431639 + 0.747621i
\(293\) 3.64813e9 + 2.10625e9i 0.494993 + 0.285784i 0.726644 0.687015i \(-0.241079\pi\)
−0.231650 + 0.972799i \(0.574413\pi\)
\(294\) 0 0
\(295\) 3.13628e8 + 5.43220e8i 0.0414121 + 0.0717278i
\(296\) 4.35518e9i 0.567335i
\(297\) 0 0
\(298\) −2.09534e9 −0.265699
\(299\) −1.49817e10 + 8.64970e9i −1.87446 + 1.08222i
\(300\) 0 0
\(301\) 6.39949e9 1.10842e10i 0.779613 1.35033i
\(302\) 3.28821e9 + 1.89845e9i 0.395304 + 0.228229i
\(303\) 0 0
\(304\) 2.97402e8 + 5.15116e8i 0.0348217 + 0.0603130i
\(305\) 1.26955e9i 0.146706i
\(306\) 0 0
\(307\) 5.88475e9 0.662483 0.331241 0.943546i \(-0.392533\pi\)
0.331241 + 0.943546i \(0.392533\pi\)
\(308\) −7.90022e9 + 4.56120e9i −0.877883 + 0.506846i
\(309\) 0 0
\(310\) −6.21979e8 + 1.07730e9i −0.0673486 + 0.116651i
\(311\) −8.48710e9 4.90003e9i −0.907231 0.523790i −0.0276917 0.999617i \(-0.508816\pi\)
−0.879539 + 0.475827i \(0.842149\pi\)
\(312\) 0 0
\(313\) −1.88081e9 3.25766e9i −0.195960 0.339413i 0.751255 0.660012i \(-0.229449\pi\)
−0.947215 + 0.320599i \(0.896116\pi\)
\(314\) 2.28119e9i 0.234662i
\(315\) 0 0
\(316\) −1.06979e9 −0.107288
\(317\) 1.46660e10 8.46743e9i 1.45236 0.838522i 0.453748 0.891130i \(-0.350087\pi\)
0.998615 + 0.0526083i \(0.0167535\pi\)
\(318\) 0 0
\(319\) −2.71587e9 + 4.70403e9i −0.262269 + 0.454263i
\(320\) 4.23799e8 + 2.44680e8i 0.0404166 + 0.0233345i
\(321\) 0 0
\(322\) −8.26420e9 1.43140e10i −0.768736 1.33149i
\(323\) 3.44107e9i 0.316143i
\(324\) 0 0
\(325\) −1.40602e10 −1.26025
\(326\) −5.17000e9 + 2.98490e9i −0.457741 + 0.264277i
\(327\) 0 0
\(328\) 1.24204e9 2.15127e9i 0.107310 0.185866i
\(329\) −1.83975e10 1.06218e10i −1.57028 0.906599i
\(330\) 0 0
\(331\) −1.59499e9 2.76261e9i −0.132876 0.230148i 0.791908 0.610640i \(-0.209088\pi\)
−0.924784 + 0.380492i \(0.875755\pi\)
\(332\) 6.57815e9i 0.541441i
\(333\) 0 0
\(334\) 2.05474e9 0.165109
\(335\) −1.23707e9 + 7.14220e8i −0.0982231 + 0.0567091i
\(336\) 0 0
\(337\) −8.31888e9 + 1.44087e10i −0.644978 + 1.11714i 0.339328 + 0.940668i \(0.389800\pi\)
−0.984307 + 0.176467i \(0.943533\pi\)
\(338\) −9.14655e9 5.28077e9i −0.700795 0.404604i
\(339\) 0 0
\(340\) −1.41553e9 2.45176e9i −0.105926 0.183469i
\(341\) 9.50779e9i 0.703173i
\(342\) 0 0
\(343\) −3.33923e9 −0.241251
\(344\) −4.54465e9 + 2.62385e9i −0.324539 + 0.187372i
\(345\) 0 0
\(346\) −3.99634e8 + 6.92186e8i −0.0278842 + 0.0482968i
\(347\) −9.28877e8 5.36287e8i −0.0640678 0.0369896i 0.467624 0.883928i \(-0.345110\pi\)
−0.531692 + 0.846938i \(0.678444\pi\)
\(348\) 0 0
\(349\) 1.16151e9 + 2.01180e9i 0.0782928 + 0.135607i 0.902513 0.430662i \(-0.141720\pi\)
−0.824221 + 0.566269i \(0.808386\pi\)
\(350\) 1.34336e10i 0.895198i
\(351\) 0 0
\(352\) 3.74027e9 0.243631
