Properties

Label 162.9.b.a.161.4
Level $162$
Weight $9$
Character 162.161
Analytic conductor $65.995$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,9,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9953348299\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3364x^{6} + 4188433x^{4} + 2287495488x^{2} + 462682923264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.4
Root \(26.3494i\) of defining polynomial
Character \(\chi\) \(=\) 162.161
Dual form 162.9.b.a.161.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.3137i q^{2} -128.000 q^{4} +1061.95i q^{5} -3233.60 q^{7} +1448.15i q^{8} +O(q^{10})\) \(q-11.3137i q^{2} -128.000 q^{4} +1061.95i q^{5} -3233.60 q^{7} +1448.15i q^{8} +12014.6 q^{10} -7892.01i q^{11} -54494.5 q^{13} +36584.0i q^{14} +16384.0 q^{16} +85389.0i q^{17} -153936. q^{19} -135930. i q^{20} -89287.9 q^{22} +352061. i q^{23} -737118. q^{25} +616535. i q^{26} +413901. q^{28} -880286. i q^{29} +1.43554e6 q^{31} -185364. i q^{32} +966067. q^{34} -3.43393e6i q^{35} +1.22625e6 q^{37} +1.74158e6i q^{38} -1.53787e6 q^{40} -291589. i q^{41} +2.30050e6 q^{43} +1.01018e6i q^{44} +3.98311e6 q^{46} +1.84797e6i q^{47} +4.69138e6 q^{49} +8.33954e6i q^{50} +6.97530e6 q^{52} -3.72595e6i q^{53} +8.38094e6 q^{55} -4.68276e6i q^{56} -9.95929e6 q^{58} -3.50160e6i q^{59} -47311.8 q^{61} -1.62413e7i q^{62} -2.09715e6 q^{64} -5.78706e7i q^{65} -8.18647e6 q^{67} -1.09298e7i q^{68} -3.88505e7 q^{70} +6.23977e6i q^{71} +3.16653e7 q^{73} -1.38734e7i q^{74} +1.97038e7 q^{76} +2.55196e7i q^{77} -2.77912e7 q^{79} +1.73990e7i q^{80} -3.29895e6 q^{82} +8.77450e7i q^{83} -9.06791e7 q^{85} -2.60272e7i q^{86} +1.14289e7 q^{88} -8.43269e7i q^{89} +1.76214e8 q^{91} -4.50637e7i q^{92} +2.09074e7 q^{94} -1.63472e8i q^{95} +2.33853e7 q^{97} -5.30769e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1024 q^{4} - 8876 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 1024 q^{4} - 8876 q^{7} + 8448 q^{10} - 117380 q^{13} + 131072 q^{16} + 270220 q^{19} - 210816 q^{22} - 1801672 q^{25} + 1136128 q^{28} - 393344 q^{31} - 691968 q^{34} + 1830988 q^{37} - 1081344 q^{40} + 11135236 q^{43} + 5296320 q^{46} - 13586328 q^{49} + 15024640 q^{52} - 1579716 q^{55} - 32988672 q^{58} + 12184204 q^{61} - 16777216 q^{64} - 80355716 q^{67} - 18723264 q^{70} + 197085760 q^{73} - 34588160 q^{76} + 84451852 q^{79} + 144639168 q^{82} - 582634548 q^{85} + 26984448 q^{88} + 373079588 q^{91} - 210121536 q^{94} + 341136928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 11.3137i − 0.707107i
\(3\) 0 0
\(4\) −128.000 −0.500000
\(5\) 1061.95i 1.69912i 0.527489 + 0.849562i \(0.323134\pi\)
−0.527489 + 0.849562i \(0.676866\pi\)
\(6\) 0 0
\(7\) −3233.60 −1.34677 −0.673386 0.739291i \(-0.735161\pi\)
−0.673386 + 0.739291i \(0.735161\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) 12014.6 1.20146
\(11\) − 7892.01i − 0.539035i −0.962995 0.269517i \(-0.913136\pi\)
0.962995 0.269517i \(-0.0868642\pi\)
\(12\) 0 0
\(13\) −54494.5 −1.90800 −0.954002 0.299800i \(-0.903080\pi\)
−0.954002 + 0.299800i \(0.903080\pi\)
\(14\) 36584.0i 0.952312i
\(15\) 0 0
\(16\) 16384.0 0.250000
\(17\) 85389.0i 1.02237i 0.859472 + 0.511183i \(0.170793\pi\)
−0.859472 + 0.511183i \(0.829207\pi\)
\(18\) 0 0
\(19\) −153936. −1.18120 −0.590602 0.806963i \(-0.701110\pi\)
−0.590602 + 0.806963i \(0.701110\pi\)
\(20\) − 135930.i − 0.849562i
\(21\) 0 0
\(22\) −89287.9 −0.381155
\(23\) 352061.i 1.25807i 0.777376 + 0.629037i \(0.216550\pi\)
−0.777376 + 0.629037i \(0.783450\pi\)
\(24\) 0 0
\(25\) −737118. −1.88702
\(26\) 616535.i 1.34916i
\(27\) 0 0
\(28\) 413901. 0.673386
\(29\) − 880286.i − 1.24461i −0.782777 0.622303i \(-0.786197\pi\)
0.782777 0.622303i \(-0.213803\pi\)
\(30\) 0 0
\(31\) 1.43554e6 1.55442 0.777212 0.629239i \(-0.216633\pi\)
0.777212 + 0.629239i \(0.216633\pi\)
\(32\) − 185364.i − 0.176777i
\(33\) 0 0
\(34\) 966067. 0.722922
\(35\) − 3.43393e6i − 2.28833i
\(36\) 0 0
\(37\) 1.22625e6 0.654293 0.327146 0.944974i \(-0.393913\pi\)
0.327146 + 0.944974i \(0.393913\pi\)
\(38\) 1.74158e6i 0.835237i
\(39\) 0 0
\(40\) −1.53787e6 −0.600731
\(41\) − 291589.i − 0.103189i −0.998668 0.0515947i \(-0.983570\pi\)
0.998668 0.0515947i \(-0.0164304\pi\)
\(42\) 0 0
\(43\) 2.30050e6 0.672897 0.336448 0.941702i \(-0.390774\pi\)
0.336448 + 0.941702i \(0.390774\pi\)
\(44\) 1.01018e6i 0.269517i
\(45\) 0 0
\(46\) 3.98311e6 0.889592
\(47\) 1.84797e6i 0.378706i 0.981909 + 0.189353i \(0.0606391\pi\)
−0.981909 + 0.189353i \(0.939361\pi\)
\(48\) 0 0
\(49\) 4.69138e6 0.813797
\(50\) 8.33954e6i 1.33433i
\(51\) 0 0
\(52\) 6.97530e6 0.954002
\(53\) − 3.72595e6i − 0.472208i −0.971728 0.236104i \(-0.924129\pi\)
0.971728 0.236104i \(-0.0758706\pi\)
\(54\) 0 0
\(55\) 8.38094e6 0.915887
\(56\) − 4.68276e6i − 0.476156i
\(57\) 0 0
\(58\) −9.95929e6 −0.880069
\(59\) − 3.50160e6i − 0.288974i −0.989507 0.144487i \(-0.953847\pi\)
0.989507 0.144487i \(-0.0461532\pi\)
\(60\) 0 0
