Properties

Label 162.9.b.a.161.3
Level $162$
Weight $9$
Character 162.161
Analytic conductor $65.995$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,9,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9953348299\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3364x^{6} + 4188433x^{4} + 2287495488x^{2} + 462682923264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.3
Root \(30.6613i\) of defining polynomial
Character \(\chi\) \(=\) 162.161
Dual form 162.9.b.a.161.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.3137i q^{2} -128.000 q^{4} +654.335i q^{5} +1299.40 q^{7} +1448.15i q^{8} +O(q^{10})\) \(q-11.3137i q^{2} -128.000 q^{4} +654.335i q^{5} +1299.40 q^{7} +1448.15i q^{8} +7402.96 q^{10} +4408.29i q^{11} -246.109 q^{13} -14701.1i q^{14} +16384.0 q^{16} +89030.5i q^{17} +145819. q^{19} -83754.9i q^{20} +49874.1 q^{22} -355568. i q^{23} -37529.5 q^{25} +2784.41i q^{26} -166324. q^{28} -63550.1i q^{29} -972728. q^{31} -185364. i q^{32} +1.00727e6 q^{34} +850245. i q^{35} -408781. q^{37} -1.64975e6i q^{38} -947579. q^{40} +3.59693e6i q^{41} -4.83838e6 q^{43} -564261. i q^{44} -4.02279e6 q^{46} -1.25207e6i q^{47} -4.07635e6 q^{49} +424598. i q^{50} +31502.0 q^{52} +1.23446e7i q^{53} -2.88450e6 q^{55} +1.88174e6i q^{56} -718987. q^{58} +3.30263e6i q^{59} +1.51546e7 q^{61} +1.10052e7i q^{62} -2.09715e6 q^{64} -161038. i q^{65} -1.76819e7 q^{67} -1.13959e7i q^{68} +9.61943e6 q^{70} +2.66372e7i q^{71} -1.28456e7 q^{73} +4.62483e6i q^{74} -1.86648e7 q^{76} +5.72815e6i q^{77} +5.49629e7 q^{79} +1.07206e7i q^{80} +4.06946e7 q^{82} +9.14079e6i q^{83} -5.82558e7 q^{85} +5.47401e7i q^{86} -6.38389e6 q^{88} -5.99482e7i q^{89} -319795. q^{91} +4.55127e7i q^{92} -1.41655e7 q^{94} +9.54142e7i q^{95} +1.07742e8 q^{97} +4.61187e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1024 q^{4} - 8876 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 1024 q^{4} - 8876 q^{7} + 8448 q^{10} - 117380 q^{13} + 131072 q^{16} + 270220 q^{19} - 210816 q^{22} - 1801672 q^{25} + 1136128 q^{28} - 393344 q^{31} - 691968 q^{34} + 1830988 q^{37} - 1081344 q^{40} + 11135236 q^{43} + 5296320 q^{46} - 13586328 q^{49} + 15024640 q^{52} - 1579716 q^{55} - 32988672 q^{58} + 12184204 q^{61} - 16777216 q^{64} - 80355716 q^{67} - 18723264 q^{70} + 197085760 q^{73} - 34588160 q^{76} + 84451852 q^{79} + 144639168 q^{82} - 582634548 q^{85} + 26984448 q^{88} + 373079588 q^{91} - 210121536 q^{94} + 341136928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 11.3137i − 0.707107i
\(3\) 0 0
\(4\) −128.000 −0.500000
\(5\) 654.335i 1.04694i 0.852045 + 0.523468i \(0.175362\pi\)
−0.852045 + 0.523468i \(0.824638\pi\)
\(6\) 0 0
\(7\) 1299.40 0.541192 0.270596 0.962693i \(-0.412779\pi\)
0.270596 + 0.962693i \(0.412779\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) 7402.96 0.740296
\(11\) 4408.29i 0.301092i 0.988603 + 0.150546i \(0.0481032\pi\)
−0.988603 + 0.150546i \(0.951897\pi\)
\(12\) 0 0
\(13\) −246.109 −0.00861697 −0.00430849 0.999991i \(-0.501371\pi\)
−0.00430849 + 0.999991i \(0.501371\pi\)
\(14\) − 14701.1i − 0.382681i
\(15\) 0 0
\(16\) 16384.0 0.250000
\(17\) 89030.5i 1.06597i 0.846126 + 0.532983i \(0.178929\pi\)
−0.846126 + 0.532983i \(0.821071\pi\)
\(18\) 0 0
\(19\) 145819. 1.11892 0.559459 0.828858i \(-0.311009\pi\)
0.559459 + 0.828858i \(0.311009\pi\)
\(20\) − 83754.9i − 0.523468i
\(21\) 0 0
\(22\) 49874.1 0.212904
\(23\) − 355568.i − 1.27061i −0.772262 0.635304i \(-0.780875\pi\)
0.772262 0.635304i \(-0.219125\pi\)
\(24\) 0 0
\(25\) −37529.5 −0.0960756
\(26\) 2784.41i 0.00609312i
\(27\) 0 0
\(28\) −166324. −0.270596
\(29\) − 63550.1i − 0.0898513i −0.998990 0.0449256i \(-0.985695\pi\)
0.998990 0.0449256i \(-0.0143051\pi\)
\(30\) 0 0
\(31\) −972728. −1.05328 −0.526641 0.850088i \(-0.676549\pi\)
−0.526641 + 0.850088i \(0.676549\pi\)
\(32\) − 185364.i − 0.176777i
\(33\) 0 0
\(34\) 1.00727e6 0.753752
\(35\) 850245.i 0.566594i
\(36\) 0 0
\(37\) −408781. −0.218114 −0.109057 0.994035i \(-0.534783\pi\)
−0.109057 + 0.994035i \(0.534783\pi\)
\(38\) − 1.64975e6i − 0.791195i
\(39\) 0 0
\(40\) −947579. −0.370148
\(41\) 3.59693e6i 1.27291i 0.771316 + 0.636453i \(0.219599\pi\)
−0.771316 + 0.636453i \(0.780401\pi\)
\(42\) 0 0
\(43\) −4.83838e6 −1.41523 −0.707614 0.706599i \(-0.750228\pi\)
−0.707614 + 0.706599i \(0.750228\pi\)
\(44\) − 564261.i − 0.150546i
\(45\) 0 0
\(46\) −4.02279e6 −0.898455
\(47\) − 1.25207e6i − 0.256588i −0.991736 0.128294i \(-0.959050\pi\)
0.991736 0.128294i \(-0.0409501\pi\)
\(48\) 0 0
\(49\) −4.07635e6 −0.707111
\(50\) 424598.i 0.0679357i
\(51\) 0 0
\(52\) 31502.0 0.00430849
\(53\) 1.23446e7i 1.56450i 0.622965 + 0.782249i \(0.285928\pi\)
−0.622965 + 0.782249i \(0.714072\pi\)
\(54\) 0 0
\(55\) −2.88450e6 −0.315224
\(56\) 1.88174e6i 0.191340i