\(353\) −1.71912e10 + 9.92532e9i −1.10715 + 0.639213i −0.938090 0.346393i \(-0.887406\pi\)
−0.169060 + 0.985606i \(0.554073\pi\)
\(354\) 0 0
\(355\) −2.47277e9 + 4.28296e9i −0.155693 + 0.269669i
\(356\) 1.18985e10 + 6.86958e9i 0.740783 + 0.427691i
\(357\) 0 0
\(358\) −4.47102e8 7.74403e8i −0.0272191 0.0471449i
\(359\) 1.03679e10i 0.624187i 0.950051 + 0.312094i \(0.101030\pi\)
−0.950051 + 0.312094i \(0.898970\pi\)
\(360\) 0 0
\(361\) −1.56656e10 −0.922397
\(362\) 5.37093e9 3.10091e9i 0.312763 0.180574i
\(363\) 0 0
\(364\) 9.45423e9 1.63752e10i 0.538543 0.932785i
\(365\) 9.90836e9 + 5.72059e9i 0.558252 + 0.322307i
\(366\) 0 0
\(367\) 1.01440e10 + 1.75699e10i 0.559171 + 0.968512i 0.997566 + 0.0697299i \(0.0222137\pi\)
−0.438395 + 0.898782i \(0.644453\pi\)
\(368\) 6.77681e9i 0.369517i
\(369\) 0 0
\(370\) 7.93954e9 0.423632
\(371\) −3.14343e10 + 1.81486e10i −1.65923 + 0.957960i
\(372\) 0 0
\(373\) −1.11055e10 + 1.92354e10i −0.573726 + 0.993723i 0.422453 + 0.906385i \(0.361169\pi\)
−0.996179 + 0.0873379i \(0.972164\pi\)
\(374\) −1.87393e10 1.08191e10i −0.957781 0.552975i
\(375\) 0 0
\(376\) 4.35505e9 + 7.54317e9i 0.217892 + 0.377401i
\(377\) 1.12587e10i 0.557341i
\(378\) 0 0
\(379\) 1.23790e10 0.599967 0.299983 0.953944i \(-0.403019\pi\)
0.299983 + 0.953944i \(0.403019\pi\)
\(380\) 9.39061e8 5.42167e8i 0.0450360 0.0260015i
\(381\) 0 0
\(382\) 1.27051e10 2.20059e10i 0.596659 1.03344i
\(383\) −2.51466e10 1.45184e10i −1.16865 0.674720i −0.215287 0.976551i \(-0.569069\pi\)
−0.953361 + 0.301831i \(0.902402\pi\)
\(384\) 0 0
\(385\) 8.31511e9 + 1.44022e10i 0.378464 + 0.655519i
\(386\) 7.41699e9i 0.334101i
\(387\) 0 0
\(388\) −2.61521e9 −0.115393
\(389\) −2.54384e10 + 1.46869e10i −1.11094 + 0.641404i −0.939074 0.343716i \(-0.888314\pi\)
−0.171870 + 0.985120i \(0.554981\pi\)
\(390\) 0 0
\(391\) 1.96026e10 3.39527e10i 0.838701 1.45267i
\(392\) 8.41555e9 + 4.85872e9i 0.356400 + 0.205768i
\(393\) 0 0
\(394\) −2.53558e9 4.39175e9i −0.105219 0.182244i
\(395\) 1.95024e9i 0.0801125i
\(396\) 0 0
\(397\) 2.58158e10 1.03926 0.519630 0.854391i \(-0.326070\pi\)
0.519630 + 0.854391i \(0.326070\pi\)
\(398\) 7.20082e9 4.15739e9i 0.286979 0.165687i
\(399\) 0 0
\(400\) −2.75395e9 + 4.76997e9i −0.107576 + 0.186327i
\(401\) 5.67198e9 + 3.27472e9i 0.219360 + 0.126647i 0.605654 0.795728i \(-0.292912\pi\)
−0.386294 + 0.922376i \(0.626245\pi\)
\(402\) 0 0
\(403\) −9.85365e9 1.70670e10i −0.373574 0.647050i
\(404\) 2.17066e10i 0.814830i
\(405\) 0 0
\(406\) 1.07569e10 0.395897
\(407\) 5.25533e10 3.03417e10i 1.91524 1.10576i
\(408\) 0 0
\(409\) −2.20907e10 + 3.82622e10i −0.789433 + 1.36734i 0.136881 + 0.990588i \(0.456292\pi\)
−0.926314 + 0.376751i \(0.877041\pi\)
\(410\) −3.92179e9 2.26425e9i −0.138787 0.0801287i
\(411\) 0 0
\(412\) −1.90882e9 3.30616e9i −0.0662483 0.114745i
