[N,k,chi] = [162,9,Mod(161,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.161");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\)
\(83\)
\(\chi(n)\)
\(-1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 1640808T_{5}^{6} + 516495591666T_{5}^{4} + 36111140725818600T_{5}^{2} + 59163452262584150625 \)
T5^8 + 1640808*T5^6 + 516495591666*T5^4 + 36111140725818600*T5^2 + 59163452262584150625
acting on \(S_{9}^{\mathrm{new}}(162, [\chi])\).
$p$
$F_p(T)$
$2$
\( (T^{2} + 128)^{4} \)
(T^2 + 128)^4
$3$
\( T^{8} \)
T^8
$5$
\( T^{8} + 1640808 T^{6} + \cdots + 59\!\cdots\!25 \)
T^8 + 1640808*T^6 + 516495591666*T^4 + 36111140725818600*T^2 + 59163452262584150625
$7$
\( (T^{4} - 746 T^{3} + \cdots + 7197064587664)^{2} \)
(T^4 - 746*T^3 - 17229162*T^2 + 29542708552*T + 7197064587664)^2
$11$
\( T^{8} + 86966028 T^{6} + \cdots + 98\!\cdots\!56 \)
T^8 + 86966028*T^6 + 2564193785192964*T^4 + 29316929167799164306368*T^2 + 98937537789605387435980851456
$13$
\( (T^{4} - 23390 T^{3} + \cdots + 67\!\cdots\!69)^{2} \)
(T^4 - 23390*T^3 - 1740616806*T^2 + 20065079561242*T + 673779231546771769)^2
$17$
\( T^{8} + 50461667568 T^{6} + \cdots + 42\!\cdots\!25 \)
T^8 + 50461667568*T^6 + 816551164303332887754*T^4 + 4573410621331099011122842232400*T^2 + 4252155506567617144262817844626625625625
$19$
\( (T^{4} + 320218 T^{3} + \cdots - 10\!\cdots\!04)^{2} \)
(T^4 + 320218*T^3 + 25979820270*T^2 + 356542736434456*T - 10788503053379430704)^2
$23$
\( T^{8} + 222640275348 T^{6} + \cdots + 10\!\cdots\!00 \)
T^8 + 222640275348*T^6 + 11012581157785678254276*T^4 + 186357802954639490375412163492800*T^2 + 1012387409963592146087178150068013275040000
$29$
\( T^{8} + 1329947673696 T^{6} + \cdots + 16\!\cdots\!61 \)
T^8 + 1329947673696*T^6 + 524477550825836433758970*T^4 + 54762199660441161352662042899713536*T^2 + 1652376538554594527364728795844009083024343561
$31$
\( (T^{4} - 53888 T^{3} + \cdots + 14\!\cdots\!36)^{2} \)
(T^4 - 53888*T^3 - 1043199970860*T^2 - 15276742517273792*T + 148544779845534248417536)^2
$37$
\( (T^{4} + 729562 T^{3} + \cdots + 13\!\cdots\!53)^{2} \)
(T^4 + 729562*T^3 - 4599677983782*T^2 - 1563888776266202918*T + 1329282007327730543347153)^2
$41$
\( T^{8} + 37646502934896 T^{6} + \cdots + 11\!\cdots\!64 \)
T^8 + 37646502934896*T^6 + 478269435599464731481951128*T^4 + 2144721786987803914648439826687534443328*T^2 + 1187744864787067361487649743051126824188121039819664
$43$
\( (T^{4} + 4232734 T^{3} + \cdots - 29\!\cdots\!92)^{2} \)
(T^4 + 4232734*T^3 - 2405262669618*T^2 - 28251488529404421944*T - 29016249304193951545074992)^2
$47$
\( T^{8} + 138220620047856 T^{6} + \cdots + 25\!\cdots\!36 \)
T^8 + 138220620047856*T^6 + 6108690131330997789814563216*T^4 + 94669840009644628924010932095271589213184*T^2 + 252993814077006338500347335551069325543232136821620736
$53$
\( T^{8} + 18704070936720 T^{6} + \cdots + 26\!\cdots\!36 \)
T^8 + 18704070936720*T^6 + 66724963141533155982615384*T^4 + 76177184183239714996135171713436589760*T^2 + 26524801078994643233101869894737794122104843093136
$59$
\( T^{8} + 799197825064464 T^{6} + \cdots + 63\!\cdots\!96 \)
T^8 + 799197825064464*T^6 + 209061093209923219124397753360*T^4 + 20060973151287056412772813826536419682120704*T^2 + 633729436682992367189025478537748088064814353600879005696
$61$
\( (T^{4} + 14168698 T^{3} + \cdots - 12\!\cdots\!83)^{2} \)
(T^4 + 14168698*T^3 - 602484645622386*T^2 - 10008826834015665063374*T - 12362814344744888543409054083)^2
$67$
\( (T^{4} - 46506398 T^{3} + \cdots + 19\!\cdots\!56)^{2} \)
(T^4 - 46506398*T^3 + 257812514894310*T^2 + 7087526169658920430744*T + 1907834236182848174392871056)^2
$71$
\( T^{8} + \cdots + 13\!\cdots\!04 \)
T^8 + 2671373000658420*T^6 + 1929487100001427868418847821636*T^4 + 359050576929643764661692957719218548291775296*T^2 + 13694137298358298493973249375992045331514926197467023515904
$73$
\( (T^{4} + 69655456 T^{3} + \cdots - 13\!\cdots\!11)^{2} \)
(T^4 + 69655456*T^3 + 1043299084047954*T^2 - 7139266057789319693408*T - 139162979647246856583924429311)^2
$79$
\( (T^{4} + 20445178 T^{3} + \cdots + 64\!\cdots\!84)^{2} \)
(T^4 + 20445178*T^3 - 2863544902953618*T^2 - 65748105751654647088664*T + 647238067403546388659250643984)^2
$83$
\( T^{8} + \cdots + 38\!\cdots\!96 \)
T^8 + 7861987572659280*T^6 + 19043682365354790120146624598336*T^4 + 13343047515454632646793679590550806343658291200*T^2 + 387720275379538816728354505073184398440585647210744895389696
$89$
\( T^{8} + \cdots + 23\!\cdots\!21 \)
T^8 + 29850625446623064*T^6 + 319407228925139331154070069603346*T^4 + 1452878514696916862795829721706453341007436228696*T^2 + 2384683734578387274953980347825050713309376189330162145982665921
$97$
\( (T^{4} + 24721456 T^{3} + \cdots - 19\!\cdots\!92)^{2} \)
(T^4 + 24721456*T^3 - 17883191642162988*T^2 + 1100683971077591063838784*T - 19672383369143041790011390414592)^2
show more
show less