\(57\) 0 0
\(58\) −718987. −0.0635344
\(59\) 3.30263e6i 0.272554i 0.990671 + 0.136277i \(0.0435137\pi\)
−0.990671 + 0.136277i \(0.956486\pi\)
\(60\) 0 0
\(61\) 1.51546e7 1.09452 0.547262 0.836961i \(-0.315670\pi\)
0.547262 + 0.836961i \(0.315670\pi\)
\(62\) 1.10052e7i 0.744783i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) − 161038.i − 0.00902142i
\(66\) 0 0
\(67\) −1.76819e7 −0.877466 −0.438733 0.898617i \(-0.644573\pi\)
−0.438733 + 0.898617i \(0.644573\pi\)
\(68\) − 1.13959e7i − 0.532983i
\(69\) 0 0
\(70\) 9.61943e6 0.400642
\(71\) 2.66372e7i 1.04823i 0.851649 + 0.524113i \(0.175603\pi\)
−0.851649 + 0.524113i \(0.824397\pi\)
\(72\) 0 0
\(73\) −1.28456e7 −0.452338 −0.226169 0.974088i \(-0.572620\pi\)
−0.226169 + 0.974088i \(0.572620\pi\)
\(74\) 4.62483e6i 0.154230i
\(75\) 0 0
\(76\) −1.86648e7 −0.559459
\(77\) 5.72815e6i 0.162949i
\(78\) 0 0
\(79\) 5.49629e7 1.41111 0.705556 0.708655i \(-0.250698\pi\)
0.705556 + 0.708655i \(0.250698\pi\)
\(80\) 1.07206e7i 0.261734i
\(81\) 0 0
\(82\) 4.06946e7 0.900080
\(83\) 9.14079e6i 0.192607i 0.995352 + 0.0963034i \(0.0307019\pi\)
−0.995352 + 0.0963034i \(0.969298\pi\)
\(84\) 0 0
\(85\) −5.82558e7 −1.11600
\(86\) 5.47401e7i 1.00072i
\(87\) 0 0
\(88\) −6.38389e6 −0.106452
\(89\) − 5.99482e7i − 0.955468i −0.878505 0.477734i \(-0.841458\pi\)
0.878505 0.477734i \(-0.158542\pi\)
\(90\) 0 0
\(91\) −319795. −0.00466344
\(92\) 4.55127e7i 0.635304i
\(93\) 0 0
\(94\) −1.41655e7 −0.181435
\(95\) 9.54142e7i 1.17144i
\(96\) 0 0
\(97\) 1.07742e8 1.21702 0.608512 0.793544i \(-0.291767\pi\)
0.608512 + 0.793544i \(0.291767\pi\)
\(98\) 4.61187e7i 0.500003i
\(99\) 0 0
\(100\) 4.80378e6 0.0480378
\(101\) 2.00649e8i 1.92820i 0.265538 + 0.964100i \(0.414450\pi\)
−0.265538 + 0.964100i \(0.585550\pi\)
\(102\) 0 0
\(103\) −2.24817e8 −1.99747 −0.998733 0.0503276i \(-0.983973\pi\)
−0.998733 + 0.0503276i \(0.983973\pi\)
\(104\) − 356404.i − 0.00304656i
\(105\) 0 0
\(106\) 1.39664e8 1.10627
\(107\) − 2.03058e7i − 0.154912i −0.996996 0.0774560i \(-0.975320\pi\)
0.996996 0.0774560i \(-0.0246797\pi\)
\(108\) 0 0
\(109\) −9.99522e7 −0.708087 −0.354043 0.935229i \(-0.615193\pi\)
−0.354043 + 0.935229i \(0.615193\pi\)
\(110\) 3.26344e7i 0.222897i
\(111\) 0 0
\(112\) 2.12894e7 0.135298
\(113\) 2.14539e8i 1.31581i 0.753103 + 0.657903i \(0.228556\pi\)
−0.753103 + 0.657903i \(0.771444\pi\)
\(114\) 0 0
\(115\) 2.32661e8 1.33025
\(116\) 8.13441e6i 0.0449256i
\(117\) 0 0
\(118\) 3.73650e7 0.192725
\(119\) 1.15687e8i 0.576893i
\(120\) 0 0
\(121\) 1.94926e8 0.909343
\(122\) − 1.71455e8i − 0.773946i
\(123\) 0 0
\(124\) 1.24509e8 0.526641
\(125\) 2.31043e8i 0.946351i
\(126\) 0 0
\(127\) 1.72330e8 0.662440 0.331220 0.943553i \(-0.392540\pi\)
0.331220 + 0.943553i \(0.392540\pi\)
\(128\) 2.37266e7i 0.0883883i
\(129\) 0 0
\(130\) −1.82194e6 −0.00637911
\(131\) 4.54273e7i 0.154252i 0.997021 + 0.0771262i \(0.0245744\pi\)
−0.997021 + 0.0771262i \(0.975426\pi\)
\(132\) 0 0
\(133\) 1.89477e8 0.605550
\(134\) 2.00048e8i 0.620462i
\(135\) 0 0
\(136\) −1.28930e8 −0.376876
\(137\) 2.35501e8i 0.668514i 0.942482 + 0.334257i \(0.108485\pi\)
−0.942482 + 0.334257i \(0.891515\pi\)
\(138\) 0 0
\(139\) −5.78249e8 −1.54902 −0.774508 0.632564i \(-0.782002\pi\)
−0.774508 + 0.632564i \(0.782002\pi\)
\(140\) − 1.08831e8i − 0.283297i
\(141\) 0 0
\(142\) 3.01365e8 0.741208
\(143\) − 1.08492e6i − 0.00259450i
\(144\) 0 0
\(145\) 4.15831e7 0.0940686
\(146\) 1.45331e8i 0.319851i
\(147\) 0 0
\(148\) 5.23240e7 0.109057
\(149\) 8.12264e8i 1.64798i 0.566604 + 0.823990i \(0.308257\pi\)
−0.566604 + 0.823990i \(0.691743\pi\)
\(150\) 0 0
\(151\) −6.85116e8 −1.31782 −0.658911 0.752221i \(-0.728983\pi\)
−0.658911 + 0.752221i \(0.728983\pi\)
\(152\) 2.11168e8i 0.395598i
\(153\) 0 0
\(154\) 6.48066e7 0.115222
\(155\) − 6.36490e8i − 1.10272i
\(156\) 0 0
\(157\) −6.18488e8 −1.01796 −0.508982 0.860777i \(-0.669978\pi\)
−0.508982 + 0.860777i \(0.669978\pi\)
\(158\) − 6.21834e8i − 0.997806i
\(159\) 0 0
\(160\) 1.21290e8 0.185074
\(161\) − 4.62026e8i − 0.687643i
\(162\) 0 0
\(163\) −5.97940e8 −0.847047 −0.423523 0.905885i \(-0.639207\pi\)
−0.423523 + 0.905885i \(0.639207\pi\)
\(164\) − 4.60407e8i − 0.636453i
\(165\) 0 0
\(166\) 1.03416e8 0.136194
\(167\) − 9.51397e7i − 0.122320i −0.998128 0.0611598i \(-0.980520\pi\)
0.998128 0.0611598i \(-0.0194799\pi\)
\(168\) 0 0
\(169\) −8.15670e8 −0.999926
\(170\) 6.59089e8i 0.789130i
\(171\) 0 0
\(172\) 6.19313e8 0.707614
\(173\) − 5.34126e8i − 0.596292i −0.954520 0.298146i \(-0.903632\pi\)
0.954520 0.298146i \(-0.0963683\pi\)
\(174\) 0 0
\(175\) −4.87660e7 −0.0519954
\(176\) 7.22255e7i 0.0752731i
\(177\) 0 0
\(178\) −6.78237e8 −0.675618
\(179\) − 1.22426e9i − 1.19251i −0.802794 0.596256i \(-0.796654\pi\)
0.802794 0.596256i \(-0.203346\pi\)