\(61\) −47311.8 −0.00341704 −0.00170852 0.999999i \(-0.500544\pi\)
−0.00170852 + 0.999999i \(0.500544\pi\)
\(62\) − 1.62413e7i − 1.09914i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) − 5.78706e7i − 3.24194i
\(66\) 0 0
\(67\) −8.18647e6 −0.406254 −0.203127 0.979152i \(-0.565110\pi\)
−0.203127 + 0.979152i \(0.565110\pi\)
\(68\) − 1.09298e7i − 0.511183i
\(69\) 0 0
\(70\) −3.88505e7 −1.61810
\(71\) 6.23977e6i 0.245547i 0.992435 + 0.122774i \(0.0391789\pi\)
−0.992435 + 0.122774i \(0.960821\pi\)
\(72\) 0 0
\(73\) 3.16653e7 1.11505 0.557523 0.830162i \(-0.311752\pi\)
0.557523 + 0.830162i \(0.311752\pi\)
\(74\) − 1.38734e7i − 0.462655i
\(75\) 0 0
\(76\) 1.97038e7 0.590602
\(77\) 2.55196e7i 0.725958i
\(78\) 0 0
\(79\) −2.77912e7 −0.713509 −0.356755 0.934198i \(-0.616117\pi\)
−0.356755 + 0.934198i \(0.616117\pi\)
\(80\) 1.73990e7i 0.424781i
\(81\) 0 0
\(82\) −3.29895e6 −0.0729660
\(83\) 8.77450e7i 1.84889i 0.381321 + 0.924443i \(0.375469\pi\)
−0.381321 + 0.924443i \(0.624531\pi\)
\(84\) 0 0
\(85\) −9.06791e7 −1.73713
\(86\) − 2.60272e7i − 0.475810i
\(87\) 0 0
\(88\) 1.14289e7 0.190578
\(89\) − 8.43269e7i − 1.34402i −0.740541 0.672011i \(-0.765431\pi\)
0.740541 0.672011i \(-0.234569\pi\)
\(90\) 0 0
\(91\) 1.76214e8 2.56965
\(92\) − 4.50637e7i − 0.629037i
\(93\) 0 0
\(94\) 2.09074e7 0.267786
\(95\) − 1.63472e8i − 2.00701i
\(96\) 0 0
\(97\) 2.33853e7 0.264153 0.132077 0.991239i \(-0.457835\pi\)
0.132077 + 0.991239i \(0.457835\pi\)
\(98\) − 5.30769e7i − 0.575441i
\(99\) 0 0
\(100\) 9.43511e7 0.943511
\(101\) 7.12639e7i 0.684833i 0.939548 + 0.342416i \(0.111245\pi\)
−0.939548 + 0.342416i \(0.888755\pi\)
\(102\) 0 0
\(103\) −1.75219e8 −1.55679 −0.778397 0.627772i \(-0.783967\pi\)
−0.778397 + 0.627772i \(0.783967\pi\)
\(104\) − 7.89165e7i − 0.674581i
\(105\) 0 0
\(106\) −4.21543e7 −0.333901
\(107\) − 3.54632e7i − 0.270547i −0.990808 0.135273i \(-0.956809\pi\)
0.990808 0.135273i \(-0.0431913\pi\)
\(108\) 0 0
\(109\) 5.93417e7 0.420392 0.210196 0.977659i \(-0.432590\pi\)
0.210196 + 0.977659i \(0.432590\pi\)
\(110\) − 9.48195e7i − 0.647630i
\(111\) 0 0
\(112\) −5.29793e7 −0.336693
\(113\) − 2.32353e8i − 1.42506i −0.701640 0.712532i \(-0.747548\pi\)
0.701640 0.712532i \(-0.252452\pi\)
\(114\) 0 0
\(115\) −3.73872e8 −2.13762
\(116\) 1.12677e8i 0.622303i
\(117\) 0 0
\(118\) −3.96161e7 −0.204335
\(119\) − 2.76114e8i − 1.37689i
\(120\) 0 0
\(121\) 1.52075e8 0.709441
\(122\) 535272.i 0.00241621i
\(123\) 0 0
\(124\) −1.83750e8 −0.777212
\(125\) − 3.67959e8i − 1.50716i
\(126\) 0 0
\(127\) −4.40554e7 −0.169350 −0.0846749 0.996409i \(-0.526985\pi\)
−0.0846749 + 0.996409i \(0.526985\pi\)
\(128\) 2.37266e7i 0.0883883i
\(129\) 0 0
\(130\) −6.54731e8 −2.29239
\(131\) − 1.32203e8i − 0.448906i −0.974485 0.224453i \(-0.927940\pi\)
0.974485 0.224453i \(-0.0720596\pi\)
\(132\) 0 0
\(133\) 4.97766e8 1.59081
\(134\) 9.26194e7i 0.287265i
\(135\) 0 0
\(136\) −1.23657e8 −0.361461
\(137\) − 5.07826e8i − 1.44156i −0.693164 0.720780i \(-0.743784\pi\)
0.693164 0.720780i \(-0.256216\pi\)
\(138\) 0 0
\(139\) 1.39585e7 0.0373920 0.0186960 0.999825i \(-0.494049\pi\)
0.0186960 + 0.999825i \(0.494049\pi\)
\(140\) 4.39543e8i 1.14417i
\(141\) 0 0
\(142\) 7.05950e7 0.173628
\(143\) 4.30071e8i 1.02848i
\(144\) 0 0
\(145\) 9.34821e8 2.11474
\(146\) − 3.58252e8i − 0.788456i
\(147\) 0 0
\(148\) −1.56960e8 −0.327146
\(149\) − 2.72813e8i − 0.553504i −0.960941 0.276752i \(-0.910742\pi\)
0.960941 0.276752i \(-0.0892580\pi\)
\(150\) 0 0
\(151\) −9.29048e8 −1.78702 −0.893512 0.449039i \(-0.851767\pi\)
−0.893512 + 0.449039i \(0.851767\pi\)
\(152\) − 2.22923e8i − 0.417618i
\(153\) 0 0
\(154\) 2.88722e8 0.513330
\(155\) 1.52448e9i 2.64116i
\(156\) 0 0
\(157\) 1.59766e8 0.262958 0.131479 0.991319i \(-0.458027\pi\)
0.131479 + 0.991319i \(0.458027\pi\)
\(158\) 3.14422e8i 0.504527i
\(159\) 0 0
\(160\) 1.96848e8 0.300366
\(161\) − 1.13842e9i − 1.69434i
\(162\) 0 0
\(163\) 4.67512e8 0.662281 0.331140 0.943581i \(-0.392567\pi\)
0.331140 + 0.943581i \(0.392567\pi\)
\(164\) 3.73234e7i 0.0515947i
\(165\) 0 0
\(166\) 9.92721e8 1.30736
\(167\) 3.25225e8i 0.418136i 0.977901 + 0.209068i \(0.0670431\pi\)
−0.977901 + 0.209068i \(0.932957\pi\)
\(168\) 0 0
\(169\) 2.15392e9 2.64048
\(170\) 1.02592e9i 1.22833i
\(171\) 0 0
\(172\) −2.94464e8 −0.336448
\(173\) 5.39504e8i 0.602297i 0.953577 + 0.301148i \(0.0973699\pi\)
−0.953577 + 0.301148i \(0.902630\pi\)
\(174\) 0 0
\(175\) 2.38355e9 2.54139
\(176\) − 1.29303e8i − 0.134759i
\(177\) 0 0
\(178\) −9.54050e8 −0.950367
\(179\) − 7.15170e8i − 0.696622i −0.937379 0.348311i \(-0.886755\pi\)
0.937379 0.348311i \(-0.113245\pi\)
\(180\) 0 0
\(181\) −2.01588e9 −1.87824 −0.939118 0.343594i \(-0.888356\pi\)
−0.939118 + 0.343594i \(0.888356\pi\)
\(182\) − 1.99363e9i − 1.81702i
\(183\) 0 0
\(184\) −5.09838e8 −0.444796
\(185\) 1.30222e9i 1.11172i
\(186\) 0 0
\(187\) 6.73891e8 0.551091
\(188\) − 2.36540e8i − 0.189353i
\(189\) 0 0