\(413\) 9.49438e9i 0.326337i
\(414\) 0 0
\(415\) 1.19920e10 0.404297
\(416\) −6.71400e9 + 3.87633e9i −0.224186 + 0.129434i
\(417\) 0 0
\(418\) 4.14388e9 7.17742e9i 0.135738 0.235106i
\(419\) 3.91899e10 + 2.26263e10i 1.27150 + 0.734103i 0.975271 0.221013i \(-0.0709363\pi\)
0.296233 + 0.955116i \(0.404270\pi\)
\(420\) 0 0
\(421\) −1.09596e10 1.89826e10i −0.348873 0.604266i 0.637176 0.770718i \(-0.280102\pi\)
−0.986050 + 0.166452i \(0.946769\pi\)
\(422\) 3.69732e10i 1.16584i
\(423\) 0 0
\(424\) 1.48822e10 0.460472
\(425\) 2.75953e10 1.59321e10i 0.845822 0.488336i
\(426\) 0 0
\(427\) −9.60815e9 + 1.66418e10i −0.289020 + 0.500598i
\(428\) −1.36151e10 7.86070e9i −0.405739 0.234254i
\(429\) 0 0
\(430\) 4.78331e9 + 8.28494e9i 0.139912 + 0.242335i
\(431\) 9.62022e9i 0.278789i 0.990237 + 0.139395i \(0.0445157\pi\)
−0.990237 + 0.139395i \(0.955484\pi\)
\(432\) 0 0
\(433\) −4.64805e10 −1.32227 −0.661134 0.750268i \(-0.729924\pi\)
−0.661134 + 0.750268i \(0.729924\pi\)
\(434\) 1.63064e10 9.41450e9i 0.459620 0.265362i
\(435\) 0 0
\(436\) −3.12860e9 + 5.41890e9i −0.0865774 + 0.149956i
\(437\) 1.30044e10 + 7.50809e9i 0.356586 + 0.205875i
\(438\) 0 0
\(439\) 1.86137e10 + 3.22398e10i 0.501158 + 0.868030i 0.999999 + 0.00133709i \(0.000425610\pi\)
−0.498842 + 0.866693i \(0.666241\pi\)
\(440\) 6.81855e9i 0.181920i
\(441\) 0 0
\(442\) 4.48507e10 1.17511
\(443\) 4.62286e10 2.66901e10i 1.20032 0.693003i 0.239691 0.970849i \(-0.422954\pi\)
0.960626 + 0.277846i \(0.0896206\pi\)
\(444\) 0 0
\(445\) 1.25233e10 2.16910e10i 0.319359 0.553146i
\(446\) 3.73146e10 + 2.15436e10i 0.943060 + 0.544476i
\(447\) 0 0
\(448\) −3.70357e9 6.41477e9i −0.0919409 0.159246i
\(449\) 4.16287e9i 0.102425i −0.998688 0.0512126i \(-0.983691\pi\)
0.998688 0.0512126i \(-0.0163086\pi\)
\(450\) 0 0
\(451\) −3.46121e10 −0.836607
\(452\) −2.09781e10 + 1.21117e10i −0.502588 + 0.290169i
\(453\) 0 0
\(454\) 2.45876e10 4.25869e10i 0.578752 1.00243i
\(455\) −2.98522e10 1.72352e10i −0.696515 0.402133i
\(456\) 0 0
\(457\) 1.45988e10 + 2.52858e10i 0.334697 + 0.579712i 0.983427 0.181307i \(-0.0580328\pi\)
−0.648730 + 0.761019i \(0.724699\pi\)
\(458\) 3.24021e10i 0.736396i
\(459\) 0 0
\(460\) 1.23542e10 0.275920
\(461\) −1.43559e10 + 8.28837e9i −0.317853 + 0.183512i −0.650435 0.759562i \(-0.725413\pi\)
0.332582 + 0.943074i \(0.392080\pi\)
\(462\) 0 0
\(463\) 1.83424e10 3.17699e10i 0.399146 0.691341i −0.594475 0.804114i \(-0.702640\pi\)
0.993621 + 0.112773i \(0.0359734\pi\)
\(464\) −3.81954e9 2.20522e9i −0.0824024 0.0475750i
\(465\) 0 0
\(466\) 3.15145e9 + 5.45847e9i 0.0668292 + 0.115752i
\(467\) 1.80368e10i 0.379220i −0.981860 0.189610i \(-0.939278\pi\)
0.981860 0.189610i \(-0.0607223\pi\)
\(468\) 0 0
\(469\) 2.16214e10 0.446882