\(180\) 0 0
\(181\) −1.85158e9 −1.72516 −0.862578 0.505924i \(-0.831152\pi\)
−0.862578 + 0.505924i \(0.831152\pi\)
\(182\) 3.61807e6i 0.00329755i
\(183\) 0 0
\(184\) 5.14918e8 0.449228
\(185\) − 2.67480e8i − 0.228352i
\(186\) 0 0
\(187\) −3.92473e8 −0.320954
\(188\) 1.60265e8i 0.128294i
\(189\) 0 0
\(190\) 1.07949e9 0.828331
\(191\) − 1.41043e9i − 1.05979i −0.848064 0.529894i \(-0.822232\pi\)
0.848064 0.529894i \(-0.177768\pi\)
\(192\) 0 0
\(193\) 1.65632e9 1.19376 0.596879 0.802332i \(-0.296407\pi\)
0.596879 + 0.802332i \(0.296407\pi\)
\(194\) − 1.21897e9i − 0.860566i
\(195\) 0 0
\(196\) 5.21773e8 0.353555
\(197\) 1.67903e8i 0.111479i 0.998445 + 0.0557396i \(0.0177517\pi\)
−0.998445 + 0.0557396i \(0.982248\pi\)
\(198\) 0 0
\(199\) 1.14583e9 0.730646 0.365323 0.930881i \(-0.380959\pi\)
0.365323 + 0.930881i \(0.380959\pi\)
\(200\) − 5.43486e7i − 0.0339679i
\(201\) 0 0
\(202\) 2.27009e9 1.36344
\(203\) − 8.25772e7i − 0.0486268i
\(204\) 0 0
\(205\) −2.35360e9 −1.33265
\(206\) 2.54351e9i 1.41242i
\(207\) 0 0
\(208\) −4.03226e6 −0.00215424
\(209\) 6.42811e8i 0.336898i
\(210\) 0 0
\(211\) 1.53209e8 0.0772957 0.0386478 0.999253i \(-0.487695\pi\)
0.0386478 + 0.999253i \(0.487695\pi\)
\(212\) − 1.58011e9i − 0.782249i
\(213\) 0 0
\(214\) −2.29734e8 −0.109539
\(215\) − 3.16592e9i − 1.48165i
\(216\) 0 0
\(217\) −1.26397e9 −0.570028
\(218\) 1.13083e9i 0.500693i
\(219\) 0 0
\(220\) 3.69216e8 0.157612
\(221\) − 2.19112e7i − 0.00918540i
\(222\) 0 0
\(223\) −2.16048e9 −0.873635 −0.436818 0.899550i \(-0.643894\pi\)
−0.436818 + 0.899550i \(0.643894\pi\)
\(224\) − 2.40862e8i − 0.0956702i
\(225\) 0 0
\(226\) 2.42723e9 0.930415
\(227\) − 4.94040e8i − 0.186062i −0.995663 0.0930312i \(-0.970344\pi\)
0.995663 0.0930312i \(-0.0296556\pi\)
\(228\) 0 0
\(229\) 4.22138e9 1.53502 0.767508 0.641040i \(-0.221497\pi\)
0.767508 + 0.641040i \(0.221497\pi\)
\(230\) − 2.63226e9i − 0.940626i
\(231\) 0 0
\(232\) 9.20304e7 0.0317672
\(233\) − 5.22591e9i − 1.77312i −0.462612 0.886561i \(-0.653088\pi\)
0.462612 0.886561i \(-0.346912\pi\)
\(234\) 0 0
\(235\) 8.19272e8 0.268631
\(236\) − 4.22737e8i − 0.136277i
\(237\) 0 0
\(238\) 1.30884e9 0.407925
\(239\) 2.78527e9i 0.853641i 0.904336 + 0.426820i \(0.140366\pi\)
−0.904336 + 0.426820i \(0.859634\pi\)
\(240\) 0 0
\(241\) −3.49974e9 −1.03745 −0.518726 0.854941i \(-0.673593\pi\)
−0.518726 + 0.854941i \(0.673593\pi\)
\(242\) − 2.20533e9i − 0.643003i
\(243\) 0 0
\(244\) −1.93979e9 −0.547262
\(245\) − 2.66730e9i − 0.740300i
\(246\) 0 0
\(247\) −3.58873e7 −0.00964169
\(248\) − 1.40866e9i − 0.372391i
\(249\) 0 0
\(250\) 2.61395e9 0.669171
\(251\) − 4.34649e9i − 1.09508i −0.836781 0.547538i \(-0.815565\pi\)
0.836781 0.547538i \(-0.184435\pi\)
\(252\) 0 0
\(253\) 1.56745e9 0.382570
\(254\) − 1.94969e9i − 0.468416i
\(255\) 0 0
\(256\) 2.68435e8 0.0625000
\(257\) 4.00994e9i 0.919190i 0.888129 + 0.459595i \(0.152005\pi\)
−0.888129 + 0.459595i \(0.847995\pi\)
\(258\) 0 0
\(259\) −5.31171e8 −0.118042
\(260\) 2.06129e7i 0.00451071i
\(261\) 0 0
\(262\) 5.13951e8 0.109073
\(263\) 5.15434e9i 1.07733i 0.842519 + 0.538667i \(0.181072\pi\)
−0.842519 + 0.538667i \(0.818928\pi\)
\(264\) 0 0
\(265\) −8.07754e9 −1.63793
\(266\) − 2.14369e9i − 0.428189i
\(267\) 0 0
\(268\) 2.26329e9 0.438733
\(269\) − 3.97838e7i − 0.00759796i −0.999993 0.00379898i \(-0.998791\pi\)
0.999993 0.00379898i \(-0.00120926\pi\)
\(270\) 0 0
\(271\) 8.93439e8 0.165649 0.0828243 0.996564i \(-0.473606\pi\)
0.0828243 + 0.996564i \(0.473606\pi\)
\(272\) 1.45868e9i 0.266491i
\(273\) 0 0
\(274\) 2.66439e9 0.472711
\(275\) − 1.65441e8i − 0.0289276i
\(276\) 0 0
\(277\) 7.49244e8 0.127264 0.0636318 0.997973i \(-0.479732\pi\)
0.0636318 + 0.997973i \(0.479732\pi\)
\(278\) 6.54214e9i 1.09532i
\(279\) 0 0
\(280\) −1.23129e9 −0.200321
\(281\) − 1.47805e9i − 0.237064i −0.992950 0.118532i \(-0.962181\pi\)
0.992950 0.118532i \(-0.0378188\pi\)
\(282\) 0 0
\(283\) 3.17255e9 0.494610 0.247305 0.968938i \(-0.420455\pi\)
0.247305 + 0.968938i \(0.420455\pi\)
\(284\) − 3.40956e9i − 0.524113i
\(285\) 0 0
\(286\) −1.22745e7 −0.00183459
\(287\) 4.67386e9i 0.688887i
\(288\) 0 0
\(289\) −9.50675e8 −0.136283
\(290\) − 4.70459e8i − 0.0665165i
\(291\) 0 0
\(292\) 1.64424e9 0.226169
\(293\) − 2.64033e9i − 0.358251i −0.983826 0.179126i \(-0.942673\pi\)
0.983826 0.179126i \(-0.0573269\pi\)
\(294\) 0 0
\(295\) −2.16103e9 −0.285346
\(296\) − 5.91978e8i − 0.0771150i
\(297\) 0 0
\(298\) 9.18972e9 1.16530
\(299\) 8.75087e7i 0.0109488i
\(300\) 0 0
\(301\) −6.28701e9 −0.765911
\(302\) 7.75121e9i 0.931841i
\(303\) 0 0
\(304\) 2.38909e9 0.279730
\(305\) 9.91620e9i 1.14590i
\(306\) 0 0
\(307\) −1.11920e10 −1.25995 −0.629975 0.776615i \(-0.716935\pi\)
−0.629975 + 0.776615i \(0.716935\pi\)
\(308\) − 7.33203e8i − 0.0814744i