\(190\) −1.84948e9 −1.41917
\(191\) 1.02979e9i 0.773775i 0.922127 + 0.386888i \(0.126450\pi\)
−0.922127 + 0.386888i \(0.873550\pi\)
\(192\) 0 0
\(193\) −1.82400e9 −1.31460 −0.657301 0.753628i \(-0.728302\pi\)
−0.657301 + 0.753628i \(0.728302\pi\)
\(194\) − 2.64575e8i − 0.186785i
\(195\) 0 0
\(196\) −6.00496e8 −0.406899
\(197\) 1.21693e9i 0.807981i 0.914763 + 0.403991i \(0.132377\pi\)
−0.914763 + 0.403991i \(0.867623\pi\)
\(198\) 0 0
\(199\) 1.71825e9 1.09566 0.547829 0.836591i \(-0.315455\pi\)
0.547829 + 0.836591i \(0.315455\pi\)
\(200\) − 1.06746e9i − 0.667163i
\(201\) 0 0
\(202\) 8.06260e8 0.484250
\(203\) 2.84649e9i 1.67620i
\(204\) 0 0
\(205\) 3.09653e8 0.175332
\(206\) 1.98237e9i 1.10082i
\(207\) 0 0
\(208\) −8.92838e8 −0.477001
\(209\) 1.21486e9i 0.636710i
\(210\) 0 0
\(211\) −6.18692e8 −0.312136 −0.156068 0.987746i \(-0.549882\pi\)
−0.156068 + 0.987746i \(0.549882\pi\)
\(212\) 4.76921e8i 0.236104i
\(213\) 0 0
\(214\) −4.01220e8 −0.191305
\(215\) 2.44302e9i 1.14333i
\(216\) 0 0
\(217\) −4.64198e9 −2.09346
\(218\) − 6.71375e8i − 0.297262i
\(219\) 0 0
\(220\) −1.07276e9 −0.457944
\(221\) − 4.65323e9i − 1.95068i
\(222\) 0 0
\(223\) 3.75384e9 1.51795 0.758973 0.651122i \(-0.225701\pi\)
0.758973 + 0.651122i \(0.225701\pi\)
\(224\) 5.99393e8i 0.238078i
\(225\) 0 0
\(226\) −2.62877e9 −1.00767
\(227\) 4.30166e9i 1.62007i 0.586384 + 0.810033i \(0.300551\pi\)
−0.586384 + 0.810033i \(0.699449\pi\)
\(228\) 0 0
\(229\) 4.03628e9 1.46771 0.733854 0.679308i \(-0.237720\pi\)
0.733854 + 0.679308i \(0.237720\pi\)
\(230\) 4.22987e9i 1.51153i
\(231\) 0 0
\(232\) 1.27479e9 0.440034
\(233\) 1.15028e9i 0.390282i 0.980775 + 0.195141i \(0.0625164\pi\)
−0.980775 + 0.195141i \(0.937484\pi\)
\(234\) 0 0
\(235\) −1.96245e9 −0.643469
\(236\) 4.48205e8i 0.144487i
\(237\) 0 0
\(238\) −3.12387e9 −0.973612
\(239\) − 3.60021e9i − 1.10341i −0.834040 0.551705i \(-0.813978\pi\)
0.834040 0.551705i \(-0.186022\pi\)
\(240\) 0 0
\(241\) −3.55755e8 −0.105459 −0.0527294 0.998609i \(-0.516792\pi\)
−0.0527294 + 0.998609i \(0.516792\pi\)
\(242\) − 1.72053e9i − 0.501651i
\(243\) 0 0
\(244\) 6.05591e6 0.00170852
\(245\) 4.98202e9i 1.38274i
\(246\) 0 0
\(247\) 8.38864e9 2.25374
\(248\) 2.07889e9i 0.549572i
\(249\) 0 0
\(250\) −4.16299e9 −1.06572
\(251\) − 5.98696e9i − 1.50838i −0.656654 0.754192i \(-0.728029\pi\)
0.656654 0.754192i \(-0.271971\pi\)
\(252\) 0 0
\(253\) 2.77847e9 0.678146
\(254\) 4.98430e8i 0.119748i
\(255\) 0 0
\(256\) 2.68435e8 0.0625000
\(257\) − 2.89949e9i − 0.664643i −0.943166 0.332322i \(-0.892168\pi\)
0.943166 0.332322i \(-0.107832\pi\)
\(258\) 0 0
\(259\) −3.96520e9 −0.881184
\(260\) 7.40743e9i 1.62097i
\(261\) 0 0
\(262\) −1.49570e9 −0.317425
\(263\) 2.66911e9i 0.557882i 0.960308 + 0.278941i \(0.0899835\pi\)
−0.960308 + 0.278941i \(0.910017\pi\)
\(264\) 0 0
\(265\) 3.95678e9 0.802339
\(266\) − 5.63158e9i − 1.12487i
\(267\) 0 0
\(268\) 1.04787e9 0.203127
\(269\) − 1.26012e9i − 0.240660i −0.992734 0.120330i \(-0.961605\pi\)
0.992734 0.120330i \(-0.0383953\pi\)
\(270\) 0 0
\(271\) 1.48125e9 0.274632 0.137316 0.990527i \(-0.456152\pi\)
0.137316 + 0.990527i \(0.456152\pi\)
\(272\) 1.39901e9i 0.255591i
\(273\) 0 0
\(274\) −5.74540e9 −1.01934
\(275\) 5.81735e9i 1.01717i
\(276\) 0 0
\(277\) 6.41212e8 0.108914 0.0544568 0.998516i \(-0.482657\pi\)
0.0544568 + 0.998516i \(0.482657\pi\)
\(278\) − 1.57922e8i − 0.0264401i
\(279\) 0 0
\(280\) 4.97286e9 0.809048
\(281\) − 1.27667e9i − 0.204763i −0.994745 0.102382i \(-0.967354\pi\)
0.994745 0.102382i \(-0.0326463\pi\)
\(282\) 0 0
\(283\) −1.12894e10 −1.76006 −0.880029 0.474921i \(-0.842477\pi\)
−0.880029 + 0.474921i \(0.842477\pi\)
\(284\) − 7.98691e8i − 0.122774i
\(285\) 0 0
\(286\) 4.86570e9 0.727246
\(287\) 9.42882e8i 0.138973i
\(288\) 0 0
\(289\) −3.15528e8 −0.0452321
\(290\) − 1.05763e10i − 1.49535i
\(291\) 0 0
\(292\) −4.05316e9 −0.557523
\(293\) 1.64745e9i 0.223533i 0.993735 + 0.111766i \(0.0356508\pi\)
−0.993735 + 0.111766i \(0.964349\pi\)
\(294\) 0 0
\(295\) 3.71854e9 0.491003
\(296\) 1.77580e9i 0.231327i
\(297\) 0 0
\(298\) −3.08653e9 −0.391386
\(299\) − 1.91854e10i − 2.40041i
\(300\) 0 0
\(301\) −7.43890e9 −0.906239
\(302\) 1.05110e10i 1.26362i
\(303\) 0 0
\(304\) −2.52208e9 −0.295301
\(305\) − 5.02429e7i − 0.00580598i
\(306\) 0 0
\(307\) −4.02739e9 −0.453388 −0.226694 0.973966i \(-0.572792\pi\)
−0.226694 + 0.973966i \(0.572792\pi\)
\(308\) − 3.26651e9i − 0.362979i
\(309\) 0 0
\(310\) 1.72475e10 1.86758
\(311\) 2.03690e9i 0.217735i 0.994056 + 0.108868i \(0.0347224\pi\)
−0.994056 + 0.108868i \(0.965278\pi\)
\(312\) 0 0
\(313\) −5.27110e9 −0.549192 −0.274596 0.961560i \(-0.588544\pi\)
−0.274596 + 0.961560i \(0.588544\pi\)
\(314\) − 1.80755e9i − 0.185939i
\(315\) 0 0
\(316\) 3.55728e9 0.356755
\(317\) 1.11628e10i 1.10545i 0.833365 + 0.552723i \(0.186411\pi\)
−0.833365 + 0.552723i \(0.813589\pi\)
\(318\) 0 0
\(319\) −6.94722e9 −0.670886
\(320\) − 2.22708e9i − 0.212391i