\(470\) 1.37513e10 7.93930e9i 0.281807 0.162701i
\(471\) 0 0
\(472\) −1.94639e9 + 3.37125e9i −0.0392160 + 0.0679240i
\(473\) 6.33233e10 + 3.65597e10i 1.26508 + 0.730396i
\(474\) 0 0
\(475\) 6.10225e9 + 1.05694e10i 0.119871 + 0.207623i
\(476\) 4.28518e10i 0.834722i
\(477\) 0 0
\(478\) −1.48018e10 −0.283533
\(479\) 2.46920e9 1.42559e9i 0.0469045 0.0270803i −0.476364 0.879248i \(-0.658046\pi\)
0.523269 + 0.852168i \(0.324712\pi\)
\(480\) 0 0
\(481\) −6.28908e10 + 1.08930e11i −1.17492 + 2.03501i
\(482\) 4.74400e10 + 2.73895e10i 0.878934 + 0.507453i
\(483\) 0 0
\(484\) −1.23387e10 2.13713e10i −0.224848 0.389448i
\(485\) 4.76755e9i 0.0861645i
\(486\) 0 0
\(487\) −1.01307e11 −1.80104 −0.900522 0.434810i \(-0.856816\pi\)
−0.900522 + 0.434810i \(0.856816\pi\)
\(488\) 6.82330e9 3.93944e9i 0.120314 0.0694632i
\(489\) 0 0
\(490\) 8.85749e9 1.53416e10i 0.153648 0.266126i
\(491\) 1.01731e10 + 5.87345e9i 0.175036 + 0.101057i 0.584958 0.811063i \(-0.301111\pi\)
−0.409922 + 0.912120i \(0.634444\pi\)
\(492\) 0 0
\(493\) 1.27576e10 + 2.20969e10i 0.215964 + 0.374061i
\(494\) 1.71785e10i 0.288454i
\(495\) 0 0
\(496\) −7.72008e9 −0.127554
\(497\) 6.48285e10 3.74287e10i 1.06253 0.613451i
\(498\) 0 0
\(499\) −5.73333e10 + 9.93042e10i −0.924708 + 1.60164i −0.132679 + 0.991159i \(0.542358\pi\)
−0.792029 + 0.610483i \(0.790975\pi\)
\(500\) 1.87999e10 + 1.08541e10i 0.300798 + 0.173666i
\(501\) 0 0
\(502\) −4.39940e10 7.61998e10i −0.692753 1.19988i
\(503\) 1.63604e10i 0.255577i −0.991801 0.127789i \(-0.959212\pi\)
0.991801 0.127789i \(-0.0407879\pi\)
\(504\) 0 0
\(505\) 3.95714e10 0.608437
\(506\) 8.17747e10 4.72126e10i 1.24743 0.720205i
\(507\) 0 0
\(508\) 2.17541e10 3.76793e10i 0.326653 0.565780i
\(509\) −3.40097e10 1.96355e10i −0.506678 0.292531i 0.224789 0.974407i \(-0.427831\pi\)
−0.731467 + 0.681877i \(0.761164\pi\)
\(510\) 0 0
\(511\) −8.65890e10 1.49977e11i −1.26993 2.19958i
\(512\) 3.03700e9i 0.0441942i
\(513\) 0 0
\(514\) −6.42843e10 −0.920984
\(515\) −6.02717e9 + 3.47979e9i −0.0856810 + 0.0494680i
\(516\) 0 0
\(517\) 6.06815e10 1.05103e11i 0.849365 1.47114i
\(518\) −1.04075e11 6.00879e10i −1.44554 0.834580i
\(519\) 0 0
\(520\) 7.06658e9 + 1.22397e10i 0.0966487 + 0.167400i
\(521\) 3.71996e10i 0.504879i −0.967613 0.252439i \(-0.918767\pi\)
0.967613 0.252439i \(-0.0812328\pi\)
\(522\) 0 0
\(523\) 3.03301e10 0.405385 0.202692 0.979242i \(-0.435031\pi\)
0.202692 + 0.979242i \(0.435031\pi\)
\(524\) −8.52708e9 + 4.92311e9i −0.113103 + 0.0653002i
\(525\) 0 0
\(526\) −5.91320e9 + 1.02420e10i −0.0772466 + 0.133795i
\(527\) 3.86786e10 + 2.23311e10i 0.501451 + 0.289513i
\(528\) 0 0
\(529\) 4.63867e10 + 8.03442e10i 0.592340 + 1.02596i
\(530\) 2.71304e10i 0.343837i
\(531\) 0 0
\(532\) −1.64129e10 −0.204898