\(309\) 0 0
\(310\) −7.20106e9 −0.779740
\(311\) 3.70518e9i 0.396066i 0.980195 + 0.198033i \(0.0634554\pi\)
−0.980195 + 0.198033i \(0.936545\pi\)
\(312\) 0 0
\(313\) 1.39092e10 1.44919 0.724596 0.689173i \(-0.242026\pi\)
0.724596 + 0.689173i \(0.242026\pi\)
\(314\) 6.99740e9i 0.719810i
\(315\) 0 0
\(316\) −7.03525e9 −0.705556
\(317\) 7.90702e9i 0.783025i 0.920173 + 0.391512i \(0.128048\pi\)
−0.920173 + 0.391512i \(0.871952\pi\)
\(318\) 0 0
\(319\) 2.80147e8 0.0270535
\(320\) − 1.37224e9i − 0.130867i
\(321\) 0 0
\(322\) −5.22723e9 −0.486237
\(323\) 1.29823e10i 1.19273i
\(324\) 0 0
\(325\) 9.23637e6 0.000827881 0
\(326\) 6.76492e9i 0.598952i
\(327\) 0 0
\(328\) −5.20891e9 −0.450040
\(329\) − 1.62694e9i − 0.138864i
\(330\) 0 0
\(331\) 1.48306e10 1.23551 0.617757 0.786369i \(-0.288042\pi\)
0.617757 + 0.786369i \(0.288042\pi\)
\(332\) − 1.17002e9i − 0.0963034i
\(333\) 0 0
\(334\) −1.07638e9 −0.0864930
\(335\) − 1.15699e10i − 0.918651i
\(336\) 0 0
\(337\) −1.90954e10 −1.48050 −0.740250 0.672332i \(-0.765293\pi\)
−0.740250 + 0.672332i \(0.765293\pi\)
\(338\) 9.22825e9i 0.707054i
\(339\) 0 0
\(340\) 7.45674e9 0.557999
\(341\) − 4.28807e9i − 0.317135i
\(342\) 0 0
\(343\) −1.27876e10 −0.923875
\(344\) − 7.00673e9i − 0.500359i
\(345\) 0 0
\(346\) −6.04294e9 −0.421642
\(347\) 2.30111e10i 1.58715i 0.608470 + 0.793577i \(0.291784\pi\)
−0.608470 + 0.793577i \(0.708216\pi\)
\(348\) 0 0
\(349\) 2.75549e8 0.0185736 0.00928682 0.999957i \(-0.497044\pi\)
0.00928682 + 0.999957i \(0.497044\pi\)
\(350\) 5.51724e8i 0.0367663i
\(351\) 0 0
\(352\) 8.17138e8 0.0532261
\(353\) − 3.80642e9i − 0.245142i −0.992460 0.122571i \(-0.960886\pi\)
0.992460 0.122571i \(-0.0391139\pi\)
\(354\) 0 0
\(355\) −1.74297e10 −1.09743
\(356\) 7.67337e9i 0.477734i
\(357\) 0 0
\(358\) −1.38510e10 −0.843234
\(359\) 3.37924e9i 0.203442i 0.994813 + 0.101721i \(0.0324349\pi\)
−0.994813 + 0.101721i \(0.967565\pi\)
\(360\) 0 0
\(361\) 4.27950e9 0.251979
\(362\) 2.09483e10i 1.21987i
\(363\) 0 0
\(364\) 4.09338e7 0.00233172
\(365\) − 8.40533e9i − 0.473569i
\(366\) 0 0
\(367\) 2.35211e10 1.29656 0.648280 0.761402i \(-0.275489\pi\)
0.648280 + 0.761402i \(0.275489\pi\)
\(368\) − 5.82563e9i − 0.317652i
\(369\) 0 0
\(370\) −3.02619e9 −0.161469
\(371\) 1.60407e10i 0.846695i
\(372\) 0 0
\(373\) −5.28403e8 −0.0272979 −0.0136490 0.999907i \(-0.504345\pi\)
−0.0136490 + 0.999907i \(0.504345\pi\)
\(374\) 4.44032e9i 0.226949i
\(375\) 0 0
\(376\) 1.81319e9 0.0907176
\(377\) 1.56403e7i 0 0.000774246i
\(378\) 0 0
\(379\) 3.35382e10 1.62548 0.812742 0.582623i \(-0.197974\pi\)
0.812742 + 0.582623i \(0.197974\pi\)
\(380\) − 1.22130e10i − 0.585718i
\(381\) 0 0
\(382\) −1.59572e10 −0.749383
\(383\) − 2.11001e10i − 0.980592i −0.871556 0.490296i \(-0.836889\pi\)
0.871556 0.490296i \(-0.163111\pi\)
\(384\) 0 0
\(385\) −3.74813e9 −0.170597
\(386\) − 1.87392e10i − 0.844114i
\(387\) 0 0
\(388\) −1.37910e10 −0.608512
\(389\) 3.10197e10i 1.35469i 0.735667 + 0.677343i \(0.236869\pi\)
−0.735667 + 0.677343i \(0.763131\pi\)
\(390\) 0 0
\(391\) 3.16564e10 1.35442
\(392\) − 5.90319e9i − 0.250001i
\(393\) 0 0
\(394\) 1.89961e9 0.0788277
\(395\) 3.59642e10i 1.47734i
\(396\) 0 0
\(397\) 2.51981e10 1.01439 0.507197 0.861830i \(-0.330682\pi\)
0.507197 + 0.861830i \(0.330682\pi\)
\(398\) − 1.29636e10i − 0.516645i
\(399\) 0 0
\(400\) −6.14884e8 −0.0240189
\(401\) − 1.15637e10i − 0.447217i −0.974679 0.223608i \(-0.928216\pi\)
0.974679 0.223608i \(-0.0717837\pi\)
\(402\) 0 0
\(403\) 2.39397e8 0.00907610
\(404\) − 2.56831e10i − 0.964100i
\(405\) 0 0
\(406\) −9.34254e8 −0.0343844
\(407\) − 1.80203e9i − 0.0656725i
\(408\) 0 0
\(409\) 1.80013e10 0.643297 0.321648 0.946859i \(-0.395763\pi\)
0.321648 + 0.946859i \(0.395763\pi\)
\(410\) 2.66279e10i 0.942327i
\(411\) 0 0
\(412\) 2.87765e10 0.998733
\(413\) 4.29145e9i 0.147504i
\(414\) 0 0
\(415\) −5.98114e9 −0.201647
\(416\) 4.56198e7i 0.00152328i
\(417\) 0 0
\(418\) 7.27258e9 0.238223
\(419\) − 5.43292e9i − 0.176269i −0.996109 0.0881347i \(-0.971909\pi\)
0.996109 0.0881347i \(-0.0280906\pi\)
\(420\) 0 0
\(421\) 3.52256e10 1.12132 0.560660 0.828046i \(-0.310547\pi\)
0.560660 + 0.828046i \(0.310547\pi\)
\(422\) − 1.73336e9i − 0.0546563i
\(423\) 0 0
\(424\) −1.78770e10 −0.553134
\(425\) − 3.34127e9i − 0.102413i
\(426\) 0 0
\(427\) 1.96919e10 0.592348
\(428\) 2.59914e9i 0.0774560i
\(429\) 0 0
\(430\) −3.58183e10 −1.04769
\(431\) − 1.51218e10i − 0.438223i −0.975700 0.219112i \(-0.929684\pi\)
0.975700 0.219112i \(-0.0703159\pi\)
\(432\) 0 0
\(433\) 2.23207e10 0.634973 0.317487 0.948263i \(-0.397161\pi\)
0.317487 + 0.948263i \(0.397161\pi\)
\(434\) 1.43001e10i 0.403071i
\(435\) 0 0
\(436\) 1.27939e10 0.354043
\(437\) − 5.18485e10i − 1.42171i
\(438\) 0 0