\(321\) 0 0
\(322\) −1.28798e10 −1.19808
\(323\) − 1.31444e10i − 1.20762i
\(324\) 0 0
\(325\) 4.01689e10 3.60045
\(326\) − 5.28929e9i − 0.468303i
\(327\) 0 0
\(328\) 4.22266e8 0.0364830
\(329\) − 5.97559e9i − 0.510031i
\(330\) 0 0
\(331\) 7.64734e9 0.637086 0.318543 0.947908i \(-0.396806\pi\)
0.318543 + 0.947908i \(0.396806\pi\)
\(332\) − 1.12314e10i − 0.924443i
\(333\) 0 0
\(334\) 3.67950e9 0.295667
\(335\) − 8.69365e9i − 0.690276i
\(336\) 0 0
\(337\) −1.17075e8 −0.00907703 −0.00453852 0.999990i \(-0.501445\pi\)
−0.00453852 + 0.999990i \(0.501445\pi\)
\(338\) − 2.43688e10i − 1.86710i
\(339\) 0 0
\(340\) 1.16069e10 0.868563
\(341\) − 1.13293e10i − 0.837889i
\(342\) 0 0
\(343\) 3.47102e9 0.250773
\(344\) 3.33148e9i 0.237905i
\(345\) 0 0
\(346\) 6.10379e9 0.425888
\(347\) − 1.54670e10i − 1.06681i −0.845859 0.533407i \(-0.820912\pi\)
0.845859 0.533407i \(-0.179088\pi\)
\(348\) 0 0
\(349\) −1.67148e10 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(350\) − 2.69668e10i − 1.79703i
\(351\) 0 0
\(352\) −1.46289e9 −0.0952888
\(353\) − 1.76650e10i − 1.13767i −0.822452 0.568834i \(-0.807395\pi\)
0.822452 0.568834i \(-0.192605\pi\)
\(354\) 0 0
\(355\) −6.62634e9 −0.417215
\(356\) 1.07938e10i 0.672011i
\(357\) 0 0
\(358\) −8.09123e9 −0.492586
\(359\) 4.69625e9i 0.282731i 0.989957 + 0.141365i \(0.0451493\pi\)
−0.989957 + 0.141365i \(0.954851\pi\)
\(360\) 0 0
\(361\) 6.71260e9 0.395241
\(362\) 2.28071e10i 1.32811i
\(363\) 0 0
\(364\) −2.25553e10 −1.28482
\(365\) 3.36271e10i 1.89460i
\(366\) 0 0
\(367\) 2.64435e10 1.45766 0.728829 0.684696i \(-0.240065\pi\)
0.728829 + 0.684696i \(0.240065\pi\)
\(368\) 5.76816e9i 0.314518i
\(369\) 0 0
\(370\) 1.47329e10 0.786108
\(371\) 1.20482e10i 0.635957i
\(372\) 0 0
\(373\) 1.53246e10 0.791685 0.395843 0.918318i \(-0.370453\pi\)
0.395843 + 0.918318i \(0.370453\pi\)
\(374\) − 7.62421e9i − 0.389680i
\(375\) 0 0
\(376\) −2.67614e9 −0.133893
\(377\) 4.79707e10i 2.37471i
\(378\) 0 0
\(379\) 1.88826e10 0.915175 0.457588 0.889165i \(-0.348714\pi\)
0.457588 + 0.889165i \(0.348714\pi\)
\(380\) 2.09245e10i 1.00351i
\(381\) 0 0
\(382\) 1.16507e10 0.547142
\(383\) − 4.19990e10i − 1.95184i −0.218128 0.975920i \(-0.569995\pi\)
0.218128 0.975920i \(-0.430005\pi\)
\(384\) 0 0
\(385\) −2.71006e10 −1.23349
\(386\) 2.06362e10i 0.929564i
\(387\) 0 0
\(388\) −2.99332e9 −0.132077
\(389\) − 2.28908e10i − 0.999684i −0.866117 0.499842i \(-0.833391\pi\)
0.866117 0.499842i \(-0.166609\pi\)
\(390\) 0 0
\(391\) −3.00621e10 −1.28621
\(392\) 6.79384e9i 0.287721i
\(393\) 0 0
\(394\) 1.37680e10 0.571329
\(395\) − 2.95130e10i − 1.21234i
\(396\) 0 0
\(397\) −3.22176e10 −1.29697 −0.648487 0.761225i \(-0.724598\pi\)
−0.648487 + 0.761225i \(0.724598\pi\)
\(398\) − 1.94398e10i − 0.774747i
\(399\) 0 0
\(400\) −1.20769e10 −0.471756
\(401\) 3.38757e10i 1.31012i 0.755577 + 0.655059i \(0.227356\pi\)
−0.755577 + 0.655059i \(0.772644\pi\)
\(402\) 0 0
\(403\) −7.82292e10 −2.96585
\(404\) − 9.12179e9i − 0.342416i
\(405\) 0 0
\(406\) 3.22044e10 1.18525
\(407\) − 9.67758e9i − 0.352687i
\(408\) 0 0
\(409\) −3.28412e10 −1.17362 −0.586808 0.809726i \(-0.699616\pi\)
−0.586808 + 0.809726i \(0.699616\pi\)
\(410\) − 3.50333e9i − 0.123978i
\(411\) 0 0
\(412\) 2.24280e10 0.778397
\(413\) 1.13228e10i 0.389182i
\(414\) 0 0
\(415\) −9.31810e10 −3.14149
\(416\) 1.01013e10i 0.337291i
\(417\) 0 0
\(418\) 1.37446e10 0.450222
\(419\) − 4.20810e10i − 1.36531i −0.730743 0.682653i \(-0.760826\pi\)
0.730743 0.682653i \(-0.239174\pi\)
\(420\) 0 0
\(421\) 2.16574e10 0.689410 0.344705 0.938711i \(-0.387979\pi\)
0.344705 + 0.938711i \(0.387979\pi\)
\(422\) 6.99970e9i 0.220714i
\(423\) 0 0
\(424\) 5.39575e9 0.166951
\(425\) − 6.29418e10i − 1.92923i
\(426\) 0 0
\(427\) 1.52988e8 0.00460198
\(428\) 4.53928e9i 0.135273i
\(429\) 0 0
\(430\) 2.76396e10 0.808460
\(431\) 5.79188e9i 0.167846i 0.996472 + 0.0839229i \(0.0267450\pi\)
−0.996472 + 0.0839229i \(0.973255\pi\)
\(432\) 0 0
\(433\) −2.54361e10 −0.723601 −0.361801 0.932255i \(-0.617838\pi\)
−0.361801 + 0.932255i \(0.617838\pi\)
\(434\) 5.25180e10i 1.48030i
\(435\) 0 0
\(436\) −7.59574e9 −0.210196
\(437\) − 5.41946e10i − 1.48604i
\(438\) 0 0
\(439\) −1.90617e10 −0.513219 −0.256610 0.966515i \(-0.582605\pi\)
−0.256610 + 0.966515i \(0.582605\pi\)
\(440\) 1.21369e10i 0.323815i
\(441\) 0 0
\(442\) −5.26453e10 −1.37934
\(443\) 1.92985e10i 0.501083i 0.968106 + 0.250541i \(0.0806086\pi\)
−0.968106 + 0.250541i \(0.919391\pi\)
\(444\) 0 0
\(445\) 8.95512e10 2.28366
\(446\) − 4.24699e10i − 1.07335i
\(447\) 0 0
\(448\) 6.78135e9 0.168347
\(449\) 2.56335e9i 0.0630700i 0.999503 + 0.0315350i \(0.0100396\pi\)
−0.999503 + 0.0315350i \(0.989960\pi\)
\(450\) 0 0
\(451\) −2.30122e9 −0.0556227
\(452\) 2.97412e10i 0.712532i
\(453\) 0 0
\(454\) 4.86677e10 1.14556
\(455\) 1.87130e11i 4.36615i
\(456\) 0 0
\(457\) 3.22717e10 0.739873 0.369937 0.929057i \(-0.379379\pi\)
0.369937 + 0.929057i \(0.379379\pi\)