\(533\) 6.21306e10 3.58711e10i 0.769834 0.444464i
\(534\) 0 0
\(535\) −1.43301e10 + 2.48205e10i −0.174918 + 0.302967i
\(536\) −7.67731e9 4.43249e9i −0.0930143 0.0537018i
\(537\) 0 0
\(538\) 2.78704e10 + 4.82730e10i 0.332671 + 0.576203i
\(539\) 1.35399e11i 1.60421i
\(540\) 0 0
\(541\) 7.54262e10 0.880508 0.440254 0.897873i \(-0.354888\pi\)
0.440254 + 0.897873i \(0.354888\pi\)
\(542\) −6.45905e10 + 3.72913e10i −0.748465 + 0.432126i
\(543\) 0 0
\(544\) 8.78484e9 1.52158e10i 0.100309 0.173740i
\(545\) 9.87870e9 + 5.70347e9i 0.111973 + 0.0646477i
\(546\) 0 0
\(547\) 1.02110e10 + 1.76860e10i 0.114057 + 0.197552i 0.917402 0.397961i \(-0.130282\pi\)
−0.803346 + 0.595513i \(0.796949\pi\)
\(548\) 1.63660e10i 0.181476i
\(549\) 0 0
\(550\) 7.67447e10 0.838683
\(551\) −8.46342e9 + 4.88636e9i −0.0918205 + 0.0530126i
\(552\) 0 0
\(553\) 1.47598e10 2.55647e10i 0.157826 0.273363i
\(554\) 1.19133e9 + 6.87816e8i 0.0126472 + 0.00730185i
\(555\) 0 0
\(556\) 5.81714e8 + 1.00756e9i 0.00608710 + 0.0105432i
\(557\) 2.53750e10i 0.263625i 0.991275 + 0.131812i \(0.0420796\pi\)
−0.991275 + 0.131812i \(0.957920\pi\)
\(558\) 0 0
\(559\) −1.51558e11 −1.55215
\(560\) −1.16942e10 + 6.75164e9i −0.118910 + 0.0686527i
\(561\) 0 0
\(562\) −3.17145e10 + 5.49311e10i −0.317916 + 0.550647i
\(563\) 8.95847e10 + 5.17218e10i 0.891662 + 0.514802i 0.874486 0.485051i \(-0.161199\pi\)
0.0171765 + 0.999852i \(0.494532\pi\)
\(564\) 0 0
\(565\) 2.20797e10 + 3.82432e10i 0.216671 + 0.375285i
\(566\) 1.83915e10i 0.179206i
\(567\) 0 0
\(568\) −3.06923e10 −0.294874
\(569\) −8.23428e10 + 4.75406e10i −0.785555 + 0.453540i −0.838395 0.545063i \(-0.816506\pi\)
0.0528406 + 0.998603i \(0.483172\pi\)
\(570\) 0 0
\(571\) 5.15232e10 8.92409e10i 0.484684 0.839498i −0.515161 0.857093i \(-0.672268\pi\)
0.999845 + 0.0175958i \(0.00560122\pi\)
\(572\) 9.35501e10 + 5.40112e10i 0.873897 + 0.504545i
\(573\) 0 0
\(574\) 3.42725e10 + 5.93617e10i 0.315717 + 0.546838i
\(575\) 1.39050e11i 1.27204i
\(576\) 0 0
\(577\) −8.28869e10 −0.747795 −0.373898 0.927470i \(-0.621979\pi\)
−0.373898 + 0.927470i \(0.621979\pi\)
\(578\) −1.96783e10 + 1.13613e10i −0.176310 + 0.101792i
\(579\) 0 0
\(580\) −4.02013e9 + 6.96307e9i −0.0355245 + 0.0615302i
\(581\) −1.57197e11 9.07579e10i −1.37956 0.796489i
\(582\) 0 0
\(583\) −1.03681e11 1.79581e11i −0.897483 1.55449i
\(584\) 7.10047e10i 0.610430i
\(585\) 0 0
\(586\) 4.76589e10 0.404160
\(587\) −9.74307e9 + 5.62516e9i −0.0820622 + 0.0473787i −0.540470 0.841364i \(-0.681753\pi\)
0.458407 + 0.888742i \(0.348420\pi\)
\(588\) 0 0
\(589\) −8.55315e9 + 1.48145e10i −0.0710665 + 0.123091i
\(590\) 6.14583e9 + 3.54830e9i 0.0507192 + 0.0292827i
\(591\) 0 0
\(592\) 2.46366e10 + 4.26719e10i 0.200583 + 0.347420i