\(439\) −3.56756e10 −0.960536 −0.480268 0.877122i \(-0.659461\pi\)
−0.480268 + 0.877122i \(0.659461\pi\)
\(440\) − 4.17720e9i − 0.111449i
\(441\) 0 0
\(442\) −2.47897e8 −0.00649506
\(443\) 1.32534e10i 0.344121i 0.985086 + 0.172061i \(0.0550425\pi\)
−0.985086 + 0.172061i \(0.944958\pi\)
\(444\) 0 0
\(445\) 3.92262e10 1.00031
\(446\) 2.44430e10i 0.617753i
\(447\) 0 0
\(448\) −2.72505e9 −0.0676491
\(449\) − 3.66405e10i − 0.901521i −0.892645 0.450761i \(-0.851153\pi\)
0.892645 0.450761i \(-0.148847\pi\)
\(450\) 0 0
\(451\) −1.58563e10 −0.383262
\(452\) − 2.74610e10i − 0.657903i
\(453\) 0 0
\(454\) −5.58943e9 −0.131566
\(455\) − 2.09253e8i − 0.00488233i
\(456\) 0 0
\(457\) −7.56147e10 −1.73357 −0.866786 0.498681i \(-0.833818\pi\)
−0.866786 + 0.498681i \(0.833818\pi\)
\(458\) − 4.77595e10i − 1.08542i
\(459\) 0 0
\(460\) −2.97806e10 −0.665123
\(461\) − 2.22302e10i − 0.492198i −0.969245 0.246099i \(-0.920851\pi\)
0.969245 0.246099i \(-0.0791489\pi\)
\(462\) 0 0
\(463\) 4.40257e10 0.958038 0.479019 0.877805i \(-0.340992\pi\)
0.479019 + 0.877805i \(0.340992\pi\)
\(464\) − 1.04120e9i − 0.0224628i
\(465\) 0 0
\(466\) −5.91245e10 −1.25379
\(467\) − 1.17066e10i − 0.246130i −0.992399 0.123065i \(-0.960728\pi\)
0.992399 0.123065i \(-0.0392723\pi\)
\(468\) 0 0
\(469\) −2.29760e10 −0.474878
\(470\) − 9.26901e9i − 0.189951i
\(471\) 0 0
\(472\) −4.78272e9 −0.0963623
\(473\) − 2.13290e10i − 0.426114i
\(474\) 0 0
\(475\) −5.47251e9 −0.107501
\(476\) − 1.48079e10i − 0.288446i
\(477\) 0 0
\(478\) 3.15117e10 0.603615
\(479\) − 9.32529e10i − 1.77141i −0.464244 0.885707i \(-0.653674\pi\)
0.464244 0.885707i \(-0.346326\pi\)
\(480\) 0 0
\(481\) 1.00605e8 0.00187948
\(482\) 3.95951e10i 0.733589i
\(483\) 0 0
\(484\) −2.49505e10 −0.454672
\(485\) 7.04996e10i 1.27415i
\(486\) 0 0
\(487\) 8.25854e10 1.46821 0.734103 0.679038i \(-0.237603\pi\)
0.734103 + 0.679038i \(0.237603\pi\)
\(488\) 2.19462e10i 0.386973i
\(489\) 0 0
\(490\) −3.01771e10 −0.523471
\(491\) − 3.72808e10i − 0.641446i −0.947173 0.320723i \(-0.896074\pi\)
0.947173 0.320723i \(-0.103926\pi\)
\(492\) 0 0
\(493\) 5.65790e9 0.0957784
\(494\) 4.06019e8i 0.00681771i
\(495\) 0 0
\(496\) −1.59372e10 −0.263320
\(497\) 3.46124e10i 0.567292i
\(498\) 0 0
\(499\) 1.65596e10 0.267085 0.133542 0.991043i \(-0.457365\pi\)
0.133542 + 0.991043i \(0.457365\pi\)
\(500\) − 2.95735e10i − 0.473176i
\(501\) 0 0
\(502\) −4.91749e10 −0.774335
\(503\) − 2.46985e10i − 0.385832i −0.981215 0.192916i \(-0.938205\pi\)
0.981215 0.192916i \(-0.0617945\pi\)
\(504\) 0 0
\(505\) −1.31292e11 −2.01870
\(506\) − 1.77337e10i − 0.270518i
\(507\) 0 0
\(508\) −2.20583e10 −0.331220
\(509\) − 2.87952e10i − 0.428991i −0.976725 0.214496i \(-0.931189\pi\)
0.976725 0.214496i \(-0.0688107\pi\)
\(510\) 0 0
\(511\) −1.66916e10 −0.244802
\(512\) − 3.03700e9i − 0.0441942i
\(513\) 0 0
\(514\) 4.53673e10 0.649966
\(515\) − 1.47105e11i − 2.09122i
\(516\) 0 0
\(517\) 5.51948e9 0.0772567
\(518\) 6.00952e9i 0.0834681i
\(519\) 0 0
\(520\) 2.33208e8 0.00318955
\(521\) 1.01030e10i 0.137119i 0.997647 + 0.0685597i \(0.0218404\pi\)
−0.997647 + 0.0685597i \(0.978160\pi\)
\(522\) 0 0
\(523\) 9.96192e10 1.33149 0.665743 0.746181i \(-0.268115\pi\)
0.665743 + 0.746181i \(0.268115\pi\)
\(524\) − 5.81470e9i − 0.0771262i
\(525\) 0 0
\(526\) 5.83147e10 0.761790
\(527\) − 8.66025e10i − 1.12276i
\(528\) 0 0
\(529\) −4.81177e10 −0.614444
\(530\) 9.13869e10i 1.15819i
\(531\) 0 0
\(532\) −2.42531e10 −0.302775
\(533\) − 8.85238e8i − 0.0109686i
\(534\) 0 0
\(535\) 1.32868e10 0.162183
\(536\) − 2.56062e10i − 0.310231i
\(537\) 0 0
\(538\) −4.50102e8 −0.00537257
\(539\) − 1.79698e10i − 0.212906i
\(540\) 0 0
\(541\) −3.18510e10 −0.371821 −0.185911 0.982567i \(-0.559524\pi\)
−0.185911 + 0.982567i \(0.559524\pi\)
\(542\) − 1.01081e10i − 0.117131i
\(543\) 0 0
\(544\) 1.65030e10 0.188438
\(545\) − 6.54023e10i − 0.741322i
\(546\) 0 0
\(547\) 1.26359e11 1.41142 0.705709 0.708502i \(-0.250629\pi\)
0.705709 + 0.708502i \(0.250629\pi\)
\(548\) − 3.01441e10i − 0.334257i
\(549\) 0 0
\(550\) −1.87175e9 −0.0204549
\(551\) − 9.26679e9i − 0.100536i
\(552\) 0 0
\(553\) 7.14190e10 0.763683
\(554\) − 8.47673e9i − 0.0899889i
\(555\) 0 0
\(556\) 7.40159e10 0.774508
\(557\) 7.08369e10i 0.735934i 0.929839 + 0.367967i \(0.119946\pi\)
−0.929839 + 0.367967i \(0.880054\pi\)
\(558\) 0 0
\(559\) 1.19077e9 0.0121950
\(560\) 1.39304e10i 0.141649i
\(561\) 0 0
\(562\) −1.67223e10 −0.167629
\(563\) 1.85667e11i 1.84800i 0.382391 + 0.924001i \(0.375101\pi\)
−0.382391 + 0.924001i \(0.624899\pi\)
\(564\) 0 0
\(565\) −1.40380e11 −1.37757
\(566\) − 3.58934e10i − 0.349742i
\(567\) 0 0
\(568\) −3.85748e10 −0.370604
\(569\) 1.25347e11i 1.19581i 0.801565 + 0.597907i \(0.204001\pi\)
−0.801565 + 0.597907i \(0.795999\pi\)
\(570\) 0 0