\(458\) − 4.56653e10i − 1.03783i
\(459\) 0 0
\(460\) 4.78556e10 1.06881
\(461\) 6.87557e10i 1.52232i 0.648567 + 0.761158i \(0.275369\pi\)
−0.648567 + 0.761158i \(0.724631\pi\)
\(462\) 0 0
\(463\) 9.26696e9 0.201657 0.100829 0.994904i \(-0.467851\pi\)
0.100829 + 0.994904i \(0.467851\pi\)
\(464\) − 1.44226e10i − 0.311151i
\(465\) 0 0
\(466\) 1.30139e10 0.275971
\(467\) 5.14063e10i 1.08081i 0.841406 + 0.540404i \(0.181729\pi\)
−0.841406 + 0.540404i \(0.818271\pi\)
\(468\) 0 0
\(469\) 2.64718e10 0.547132
\(470\) 2.22026e10i 0.455001i
\(471\) 0 0
\(472\) 5.07086e9 0.102168
\(473\) − 1.81556e10i − 0.362715i
\(474\) 0 0
\(475\) 1.13469e11 2.22896
\(476\) 3.53426e10i 0.688447i
\(477\) 0 0
\(478\) −4.07318e10 −0.780228
\(479\) 7.06306e10i 1.34169i 0.741600 + 0.670843i \(0.234067\pi\)
−0.741600 + 0.670843i \(0.765933\pi\)
\(480\) 0 0
\(481\) −6.68239e10 −1.24839
\(482\) 4.02491e9i 0.0745706i
\(483\) 0 0
\(484\) −1.94656e10 −0.354721
\(485\) 2.48341e10i 0.448829i
\(486\) 0 0
\(487\) −4.61712e10 −0.820834 −0.410417 0.911898i \(-0.634617\pi\)
−0.410417 + 0.911898i \(0.634617\pi\)
\(488\) − 6.85148e7i − 0.00120811i
\(489\) 0 0
\(490\) 5.63651e10 0.977747
\(491\) 3.86564e10i 0.665112i 0.943083 + 0.332556i \(0.107911\pi\)
−0.943083 + 0.332556i \(0.892089\pi\)
\(492\) 0 0
\(493\) 7.51667e10 1.27244
\(494\) − 9.49067e10i − 1.59364i
\(495\) 0 0
\(496\) 2.35199e10 0.388606
\(497\) − 2.01769e10i − 0.330697i
\(498\) 0 0
\(499\) 1.18884e10 0.191744 0.0958721 0.995394i \(-0.469436\pi\)
0.0958721 + 0.995394i \(0.469436\pi\)
\(500\) 4.70988e10i 0.753581i
\(501\) 0 0
\(502\) −6.77348e10 −1.06659
\(503\) 7.35514e10i 1.14900i 0.818506 + 0.574499i \(0.194803\pi\)
−0.818506 + 0.574499i \(0.805197\pi\)
\(504\) 0 0
\(505\) −7.56789e10 −1.16362
\(506\) − 3.14347e10i − 0.479521i
\(507\) 0 0
\(508\) 5.63909e9 0.0846749
\(509\) − 2.05011e10i − 0.305427i −0.988271 0.152713i \(-0.951199\pi\)
0.988271 0.152713i \(-0.0488011\pi\)
\(510\) 0 0
\(511\) −1.02393e11 −1.50171
\(512\) − 3.03700e9i − 0.0441942i
\(513\) 0 0
\(514\) −3.28039e10 −0.469974
\(515\) − 1.86074e11i − 2.64519i
\(516\) 0 0
\(517\) 1.45842e10 0.204136
\(518\) 4.48612e10i 0.623091i
\(519\) 0 0
\(520\) 8.38055e10 1.14620
\(521\) 7.15997e10i 0.971763i 0.874025 + 0.485881i \(0.161501\pi\)
−0.874025 + 0.485881i \(0.838499\pi\)
\(522\) 0 0
\(523\) 1.01958e11 1.36275 0.681376 0.731934i \(-0.261382\pi\)
0.681376 + 0.731934i \(0.261382\pi\)
\(524\) 1.69220e10i 0.224453i
\(525\) 0 0
\(526\) 3.01975e10 0.394482
\(527\) 1.22580e11i 1.58919i
\(528\) 0 0
\(529\) −4.56356e10 −0.582749
\(530\) − 4.47658e10i − 0.567340i
\(531\) 0 0
\(532\) −6.37141e10 −0.795406
\(533\) 1.58900e10i 0.196886i
\(534\) 0 0
\(535\) 3.76602e10 0.459692
\(536\) − 1.18553e10i − 0.143632i
\(537\) 0 0
\(538\) −1.42567e10 −0.170172
\(539\) − 3.70244e10i − 0.438665i
\(540\) 0 0
\(541\) −7.17904e10 −0.838064 −0.419032 0.907972i \(-0.637630\pi\)
−0.419032 + 0.907972i \(0.637630\pi\)
\(542\) − 1.67584e10i − 0.194194i
\(543\) 0 0
\(544\) 1.58280e10 0.180730
\(545\) 6.30181e10i 0.714298i
\(546\) 0 0
\(547\) −1.28661e11 −1.43714 −0.718568 0.695456i \(-0.755202\pi\)
−0.718568 + 0.695456i \(0.755202\pi\)
\(548\) 6.50017e10i 0.720780i
\(549\) 0 0
\(550\) 6.58157e10 0.719249
\(551\) 1.35507e11i 1.47013i
\(552\) 0 0
\(553\) 8.98658e10 0.960935
\(554\) − 7.25448e9i − 0.0770136i
\(555\) 0 0
\(556\) −1.78669e9 −0.0186960
\(557\) − 1.41085e10i − 0.146575i −0.997311 0.0732874i \(-0.976651\pi\)
0.997311 0.0732874i \(-0.0233490\pi\)
\(558\) 0 0
\(559\) −1.25365e11 −1.28389
\(560\) − 5.62615e10i − 0.572084i
\(561\) 0 0
\(562\) −1.44438e10 −0.144790
\(563\) − 2.80691e10i − 0.279380i −0.990195 0.139690i \(-0.955389\pi\)
0.990195 0.139690i \(-0.0446105\pi\)
\(564\) 0 0
\(565\) 2.46748e11 2.42136
\(566\) 1.27725e11i 1.24455i
\(567\) 0 0
\(568\) −9.03616e9 −0.0868141
\(569\) − 1.43549e11i − 1.36946i −0.728796 0.684731i \(-0.759920\pi\)
0.728796 0.684731i \(-0.240080\pi\)
\(570\) 0 0
\(571\) −6.83821e10 −0.643277 −0.321639 0.946863i \(-0.604234\pi\)
−0.321639 + 0.946863i \(0.604234\pi\)
\(572\) − 5.50491e10i − 0.514240i
\(573\) 0 0
\(574\) 1.06675e10 0.0982686
\(575\) − 2.59510e11i − 2.37401i
\(576\) 0 0
\(577\) 9.83443e10 0.887250 0.443625 0.896213i \(-0.353692\pi\)
0.443625 + 0.896213i \(0.353692\pi\)
\(578\) 3.56979e9i 0.0319839i
\(579\) 0 0
\(580\) −1.19657e11 −1.05737
\(581\) − 2.83732e11i − 2.49003i
\(582\) 0 0
\(583\) −2.94052e10 −0.254536
\(584\) 4.58563e10i 0.394228i
\(585\) 0 0
\(586\) 1.86387e10 0.158061
\(587\) 3.62220e10i 0.305085i 0.988297 + 0.152542i \(0.0487460\pi\)
−0.988297 + 0.152542i \(0.951254\pi\)
\(588\) 0 0
\(589\) −2.20981e11 −1.83609
\(590\) − 4.20704e10i − 0.347191i
\(591\) 0 0
\(592\) 2.00909e10 0.163573
\(593\) − 8.30807e10i − 0.671864i −0.941886 0.335932i \(-0.890949\pi\)
0.941886 0.335932i \(-0.109051\pi\)
\(594\) 0 0
\(595\) 2.93220e11 2.33951
\(596\) 3.49201e10i 0.276752i
\(597\) 0 0