\(593\) 1.94961e11i 1.57663i 0.615272 + 0.788315i \(0.289046\pi\)
−0.615272 + 0.788315i \(0.710954\pi\)
\(594\) 0 0
\(595\) 7.81193e10 0.623291
\(596\) −2.05300e10 + 1.18530e10i −0.162707 + 0.0939387i
\(597\) 0 0
\(598\) −9.78601e10 + 1.69499e11i −0.765246 + 1.32544i
\(599\) 2.63203e10 + 1.51960e10i 0.204448 + 0.118038i 0.598729 0.800952i \(-0.295673\pi\)
−0.394281 + 0.918990i \(0.629006\pi\)
\(600\) 0 0
\(601\) 5.95074e10 + 1.03070e11i 0.456114 + 0.790012i 0.998751 0.0499547i \(-0.0159077\pi\)
−0.542638 + 0.839967i \(0.682574\pi\)
\(602\) 1.44804e11i 1.10254i
\(603\) 0 0
\(604\) 4.29569e10 0.322764
\(605\) −3.89601e10 + 2.24936e10i −0.290803 + 0.167895i
\(606\) 0 0
\(607\) 5.65400e10 9.79301e10i 0.416486 0.721376i −0.579097 0.815259i \(-0.696595\pi\)
0.995583 + 0.0938832i \(0.0299280\pi\)
\(608\) 5.82787e9 + 3.36472e9i 0.0426477 + 0.0246227i
\(609\) 0 0
\(610\) −7.18163e9 1.24390e10i −0.0518685 0.0898389i
\(611\) 2.51556e11i 1.80497i
\(612\) 0 0
\(613\) 1.93018e11 1.36696 0.683481 0.729968i \(-0.260465\pi\)
0.683481 + 0.729968i \(0.260465\pi\)
\(614\) 5.76585e10 3.32892e10i 0.405686 0.234223i
\(615\) 0 0
\(616\) −5.16040e10 + 8.93808e10i −0.358394 + 0.620757i
\(617\) −1.97593e11 1.14080e11i −1.36342 0.787172i −0.373344 0.927693i \(-0.621789\pi\)
−0.990078 + 0.140521i \(0.955122\pi\)
\(618\) 0 0
\(619\) −6.07372e10 1.05200e11i −0.413706 0.716560i 0.581585 0.813485i \(-0.302433\pi\)
−0.995292 + 0.0969250i \(0.969099\pi\)
\(620\) 1.40738e10i 0.0952453i
\(621\) 0 0
\(622\) −1.10875e11 −0.740751
\(623\) −3.28323e11 + 1.89558e11i −2.17946 + 1.25831i
\(624\) 0 0
\(625\) −4.58720e10 + 7.94527e10i −0.300627 + 0.520701i
\(626\) −3.68562e10 2.12789e10i −0.240001 0.138565i
\(627\) 0 0
\(628\) −1.29044e10 2.23510e10i −0.0829657 0.143701i
\(629\) 2.85056e11i 1.82107i
\(630\) 0 0
\(631\) 3.03109e11 1.91197 0.955986 0.293412i \(-0.0947908\pi\)
0.955986 + 0.293412i \(0.0947908\pi\)
\(632\) −1.04818e10 + 6.05166e9i −0.0657002 + 0.0379321i
\(633\) 0 0
\(634\) 9.57980e10 1.65927e11i 0.592925 1.02698i
\(635\) −6.86897e10 3.96580e10i −0.422471 0.243913i
\(636\) 0 0
\(637\) 1.40324e11 + 2.43049e11i 0.852265 + 1.47617i
\(638\) 6.14531e10i 0.370904i
\(639\) 0 0
\(640\) 5.53648e9 0.0330000
\(641\) 2.45984e10 1.42019e10i 0.145705 0.0841228i −0.425375 0.905017i \(-0.639858\pi\)
0.571080 + 0.820894i \(0.306525\pi\)
\(642\) 0 0
\(643\) 1.69442e11 2.93481e11i 0.991234 1.71687i 0.381199 0.924493i \(-0.375511\pi\)
0.610035 0.792375i \(-0.291155\pi\)
\(644\) −1.61945e11 9.34988e10i −0.941506 0.543579i
\(645\) 0 0
\(646\) −1.94656e10 3.37154e10i −0.111773 0.193597i
\(647\) 1.91011e11i 1.09004i −0.838424 0.545019i \(-0.816523\pi\)
0.838424 0.545019i \(-0.183477\pi\)
\(648\) 0 0
\(649\) 5.42405e10 0.305735
\(650\) −1.37761e11 + 7.95364e10i −0.771744 + 0.445567i