\(571\) −1.17675e11 −1.10698 −0.553490 0.832856i \(-0.686704\pi\)
−0.553490 + 0.832856i \(0.686704\pi\)
\(572\) 1.38870e8i 0.00129725i
\(573\) 0 0
\(574\) 5.28787e10 0.487117
\(575\) 1.33443e10i 0.122074i
\(576\) 0 0
\(577\) 6.05429e9 0.0546210 0.0273105 0.999627i \(-0.491306\pi\)
0.0273105 + 0.999627i \(0.491306\pi\)
\(578\) 1.07557e10i 0.0963664i
\(579\) 0 0
\(580\) −5.32263e9 −0.0470343
\(581\) 1.18776e10i 0.104237i
\(582\) 0 0
\(583\) −5.44188e10 −0.471058
\(584\) − 1.86024e10i − 0.159926i
\(585\) 0 0
\(586\) −2.98719e10 −0.253322
\(587\) 1.71256e11i 1.44243i 0.692712 + 0.721214i \(0.256416\pi\)
−0.692712 + 0.721214i \(0.743584\pi\)
\(588\) 0 0
\(589\) −1.41842e11 −1.17854
\(590\) 2.44493e10i 0.201770i
\(591\) 0 0
\(592\) −6.69747e9 −0.0545286
\(593\) − 1.09816e11i − 0.888070i −0.896009 0.444035i \(-0.853547\pi\)
0.896009 0.444035i \(-0.146453\pi\)
\(594\) 0 0
\(595\) −7.56978e10 −0.603970
\(596\) − 1.03970e11i − 0.823990i
\(597\) 0 0
\(598\) 9.90047e8 0.00774197
\(599\) 2.07207e11i 1.60952i 0.593598 + 0.804761i \(0.297707\pi\)
−0.593598 + 0.804761i \(0.702293\pi\)
\(600\) 0 0
\(601\) 8.39887e10 0.643758 0.321879 0.946781i \(-0.395686\pi\)
0.321879 + 0.946781i \(0.395686\pi\)
\(602\) 7.11294e10i 0.541581i
\(603\) 0 0
\(604\) 8.76949e10 0.658911
\(605\) 1.27547e11i 0.952025i
\(606\) 0 0
\(607\) 5.73367e10 0.422355 0.211178 0.977448i \(-0.432270\pi\)
0.211178 + 0.977448i \(0.432270\pi\)
\(608\) − 2.70295e10i − 0.197799i
\(609\) 0 0
\(610\) 1.12189e11 0.810272
\(611\) 3.08146e8i 0.00221101i
\(612\) 0 0
\(613\) −4.42704e10 −0.313525 −0.156762 0.987636i \(-0.550106\pi\)
−0.156762 + 0.987636i \(0.550106\pi\)
\(614\) 1.26623e11i 0.890919i
\(615\) 0 0
\(616\) −8.29524e9 −0.0576111
\(617\) 2.29926e11i 1.58652i 0.608880 + 0.793262i \(0.291619\pi\)
−0.608880 + 0.793262i \(0.708381\pi\)
\(618\) 0 0
\(619\) 2.79506e11 1.90383 0.951917 0.306355i \(-0.0991095\pi\)
0.951917 + 0.306355i \(0.0991095\pi\)
\(620\) 8.14707e10i 0.551359i
\(621\) 0 0
\(622\) 4.19193e10 0.280061
\(623\) − 7.78969e10i − 0.517092i
\(624\) 0 0
\(625\) −1.65839e11 −1.08685
\(626\) − 1.57365e11i − 1.02473i
\(627\) 0 0
\(628\) 7.91665e10 0.508982
\(629\) − 3.63940e10i − 0.232502i
\(630\) 0 0
\(631\) 1.51695e11 0.956872 0.478436 0.878122i \(-0.341204\pi\)
0.478436 + 0.878122i \(0.341204\pi\)
\(632\) 7.95948e10i 0.498903i
\(633\) 0 0
\(634\) 8.94577e10 0.553682
\(635\) 1.12762e11i 0.693533i
\(636\) 0 0
\(637\) 1.00323e9 0.00609315
\(638\) − 3.16951e9i − 0.0191297i
\(639\) 0 0
\(640\) −1.55251e10 −0.0925370
\(641\) 9.06592e10i 0.537007i 0.963279 + 0.268503i \(0.0865291\pi\)
−0.963279 + 0.268503i \(0.913471\pi\)
\(642\) 0 0
\(643\) −1.91856e11 −1.12236 −0.561178 0.827695i \(-0.689652\pi\)
−0.561178 + 0.827695i \(0.689652\pi\)
\(644\) 5.91394e10i 0.343822i
\(645\) 0 0
\(646\) 1.46878e11 0.843387
\(647\) − 2.69147e11i − 1.53593i −0.640489 0.767967i \(-0.721268\pi\)
0.640489 0.767967i \(-0.278732\pi\)
\(648\) 0 0
\(649\) −1.45590e10 −0.0820638
\(650\) − 1.04498e8i 0 0.000585400i
\(651\) 0 0
\(652\) 7.65363e10 0.423523
\(653\) − 1.81639e11i − 0.998981i −0.866319 0.499490i \(-0.833521\pi\)
0.866319 0.499490i \(-0.166479\pi\)
\(654\) 0 0
\(655\) −2.97247e10 −0.161492
\(656\) 5.89321e10i 0.318226i
\(657\) 0 0
\(658\) −1.84067e10 −0.0981914
\(659\) − 2.24414e10i − 0.118989i −0.998229 0.0594947i \(-0.981051\pi\)
0.998229 0.0594947i \(-0.0189490\pi\)
\(660\) 0 0
\(661\) −8.05608e10 −0.422005 −0.211003 0.977485i \(-0.567673\pi\)
−0.211003 + 0.977485i \(0.567673\pi\)
\(662\) − 1.67789e11i − 0.873640i
\(663\) 0 0
\(664\) −1.32373e10 −0.0680968
\(665\) 1.23982e11i 0.633973i
\(666\) 0 0
\(667\) −2.25964e10 −0.114166
\(668\) 1.21779e10i 0.0611598i
\(669\) 0 0
\(670\) −1.30899e11 −0.649585
\(671\) 6.68060e10i 0.329553i
\(672\) 0 0
\(673\) 2.07077e11 1.00942 0.504711 0.863289i \(-0.331599\pi\)
0.504711 + 0.863289i \(0.331599\pi\)
\(674\) 2.16039e11i 1.04687i
\(675\) 0 0
\(676\) 1.04406e11 0.499963
\(677\) 1.39552e11i 0.664325i 0.943222 + 0.332162i \(0.107778\pi\)
−0.943222 + 0.332162i \(0.892222\pi\)
\(678\) 0 0
\(679\) 1.40001e11 0.658645
\(680\) − 8.43634e10i − 0.394565i
\(681\) 0 0
\(682\) −4.85140e10 −0.224248
\(683\) 3.26730e11i 1.50144i 0.660623 + 0.750718i \(0.270292\pi\)
−0.660623 + 0.750718i \(0.729708\pi\)
\(684\) 0 0
\(685\) −1.54097e11 −0.699892
\(686\) 1.44675e11i 0.653279i
\(687\) 0 0
\(688\) −7.92721e10 −0.353807
\(689\) − 3.03813e9i − 0.0134812i
\(690\) 0 0
\(691\) 2.75937e11 1.21031 0.605156 0.796107i \(-0.293111\pi\)
0.605156 + 0.796107i \(0.293111\pi\)
\(692\) 6.83681e10i 0.298146i
\(693\) 0 0
\(694\) 2.60341e11 1.12229
\(695\) − 3.78369e11i − 1.62172i
\(696\) 0 0
\(697\) −3.20236e11 −1.35687
\(698\) − 3.11748e9i − 0.0131335i
\(699\) 0 0
\(700\) 6.24205e9 0.0259977