\(598\) −2.17058e11 −1.69735
\(599\) − 3.03534e10i − 0.235776i −0.993027 0.117888i \(-0.962388\pi\)
0.993027 0.117888i \(-0.0376124\pi\)
\(600\) 0 0
\(601\) 4.92836e10 0.377750 0.188875 0.982001i \(-0.439516\pi\)
0.188875 + 0.982001i \(0.439516\pi\)
\(602\) 8.41615e10i 0.640808i
\(603\) 0 0
\(604\) 1.18918e11 0.893512
\(605\) 1.61496e11i 1.20543i
\(606\) 0 0
\(607\) 2.37886e11 1.75233 0.876163 0.482015i \(-0.160095\pi\)
0.876163 + 0.482015i \(0.160095\pi\)
\(608\) 2.85341e10i 0.208809i
\(609\) 0 0
\(610\) −5.68433e8 −0.00410545
\(611\) − 1.00704e11i − 0.722573i
\(612\) 0 0
\(613\) 1.03907e11 0.735875 0.367938 0.929850i \(-0.380064\pi\)
0.367938 + 0.929850i \(0.380064\pi\)
\(614\) 4.55647e10i 0.320594i
\(615\) 0 0
\(616\) −3.69564e10 −0.256665
\(617\) − 2.25154e11i − 1.55360i −0.629748 0.776800i \(-0.716842\pi\)
0.629748 0.776800i \(-0.283158\pi\)
\(618\) 0 0
\(619\) −2.27847e11 −1.55196 −0.775981 0.630756i \(-0.782745\pi\)
−0.775981 + 0.630756i \(0.782745\pi\)
\(620\) − 1.95133e11i − 1.32058i
\(621\) 0 0
\(622\) 2.30449e10 0.153962
\(623\) 2.72680e11i 1.81009i
\(624\) 0 0
\(625\) 1.02819e11 0.673832
\(626\) 5.96357e10i 0.388337i
\(627\) 0 0
\(628\) −2.04501e10 −0.131479
\(629\) 1.04708e11i 0.668927i
\(630\) 0 0
\(631\) −1.35217e11 −0.852931 −0.426466 0.904504i \(-0.640242\pi\)
−0.426466 + 0.904504i \(0.640242\pi\)
\(632\) − 4.02460e10i − 0.252264i
\(633\) 0 0
\(634\) 1.26293e11 0.781668
\(635\) − 4.67848e10i − 0.287746i
\(636\) 0 0
\(637\) −2.55654e11 −1.55273
\(638\) 7.85989e10i 0.474388i
\(639\) 0 0
\(640\) −2.51965e10 −0.150183
\(641\) − 2.40867e11i − 1.42674i −0.700788 0.713370i \(-0.747168\pi\)
0.700788 0.713370i \(-0.252832\pi\)
\(642\) 0 0
\(643\) −3.23996e11 −1.89538 −0.947690 0.319193i \(-0.896588\pi\)
−0.947690 + 0.319193i \(0.896588\pi\)
\(644\) 1.45718e11i 0.847170i
\(645\) 0 0
\(646\) −1.48712e11 −0.853918
\(647\) − 2.57799e11i − 1.47118i −0.677429 0.735588i \(-0.736906\pi\)
0.677429 0.735588i \(-0.263094\pi\)
\(648\) 0 0
\(649\) −2.76347e10 −0.155767
\(650\) − 4.54459e11i − 2.54590i
\(651\) 0 0
\(652\) −5.98415e10 −0.331140
\(653\) − 2.12821e11i − 1.17048i −0.810861 0.585238i \(-0.801001\pi\)
0.810861 0.585238i \(-0.198999\pi\)
\(654\) 0 0
\(655\) 1.40393e11 0.762747
\(656\) − 4.77739e9i − 0.0257974i
\(657\) 0 0
\(658\) −6.76060e10 −0.360647
\(659\) 7.65162e9i 0.0405707i 0.999794 + 0.0202853i \(0.00645746\pi\)
−0.999794 + 0.0202853i \(0.993543\pi\)
\(660\) 0 0
\(661\) 5.80465e10 0.304068 0.152034 0.988375i \(-0.451418\pi\)
0.152034 + 0.988375i \(0.451418\pi\)
\(662\) − 8.65197e10i − 0.450488i
\(663\) 0 0
\(664\) −1.27068e11 −0.653680
\(665\) 5.28604e11i 2.70299i
\(666\) 0 0
\(667\) 3.09914e11 1.56580
\(668\) − 4.16288e10i − 0.209068i
\(669\) 0 0
\(670\) −9.83574e10 −0.488099
\(671\) 3.73385e8i 0.00184190i
\(672\) 0 0
\(673\) 2.03908e10 0.0993973 0.0496986 0.998764i \(-0.484174\pi\)
0.0496986 + 0.998764i \(0.484174\pi\)
\(674\) 1.32455e9i 0.00641843i
\(675\) 0 0
\(676\) −2.75702e11 −1.32024
\(677\) − 3.03449e11i − 1.44454i −0.691609 0.722272i \(-0.743098\pi\)
0.691609 0.722272i \(-0.256902\pi\)
\(678\) 0 0
\(679\) −7.56188e10 −0.355755
\(680\) − 1.31317e11i − 0.614167i
\(681\) 0 0
\(682\) −1.28177e11 −0.592477
\(683\) − 2.08506e11i − 0.958156i −0.877772 0.479078i \(-0.840971\pi\)
0.877772 0.479078i \(-0.159029\pi\)
\(684\) 0 0
\(685\) 5.39287e11 2.44939
\(686\) − 3.92701e10i − 0.177323i
\(687\) 0 0
\(688\) 3.76914e10 0.168224
\(689\) 2.03044e11i 0.900974i
\(690\) 0 0
\(691\) 1.91880e10 0.0841624 0.0420812 0.999114i \(-0.486601\pi\)
0.0420812 + 0.999114i \(0.486601\pi\)
\(692\) − 6.90565e10i − 0.301148i
\(693\) 0 0
\(694\) −1.74989e11 −0.754351
\(695\) 1.48232e10i 0.0635337i
\(696\) 0 0
\(697\) 2.48985e10 0.105497
\(698\) 1.89106e11i 0.796679i
\(699\) 0 0
\(700\) −3.05094e11 −1.27070
\(701\) − 3.44220e11i − 1.42549i −0.701423 0.712745i \(-0.747452\pi\)
0.701423 0.712745i \(-0.252548\pi\)
\(702\) 0 0
\(703\) −1.88764e11 −0.772853
\(704\) 1.65507e10i 0.0673794i
\(705\) 0 0
\(706\) −1.99857e11 −0.804453
\(707\) − 2.30439e11i − 0.922314i
\(708\) 0 0
\(709\) 2.20130e11 0.871153 0.435576 0.900152i \(-0.356545\pi\)
0.435576 + 0.900152i \(0.356545\pi\)
\(710\) 7.49685e10i 0.295016i
\(711\) 0 0
\(712\) 1.22118e11 0.475183
\(713\) 5.05398e11i 1.95558i
\(714\) 0 0
\(715\) −4.56715e11 −1.74752
\(716\) 9.15418e10i 0.348311i
\(717\) 0 0
\(718\) 5.31320e10 0.199921
\(719\) 2.06177e11i 0.771479i 0.922608 + 0.385740i \(0.126054\pi\)
−0.922608 + 0.385740i \(0.873946\pi\)
\(720\) 0 0
\(721\) 5.66587e11 2.09665
\(722\) − 7.59444e10i − 0.279478i
\(723\) 0 0
\(724\) 2.58033e11 0.939118
\(725\) 6.48875e11i 2.34860i
\(726\) 0 0
\(727\) 4.32232e11 1.54732 0.773659 0.633602i \(-0.218424\pi\)
0.773659 + 0.633602i \(0.218424\pi\)
\(728\) 2.55184e11i 0.908508i
\(729\) 0 0
\(730\) 3.80447e11 1.33969
\(731\) 1.96437e11i 0.687947i
\(732\) 0 0
\(733\) 4.82047e11 1.66984 0.834918 0.550374i \(-0.185515\pi\)