\(651\) 0 0
\(652\) −3.37703e10 + 5.84919e10i −0.186872 + 0.323672i
\(653\) 4.12673e10 + 2.38257e10i 0.226962 + 0.131037i 0.609170 0.793040i \(-0.291503\pi\)
−0.382208 + 0.924076i \(0.624836\pi\)
\(654\) 0 0
\(655\) 8.97488e9 + 1.55450e10i 0.0487600 + 0.0844548i
\(656\) 2.81041e10i 0.151759i
\(657\) 0 0
\(658\) −2.40344e11 −1.28213
\(659\) 7.06817e10 4.08081e10i 0.374770 0.216374i −0.300770 0.953697i \(-0.597244\pi\)
0.675540 + 0.737323i \(0.263910\pi\)
\(660\) 0 0
\(661\) −2.94428e10 + 5.09965e10i −0.154232 + 0.267137i −0.932779 0.360449i \(-0.882624\pi\)
0.778547 + 0.627586i \(0.215957\pi\)
\(662\) −3.12553e10 1.80453e10i −0.162739 0.0939575i
\(663\) 0 0
\(664\) 3.72116e10 + 6.44525e10i 0.191428 + 0.331564i
\(665\) 2.99209e10i 0.152999i
\(666\) 0 0
\(667\) −1.11344e11 −0.562552
\(668\) 2.01323e10 1.16234e10i 0.101108 0.0583750i
\(669\) 0 0
\(670\) −8.08048e9 + 1.39958e10i −0.0400994 + 0.0694542i
\(671\) −9.50732e10 5.48905e10i −0.468995 0.270774i
\(672\) 0 0
\(673\) −8.28169e7 1.43443e8i −0.000403700 0.000699229i 0.865823 0.500350i \(-0.166795\pi\)
−0.866227 + 0.499650i \(0.833462\pi\)
\(674\) 1.88235e11i 0.912137i
\(675\) 0 0
\(676\) −1.19490e11 −0.572196
\(677\) −2.24109e11 + 1.29390e11i −1.06685 + 0.615949i −0.927320 0.374268i \(-0.877894\pi\)
−0.139534 + 0.990217i \(0.544561\pi\)
\(678\) 0 0
\(679\) 3.60817e10 6.24954e10i 0.169749 0.294015i
\(680\) −2.77385e10 1.60148e10i −0.129732 0.0749009i
\(681\) 0 0
\(682\) 5.37842e10 + 9.31570e10i 0.248609 + 0.430604i
\(683\) 1.24132e11i 0.570428i −0.958464 0.285214i \(-0.907935\pi\)
0.958464 0.285214i \(-0.0920647\pi\)
\(684\) 0 0
\(685\) −2.98353e10 −0.135509
\(686\) −3.27176e10 + 1.88895e10i −0.147736 + 0.0852953i
\(687\) 0 0
\(688\) −2.96855e10 + 5.14168e10i −0.132492 + 0.229483i
\(689\) 3.72227e11 + 2.14906e11i 1.65170 + 0.953610i
\(690\) 0 0
\(691\) −5.98669e10 1.03692e11i −0.262588 0.454815i 0.704341 0.709862i \(-0.251243\pi\)
−0.966929 + 0.255047i \(0.917909\pi\)
\(692\) 9.04269e9i 0.0394342i
\(693\) 0 0
\(694\) −1.21348e10 −0.0523112
\(695\) 1.83679e9 1.06047e9i 0.00787264 0.00454527i
\(696\) 0 0
\(697\) −8.12940e10 + 1.40805e11i −0.344451 + 0.596607i
\(698\) 2.27609e10 + 1.31410e10i 0.0958887 + 0.0553614i
\(699\) 0 0
\(700\) −7.59917e10 1.31621e11i −0.316500 0.548194i
\(701\) 1.43654e11i 0.594902i 0.954737 + 0.297451i \(0.0961365\pi\)
−0.954737 + 0.297451i \(0.903864\pi\)
\(702\) 0 0
\(703\) 1.09181e11 0.447018
\(704\) 3.66470e10 2.11582e10i 0.149193 0.0861365i
\(705\) 0 0
\(706\) −1.12292e11 + 1.94496e11i −0.451992 + 0.782873i
\(707\) −5.18721e11 2.99484e11i −2.07614 1.19866i
\(708\) 0 0
\(709\) −2.07121e11 3.58743e11i −0.819669 1.41971i −0.905927 0.423435i \(-0.860824\pi\)
0.0862581 0.996273i \(-0.472509\pi\)