\(701\) − 3.74663e11i − 1.55156i −0.631002 0.775781i \(-0.717356\pi\)
0.631002 0.775781i \(-0.282644\pi\)
\(702\) 0 0
\(703\) −5.96079e10 −0.244052
\(704\) − 9.24486e9i − 0.0376365i
\(705\) 0 0
\(706\) −4.30647e10 −0.173341
\(707\) 2.60724e11i 1.04353i
\(708\) 0 0
\(709\) −1.08861e11 −0.430813 −0.215406 0.976525i \(-0.569108\pi\)
−0.215406 + 0.976525i \(0.569108\pi\)
\(710\) 1.97194e11i 0.775997i
\(711\) 0 0
\(712\) 8.68143e10 0.337809
\(713\) 3.45871e11i 1.33831i
\(714\) 0 0
\(715\) 7.09903e8 0.00271628
\(716\) 1.56706e11i 0.596256i
\(717\) 0 0
\(718\) 3.82317e10 0.143855
\(719\) 2.05253e11i 0.768023i 0.923328 + 0.384012i \(0.125458\pi\)
−0.923328 + 0.384012i \(0.874542\pi\)
\(720\) 0 0
\(721\) −2.92127e11 −1.08101
\(722\) − 4.84171e10i − 0.178176i
\(723\) 0 0
\(724\) 2.37002e11 0.862578
\(725\) 2.38501e9i 0.00863252i
\(726\) 0 0
\(727\) −3.97318e11 −1.42233 −0.711165 0.703025i \(-0.751832\pi\)
−0.711165 + 0.703025i \(0.751832\pi\)
\(728\) − 4.63113e8i − 0.00164878i
\(729\) 0 0
\(730\) −9.50954e10 −0.334864
\(731\) − 4.30764e11i − 1.50858i
\(732\) 0 0
\(733\) −2.13964e11 −0.741180 −0.370590 0.928796i \(-0.620845\pi\)
−0.370590 + 0.928796i \(0.620845\pi\)
\(734\) − 2.66111e11i − 0.916807i
\(735\) 0 0
\(736\) −6.59095e10 −0.224614
\(737\) − 7.79471e10i − 0.264198i
\(738\) 0 0
\(739\) −1.80884e11 −0.606489 −0.303244 0.952913i \(-0.598070\pi\)
−0.303244 + 0.952913i \(0.598070\pi\)
\(740\) 3.42374e10i 0.114176i
\(741\) 0 0
\(742\) 1.81479e11 0.598704
\(743\) 3.94798e11i 1.29545i 0.761876 + 0.647723i \(0.224278\pi\)
−0.761876 + 0.647723i \(0.775722\pi\)
\(744\) 0 0
\(745\) −5.31493e11 −1.72533
\(746\) 5.97820e9i 0.0193026i
\(747\) 0 0
\(748\) 5.02365e10 0.160477
\(749\) − 2.63854e10i − 0.0838372i
\(750\) 0 0
\(751\) 4.28937e11 1.34845 0.674224 0.738527i \(-0.264478\pi\)
0.674224 + 0.738527i \(0.264478\pi\)
\(752\) − 2.05139e10i − 0.0641470i
\(753\) 0 0
\(754\) 1.76950e8 0.000547475 0
\(755\) − 4.48296e11i − 1.37968i
\(756\) 0 0
\(757\) −2.25950e10 −0.0688063 −0.0344031 0.999408i \(-0.510953\pi\)
−0.0344031 + 0.999408i \(0.510953\pi\)
\(758\) − 3.79441e11i − 1.14939i
\(759\) 0 0
\(760\) −1.38175e11 −0.414165
\(761\) − 5.00151e11i − 1.49129i −0.666343 0.745645i \(-0.732141\pi\)
0.666343 0.745645i \(-0.267859\pi\)
\(762\) 0 0
\(763\) −1.29878e11 −0.383211
\(764\) 1.80535e11i 0.529894i
\(765\) 0 0
\(766\) −2.38720e11 −0.693383
\(767\) − 8.12809e8i − 0.00234859i
\(768\) 0 0
\(769\) −2.65413e11 −0.758956 −0.379478 0.925201i \(-0.623896\pi\)
−0.379478 + 0.925201i \(0.623896\pi\)
\(770\) 4.24052e10i 0.120630i
\(771\) 0 0
\(772\) −2.12009e11 −0.596879
\(773\) 8.51838e10i 0.238583i 0.992859 + 0.119291i \(0.0380623\pi\)
−0.992859 + 0.119291i \(0.961938\pi\)
\(774\) 0 0
\(775\) 3.65060e10 0.101195
\(776\) 1.56028e11i 0.430283i
\(777\) 0 0
\(778\) 3.50948e11 0.957908
\(779\) 5.24499e11i 1.42428i
\(780\) 0 0
\(781\) −1.17425e11 −0.315613
\(782\) − 3.58151e11i − 0.957723i
\(783\) 0 0
\(784\) −6.67870e10 −0.176778
\(785\) − 4.04699e11i − 1.06574i
\(786\) 0 0
\(787\) 3.09172e11 0.805936 0.402968 0.915214i \(-0.367979\pi\)
0.402968 + 0.915214i \(0.367979\pi\)
\(788\) − 2.14916e10i − 0.0557396i
\(789\) 0 0
\(790\) 4.06888e11 1.04464
\(791\) 2.78772e11i 0.712104i
\(792\) 0 0
\(793\) −3.72969e9 −0.00943149
\(794\) − 2.85084e11i − 0.717284i
\(795\) 0 0
\(796\) −1.46666e11 −0.365323
\(797\) − 7.58923e11i − 1.88090i −0.339938 0.940448i \(-0.610406\pi\)
0.339938 0.940448i \(-0.389594\pi\)
\(798\) 0 0
\(799\) 1.11472e11 0.273514
\(800\) 6.95662e9i 0.0169839i
\(801\) 0 0
\(802\) −1.30828e11 −0.316230
\(803\) − 5.66272e10i − 0.136195i
\(804\) 0 0
\(805\) 3.02320e11 0.719919
\(806\) − 2.70847e9i − 0.00641777i
\(807\) 0 0
\(808\) −2.90571e11 −0.681722
\(809\) − 4.10334e11i − 0.957952i −0.877828 0.478976i \(-0.841008\pi\)
0.877828 0.478976i \(-0.158992\pi\)
\(810\) 0 0
\(811\) 2.09073e11 0.483298 0.241649 0.970364i \(-0.422312\pi\)
0.241649 + 0.970364i \(0.422312\pi\)
\(812\) 1.05699e10i 0.0243134i
\(813\) 0 0
\(814\) −2.03876e10 −0.0464375
\(815\) − 3.91253e11i − 0.886804i
\(816\) 0 0
\(817\) −7.05526e11 −1.58353
\(818\) − 2.03662e11i − 0.454879i
\(819\) 0 0
\(820\) 3.01260e11 0.666326
\(821\) 6.58897e11i 1.45026i 0.688614 + 0.725128i \(0.258220\pi\)
−0.688614 + 0.725128i \(0.741780\pi\)
\(822\) 0 0
\(823\) 3.39048e11 0.739030 0.369515 0.929225i \(-0.379524\pi\)
0.369515 + 0.929225i \(0.379524\pi\)
\(824\) − 3.25569e11i − 0.706211i
\(825\) 0 0
\(826\) 4.85522e10 0.104301
\(827\) 6.51031e11i 1.39181i 0.718135 + 0.695904i \(0.244996\pi\)
−0.718135 + 0.695904i \(0.755004\pi\)
\(828\) 0 0
\(829\) 6.46185e11 1.36817 0.684083 0.729404i \(-0.260203\pi\)
0.684083 + 0.729404i \(0.260203\pi\)
\(830\) 6.76689e10i 0.142586i
\(831\) 0 0
\(832\) 5.16129e8 0.00107712
\(833\) − 3.62920e11i − 0.753756i