0.834918 + 0.550374i \(0.185515\pi\)
\(734\) − 2.99175e11i − 1.03072i
\(735\) 0 0
\(736\) 6.52593e10 0.222398
\(737\) 6.46077e10i 0.218985i
\(738\) 0 0
\(739\) −5.20187e11 −1.74414 −0.872070 0.489380i \(-0.837223\pi\)
−0.872070 + 0.489380i \(0.837223\pi\)
\(740\) − 1.66684e11i − 0.555862i
\(741\) 0 0
\(742\) 1.36310e11 0.449689
\(743\) 1.34453e11i 0.441178i 0.975367 + 0.220589i \(0.0707980\pi\)
−0.975367 + 0.220589i \(0.929202\pi\)
\(744\) 0 0
\(745\) 2.89715e11 0.940472
\(746\) − 1.73378e11i − 0.559806i
\(747\) 0 0
\(748\) −8.62581e10 −0.275545
\(749\) 1.14674e11i 0.364365i
\(750\) 0 0
\(751\) 1.80147e11 0.566328 0.283164 0.959071i \(-0.408616\pi\)
0.283164 + 0.959071i \(0.408616\pi\)
\(752\) 3.02771e10i 0.0946766i
\(753\) 0 0
\(754\) 5.42727e11 1.67917
\(755\) − 9.86605e11i − 3.03638i
\(756\) 0 0
\(757\) 5.77282e10 0.175794 0.0878971 0.996130i \(-0.471985\pi\)
0.0878971 + 0.996130i \(0.471985\pi\)
\(758\) − 2.13632e11i − 0.647127i
\(759\) 0 0
\(760\) 2.36733e11 0.709586
\(761\) − 2.25519e11i − 0.672425i −0.941786 0.336212i \(-0.890854\pi\)
0.941786 0.336212i \(-0.109146\pi\)
\(762\) 0 0
\(763\) −1.91888e11 −0.566172
\(764\) − 1.31813e11i − 0.386888i
\(765\) 0 0
\(766\) −4.75165e11 −1.38016
\(767\) 1.90818e11i 0.551364i
\(768\) 0 0
\(769\) 4.70600e11 1.34569 0.672847 0.739782i \(-0.265071\pi\)
0.672847 + 0.739782i \(0.265071\pi\)
\(770\) 3.06609e11i 0.872211i
\(771\) 0 0
\(772\) 2.33471e11 0.657301
\(773\) 5.56707e10i 0.155923i 0.996956 + 0.0779613i \(0.0248411\pi\)
−0.996956 + 0.0779613i \(0.975159\pi\)
\(774\) 0 0
\(775\) −1.05817e12 −2.93323
\(776\) 3.38655e10i 0.0933923i
\(777\) 0 0
\(778\) −2.58980e11 −0.706883
\(779\) 4.48859e10i 0.121888i
\(780\) 0 0
\(781\) 4.92443e10 0.132359
\(782\) 3.40114e11i 0.909489i
\(783\) 0 0
\(784\) 7.68635e10 0.203449
\(785\) 1.69664e11i 0.446798i
\(786\) 0 0
\(787\) −1.83736e11 −0.478956 −0.239478 0.970902i \(-0.576976\pi\)
−0.239478 + 0.970902i \(0.576976\pi\)
\(788\) − 1.55767e11i − 0.403991i
\(789\) 0 0
\(790\) −3.33901e11 −0.857254
\(791\) 7.51337e11i 1.91924i
\(792\) 0 0
\(793\) 2.57823e9 0.00651973
\(794\) 3.64501e11i 0.917100i
\(795\) 0 0
\(796\) −2.19936e11 −0.547829
\(797\) − 5.78800e11i − 1.43448i −0.696826 0.717241i \(-0.745405\pi\)
0.696826 0.717241i \(-0.254595\pi\)
\(798\) 0 0
\(799\) −1.57796e11 −0.387176
\(800\) 1.36635e11i 0.333582i
\(801\) 0 0
\(802\) 3.83260e11 0.926394
\(803\) − 2.49903e11i − 0.601049i
\(804\) 0 0
\(805\) 1.20895e12 2.87889
\(806\) 8.85063e11i 2.09717i
\(807\) 0 0
\(808\) −1.03201e11 −0.242125
\(809\) 2.72068e10i 0.0635161i 0.999496 + 0.0317581i \(0.0101106\pi\)
−0.999496 + 0.0317581i \(0.989889\pi\)
\(810\) 0 0
\(811\) 2.76712e11 0.639653 0.319827 0.947476i \(-0.396375\pi\)
0.319827 + 0.947476i \(0.396375\pi\)
\(812\) − 3.64351e11i − 0.838100i
\(813\) 0 0
\(814\) −1.09489e11 −0.249387
\(815\) 4.96476e11i 1.12530i
\(816\) 0 0
\(817\) −3.54129e11 −0.794828
\(818\) 3.71556e11i 0.829872i
\(819\) 0 0
\(820\) −3.96356e10 −0.0876658
\(821\) − 3.61935e11i − 0.796632i −0.917248 0.398316i \(-0.869595\pi\)
0.917248 0.398316i \(-0.130405\pi\)
\(822\) 0 0
\(823\) −3.97144e11 −0.865663 −0.432831 0.901475i \(-0.642485\pi\)
−0.432831 + 0.901475i \(0.642485\pi\)
\(824\) − 2.53744e11i − 0.550410i
\(825\) 0 0
\(826\) 1.28103e11 0.275193
\(827\) − 4.91891e11i − 1.05159i −0.850611 0.525796i \(-0.823768\pi\)
0.850611 0.525796i \(-0.176232\pi\)
\(828\) 0 0
\(829\) −6.55696e11 −1.38830 −0.694152 0.719828i \(-0.744220\pi\)
−0.694152 + 0.719828i \(0.744220\pi\)
\(830\) 1.05422e12i 2.22137i
\(831\) 0 0
\(832\) 1.14283e11 0.238500
\(833\) 4.00592e11i 0.831998i
\(834\) 0 0
\(835\) −3.45373e11 −0.710466
\(836\) − 1.55502e11i − 0.318355i
\(837\) 0 0
\(838\) −4.76092e11 −0.965417
\(839\) − 6.10795e11i − 1.23267i −0.787483 0.616336i \(-0.788616\pi\)
0.787483 0.616336i \(-0.211384\pi\)
\(840\) 0 0
\(841\) −2.74656e11 −0.549042
\(842\) − 2.45025e11i − 0.487487i
\(843\) 0 0
\(844\) 7.91925e10 0.156068
\(845\) 2.28736e12i 4.48650i
\(846\) 0 0
\(847\) −4.91750e11 −0.955456
\(848\) − 6.10459e10i − 0.118052i
\(849\) 0 0
\(850\) −7.12105e11 −1.36417
\(851\) 4.31714e11i 0.823148i
\(852\) 0 0
\(853\) 4.05108e11 0.765199 0.382599 0.923914i \(-0.375029\pi\)
0.382599 + 0.923914i \(0.375029\pi\)
\(854\) − 1.73086e9i − 0.00325409i
\(855\) 0 0
\(856\) 5.13561e10 0.0956527
\(857\) − 2.10370e10i − 0.0389996i −0.999810 0.0194998i \(-0.993793\pi\)
0.999810 0.0194998i \(-0.00620737\pi\)
\(858\) 0 0
\(859\) 2.43542e10 0.0447302 0.0223651 0.999750i \(-0.492880\pi\)
0.0223651 + 0.999750i \(0.492880\pi\)
\(860\) − 3.12707e11i − 0.571667i
\(861\) 0 0
\(862\) 6.55277e10 0.118685
\(863\) − 6.16048e11i − 1.11064i −0.831638 0.555318i \(-0.812597\pi\)
0.831638 0.555318i \(-0.187403\pi\)
\(864\) 0 0
\(865\) −5.72928e11 −1.02338
\(866\) 2.87777e11i 0.511663i
\(867\) 0 0
\(868\) 5.94173e11 1.04673
\(869\) 2.19329e11i 0.384606i
\(870\) 0 0
\(871\) 4.46118e11 0.775134
\(872\) 8.59360e10i 0.148631i