\(710\) 5.59524e10i 0.220184i
\(711\) 0 0
\(712\) 1.55441e11 0.604847
\(713\) −1.68786e11 + 9.74489e10i −0.653099 + 0.377067i
\(714\) 0 0
\(715\) 9.84629e10 1.70543e11i 0.376746 0.652543i
\(716\) −8.76137e9 5.05838e9i −0.0333365 0.0192468i
\(717\) 0 0
\(718\) 5.86500e10 + 1.01585e11i 0.220684 + 0.382235i
\(719\) 3.07755e11i 1.15157i 0.817602 + 0.575784i \(0.195303\pi\)
−0.817602 + 0.575784i \(0.804697\pi\)
\(720\) 0 0
\(721\) 1.05343e11 0.389819
\(722\) −1.53491e11 + 8.86179e10i −0.564850 + 0.326116i
\(723\) 0 0
\(724\) 3.50827e10 6.07651e10i 0.127685 0.221157i
\(725\) −7.83713e10 4.52477e10i −0.283665 0.163774i
\(726\) 0 0
\(727\) 7.96979e9 + 1.38041e10i 0.0285305 + 0.0494163i 0.879938 0.475088i \(-0.157584\pi\)
−0.851408 + 0.524505i \(0.824251\pi\)
\(728\) 2.13925e11i 0.761615i
\(729\) 0 0
\(730\) 1.29442e11 0.455811
\(731\) 2.97457e11 1.71737e11i 1.04173 0.601442i
\(732\) 0 0
\(733\) −8.39154e9 + 1.45346e10i −0.0290687 + 0.0503485i −0.880194 0.474614i \(-0.842587\pi\)
0.851125 + 0.524963i \(0.175921\pi\)
\(734\) 1.98781e11 + 1.14766e11i 0.684842 + 0.395393i
\(735\) 0 0
\(736\) 3.83354e10 + 6.63989e10i 0.130644 + 0.226282i
\(737\) 1.23521e11i 0.418670i
\(738\) 0 0
\(739\) −3.67552e11 −1.23237 −0.616185 0.787601i \(-0.711323\pi\)
−0.616185 + 0.787601i \(0.711323\pi\)
\(740\) 7.77913e10 4.49128e10i 0.259420 0.149776i
\(741\) 0 0
\(742\) −2.05328e11 + 3.55638e11i −0.677380 + 1.17326i
\(743\) 2.89546e11 + 1.67169e11i 0.950084 + 0.548531i 0.893107 0.449844i \(-0.148520\pi\)
0.0569771 + 0.998375i \(0.481854\pi\)
\(744\) 0 0
\(745\) 2.16082e10 + 3.74265e10i 0.0701444 + 0.121494i
\(746\) 2.51290e11i 0.811371i
\(747\) 0 0
\(748\) −2.44809e11 −0.782025
\(749\) 3.75693e11 2.16906e11i 1.19373 0.689199i
\(750\) 0 0
\(751\) 8.96862e10 1.55341e11i 0.281946 0.488345i −0.689918 0.723888i \(-0.742353\pi\)
0.971864 + 0.235543i \(0.0756868\pi\)
\(752\) 8.53412e10 + 4.92718e10i 0.266862 + 0.154073i
\(753\) 0 0
\(754\) −6.36886e10 1.10312e11i −0.197050 0.341300i
\(755\) 7.83109e10i 0.241010i
\(756\) 0 0
\(757\) −1.95683e11 −0.595894 −0.297947 0.954582i \(-0.596302\pi\)
−0.297947 + 0.954582i \(0.596302\pi\)
\(758\) 1.21288e11 7.00259e10i 0.367403 0.212120i
\(759\) 0 0
\(760\) 6.13392e9 1.06243e10i 0.0183859 0.0318452i
\(761\) 2.85175e11 + 1.64646e11i 0.850301 + 0.490922i 0.860752 0.509024i \(-0.169993\pi\)
−0.0104512 + 0.999945i \(0.503327\pi\)
\(762\) 0 0
\(763\) −8.63299e10 1.49528e11i −0.254720 0.441188i
\(764\) 2.87485e11i 0.843803i
\(765\) 0 0
\(766\) −3.28514e11 −0.954198
\(767\) −9.73648e10 + 5.62136e10i −0.281333 + 0.162428i
\(768\) 0 0
\(769\) 4.33600e10 7.51018e10i 0.123989 0.214756i −0.797348 0.603520i \(-0.793764\pi\)
0.921337 + 0.388764i \(0.127098\pi\)
\(770\) 1.62942e11 +