\(873\) 0 0
\(874\) −6.13142e11 −1.05079
\(875\) 1.18983e12i 2.02980i
\(876\) 0 0
\(877\) −1.01983e12 −1.72397 −0.861987 0.506930i \(-0.830780\pi\)
−0.861987 + 0.506930i \(0.830780\pi\)
\(878\) 2.15658e11i 0.362901i
\(879\) 0 0
\(880\) 1.37313e11 0.228972
\(881\) 1.04617e12i 1.73659i 0.496050 + 0.868294i \(0.334783\pi\)
−0.496050 + 0.868294i \(0.665217\pi\)
\(882\) 0 0
\(883\) −1.11194e11 −0.182911 −0.0914554 0.995809i \(-0.529152\pi\)
−0.0914554 + 0.995809i \(0.529152\pi\)
\(884\) 5.95614e11i 0.975339i
\(885\) 0 0
\(886\) 2.18338e11 0.354319
\(887\) 7.81949e10i 0.126324i 0.998003 + 0.0631618i \(0.0201184\pi\)
−0.998003 + 0.0631618i \(0.979882\pi\)
\(888\) 0 0
\(889\) 1.42458e11 0.228076
\(890\) − 1.01316e12i − 1.61479i
\(891\) 0 0
\(892\) −4.80492e11 −0.758973
\(893\) − 2.84468e11i − 0.447329i
\(894\) 0 0
\(895\) 7.59477e11 1.18365
\(896\) − 7.67223e10i − 0.119039i
\(897\) 0 0
\(898\) 2.90010e10 0.0445973
\(899\) − 1.26369e12i − 1.93464i
\(900\) 0 0
\(901\) 3.18155e11 0.482769
\(902\) 2.60353e10i 0.0393312i
\(903\) 0 0
\(904\) 3.36483e11 0.503836
\(905\) − 2.14077e12i − 3.19136i
\(906\) 0 0
\(907\) −4.43060e11 −0.654686 −0.327343 0.944906i \(-0.606153\pi\)
−0.327343 + 0.944906i \(0.606153\pi\)
\(908\) − 5.50613e11i − 0.810033i
\(909\) 0 0
\(910\) 2.11714e12 3.08733
\(911\) 1.14326e12i 1.65986i 0.557866 + 0.829931i \(0.311620\pi\)
−0.557866 + 0.829931i \(0.688380\pi\)
\(912\) 0 0
\(913\) 6.92484e11 0.996614
\(914\) − 3.65113e11i − 0.523170i
\(915\) 0 0
\(916\) −5.16644e11 −0.733854
\(917\) 4.27491e11i 0.604575i
\(918\) 0 0
\(919\) 1.85438e11 0.259978 0.129989 0.991515i \(-0.458506\pi\)
0.129989 + 0.991515i \(0.458506\pi\)
\(920\) − 5.41424e11i − 0.755764i
\(921\) 0 0
\(922\) 7.77882e11 1.07644
\(923\) − 3.40033e11i − 0.468505i
\(924\) 0 0
\(925\) −9.03891e11 −1.23467
\(926\) − 1.04844e11i − 0.142593i
\(927\) 0 0
\(928\) −1.63173e11 −0.220017
\(929\) 6.47121e10i 0.0868806i 0.999056 + 0.0434403i \(0.0138318\pi\)
−0.999056 + 0.0434403i \(0.986168\pi\)
\(930\) 0 0
\(931\) −7.22170e11 −0.961260
\(932\) − 1.47235e11i − 0.195141i
\(933\) 0 0
\(934\) 5.81595e11 0.764247
\(935\) 7.15640e11i 0.936372i
\(936\) 0 0
\(937\) 8.18788e11 1.06222 0.531108 0.847304i \(-0.321776\pi\)
0.531108 + 0.847304i \(0.321776\pi\)
\(938\) − 2.99494e11i − 0.386881i
\(939\) 0 0
\(940\) 2.51194e11 0.321735
\(941\) 8.70441e11i 1.11015i 0.831801 + 0.555074i \(0.187310\pi\)
−0.831801 + 0.555074i \(0.812690\pi\)
\(942\) 0 0
\(943\) 1.02657e11 0.129820
\(944\) − 5.73703e10i − 0.0722435i
\(945\) 0 0
\(946\) −2.05407e11 −0.256478
\(947\) − 1.48793e12i − 1.85005i −0.379906 0.925025i \(-0.624044\pi\)
0.379906 0.925025i \(-0.375956\pi\)
\(948\) 0 0
\(949\) −1.72559e12 −2.12751
\(950\) − 1.28375e12i − 1.57611i
\(951\) 0 0
\(952\) 3.99856e11 0.486806
\(953\) − 1.64141e12i − 1.98997i −0.100019 0.994986i \(-0.531890\pi\)
0.100019 0.994986i \(-0.468110\pi\)
\(954\) 0 0
\(955\) −1.09359e12 −1.31474
\(956\) 4.60827e11i 0.551705i
\(957\) 0 0
\(958\) 7.99094e11 0.948715
\(959\) 1.64211e12i 1.94145i
\(960\) 0 0
\(961\) 1.20789e12 1.41624
\(962\) 7.56026e11i 0.882747i
\(963\) 0 0
\(964\) 4.55366e10 0.0527294
\(965\) − 1.93700e12i − 2.23367i
\(966\) 0 0
\(967\) −7.74230e11 −0.885450 −0.442725 0.896657i \(-0.645988\pi\)
−0.442725 + 0.896657i \(0.645988\pi\)
\(968\) 2.20228e11i 0.250825i
\(969\) 0 0
\(970\) 2.80966e11 0.317370
\(971\) − 6.61550e11i − 0.744194i −0.928194 0.372097i \(-0.878639\pi\)
0.928194 0.372097i \(-0.121361\pi\)
\(972\) 0 0
\(973\) −4.51362e10 −0.0503585
\(974\) 5.22368e11i 0.580418i
\(975\) 0 0
\(976\) −7.75157e8 −0.000854260 0
\(977\) − 3.68827e11i − 0.404803i −0.979303 0.202402i \(-0.935125\pi\)
0.979303 0.202402i \(-0.0648746\pi\)
\(978\) 0 0
\(979\) −6.65509e11 −0.724475
\(980\) − 6.37699e11i − 0.691371i
\(981\) 0 0
\(982\) 4.37347e11 0.470305
\(983\) − 6.01419e9i − 0.00644114i −0.999995 0.00322057i \(-0.998975\pi\)
0.999995 0.00322057i \(-0.00102514\pi\)
\(984\) 0 0
\(985\) −1.29232e12 −1.37286
\(986\) − 8.50414e11i − 0.899752i
\(987\) 0 0
\(988\) −1.07375e12 −1.12687
\(989\) 8.09915e11i 0.846553i
\(990\) 0 0
\(991\) 1.32877e12 1.37770 0.688851 0.724903i \(-0.258115\pi\)
0.688851 + 0.724903i \(0.258115\pi\)
\(992\) − 2.66098e11i − 0.274786i
\(993\) 0 0
\(994\) −2.28276e11 −0.233838
\(995\) 1.82470e12i 1.86166i
\(996\) 0 0
\(997\) 5.76153e11 0.583119 0.291559 0.956553i \(-0.405826\pi\)
0.291559 + 0.956553i \(0.405826\pi\)
\(998\) − 1.34502e11i − 0.135584i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.9.b.a.161.4 8
3.2 odd 2 inner 162.9.b.a.161.5 yes 8
9.2 odd 6 162.9.d.h.53.8 16
9.4 even 3 162.9.d.h.107.8 16
9.5 odd 6 162.9.d.h.107.1 16
9.7 even 3 162.9.d.h.53.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.9.b.a.161.4 8 1.1 even 1 trivial
162.9.b.a.161.5 yes 8 3.2 odd 2 inner
162.9.d.h.53.1 16 9.7 even 3
162.9.d.h.53.8 16 9.2 odd 6
162.9.d.h.107.1 16 9.5 odd 6
162.9.d.h.107.8 16 9.4 even 3