\(834\) 0 0
\(835\) 6.22532e10 0.128061
\(836\) − 8.22798e10i − 0.168449i
\(837\) 0 0
\(838\) −6.14664e10 −0.124641
\(839\) − 6.50212e11i − 1.31222i −0.754665 0.656111i \(-0.772200\pi\)
0.754665 0.656111i \(-0.227800\pi\)
\(840\) 0 0
\(841\) 4.96208e11 0.991927
\(842\) − 3.98532e11i − 0.792893i
\(843\) 0 0
\(844\) −1.96108e10 −0.0386478
\(845\) − 5.33722e11i − 1.04686i
\(846\) 0 0
\(847\) 2.53287e11 0.492130
\(848\) 2.02255e11i 0.391125i
\(849\) 0 0
\(850\) −3.78022e10 −0.0724171
\(851\) 1.45350e11i 0.277138i
\(852\) 0 0
\(853\) −1.57184e11 −0.296901 −0.148450 0.988920i \(-0.547429\pi\)
−0.148450 + 0.988920i \(0.547429\pi\)
\(854\) − 2.22789e11i − 0.418854i
\(855\) 0 0
\(856\) 2.94060e10 0.0547697
\(857\) 7.12288e10i 0.132048i 0.997818 + 0.0660241i \(0.0210314\pi\)
−0.997818 + 0.0660241i \(0.978969\pi\)
\(858\) 0 0
\(859\) 5.95995e11 1.09464 0.547318 0.836925i \(-0.315649\pi\)
0.547318 + 0.836925i \(0.315649\pi\)
\(860\) 4.05238e11i 0.740827i
\(861\) 0 0
\(862\) −1.71084e11 −0.309871
\(863\) − 9.33352e11i − 1.68268i −0.540504 0.841342i \(-0.681766\pi\)
0.540504 0.841342i \(-0.318234\pi\)
\(864\) 0 0
\(865\) 3.49497e11 0.624280
\(866\) − 2.52529e11i − 0.448994i
\(867\) 0 0
\(868\) 1.61788e11 0.285014
\(869\) 2.42293e11i 0.424875i
\(870\) 0 0
\(871\) 4.35169e9 0.00756111
\(872\) − 1.44746e11i − 0.250346i
\(873\) 0 0
\(874\) −5.86598e11 −1.00530
\(875\) 3.00218e11i 0.512158i
\(876\) 0 0
\(877\) −5.11922e11 −0.865377 −0.432689 0.901543i \(-0.642435\pi\)
−0.432689 + 0.901543i \(0.642435\pi\)
\(878\) 4.03624e11i 0.679201i
\(879\) 0 0
\(880\) −4.72597e10 −0.0788061
\(881\) 3.93245e11i 0.652769i 0.945237 + 0.326384i \(0.105830\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(882\) 0 0
\(883\) 8.58653e11 1.41246 0.706228 0.707984i \(-0.250395\pi\)
0.706228 + 0.707984i \(0.250395\pi\)
\(884\) 2.80464e9i 0.00459270i
\(885\) 0 0
\(886\) 1.49945e11 0.243330
\(887\) − 4.38727e10i − 0.0708762i −0.999372 0.0354381i \(-0.988717\pi\)
0.999372 0.0354381i \(-0.0112827\pi\)
\(888\) 0 0
\(889\) 2.23927e11 0.358508
\(890\) − 4.43794e11i − 0.707329i
\(891\) 0 0
\(892\) 2.76541e11 0.436818
\(893\) − 1.82575e11i − 0.287101i
\(894\) 0 0
\(895\) 8.01079e11 1.24849
\(896\) 3.08304e10i 0.0478351i
\(897\) 0 0
\(898\) −4.14540e11 −0.637472
\(899\) 6.18169e10i 0.0946387i
\(900\) 0 0
\(901\) −1.09905e12 −1.66770
\(902\) 1.79394e11i 0.271007i
\(903\) 0 0
\(904\) −3.10685e11 −0.465208
\(905\) − 1.21155e12i − 1.80613i
\(906\) 0 0
\(907\) 6.60214e11 0.975563 0.487782 0.872966i \(-0.337806\pi\)
0.487782 + 0.872966i \(0.337806\pi\)
\(908\) 6.32371e10i 0.0930312i
\(909\) 0 0
\(910\) −2.36743e9 −0.00345233
\(911\) − 6.64022e11i − 0.964071i −0.876152 0.482035i \(-0.839898\pi\)
0.876152 0.482035i \(-0.160102\pi\)
\(912\) 0 0
\(913\) −4.02953e10 −0.0579924
\(914\) 8.55483e11i 1.22582i
\(915\) 0 0
\(916\) −5.40337e11 −0.767508
\(917\) 5.90284e10i 0.0834802i
\(918\) 0 0
\(919\) −5.25016e11 −0.736056 −0.368028 0.929815i \(-0.619967\pi\)
−0.368028 + 0.929815i \(0.619967\pi\)
\(920\) 3.36929e11i 0.470313i
\(921\) 0 0
\(922\) −2.51506e11 −0.348037
\(923\) − 6.55566e9i − 0.00903254i
\(924\) 0 0
\(925\) 1.53414e10 0.0209555
\(926\) − 4.98094e11i − 0.677435i
\(927\) 0 0
\(928\) −1.17799e10 −0.0158836
\(929\) 1.35915e12i 1.82476i 0.409347 + 0.912379i \(0.365757\pi\)
−0.409347 + 0.912379i \(0.634243\pi\)
\(930\) 0 0
\(931\) −5.94408e11 −0.791199
\(932\) 6.68917e11i 0.886561i
\(933\) 0 0
\(934\) −1.32445e11 −0.174040
\(935\) − 2.56809e11i − 0.336018i
\(936\) 0 0
\(937\) −9.07999e11 −1.17795 −0.588975 0.808151i \(-0.700468\pi\)
−0.588975 + 0.808151i \(0.700468\pi\)
\(938\) 2.59943e11i 0.335790i
\(939\) 0 0
\(940\) −1.04867e11 −0.134316
\(941\) 7.94257e11i 1.01298i 0.862245 + 0.506492i \(0.169058\pi\)
−0.862245 + 0.506492i \(0.830942\pi\)
\(942\) 0 0
\(943\) 1.27895e12 1.61736
\(944\) 5.41103e10i 0.0681385i
\(945\) 0 0
\(946\) −2.41310e11 −0.301308
\(947\) − 1.87600e11i − 0.233256i −0.993176 0.116628i \(-0.962791\pi\)
0.993176 0.116628i \(-0.0372086\pi\)
\(948\) 0 0
\(949\) 3.16142e9 0.00389778
\(950\) 6.19143e10i 0.0760146i
\(951\) 0 0
\(952\) −1.67532e11 −0.203962
\(953\) 1.33323e12i 1.61634i 0.588950 + 0.808169i \(0.299541\pi\)
−0.588950 + 0.808169i \(0.700459\pi\)
\(954\) 0 0
\(955\) 9.22895e11 1.10953
\(956\) − 3.56514e11i − 0.426820i
\(957\) 0 0
\(958\) −1.05504e12 −1.25258
\(959\) 3.06011e11i 0.361795i
\(960\) 0 0
\(961\) 9.33083e10 0.109402
\(962\) − 1.13821e9i − 0.00132900i
\(963\) 0 0
\(964\) 4.47967e11 0.518726
\(965\) 1.08379e12i 1.24979i
\(966\) 0 0
\(967\) −3.54726e10 −0.0405684 −0.0202842 0.999794i \(-0.506457\pi\)
−0.0202842 + 0.999794i \(0.506457\pi\)
\(968\) 2.82283e11i 0.321501i
\(969\) 0 0
\(970\) 7.97612e11 0.900958
\(971\) 9.73657e10i 0.109529i 0.998499 + 0.0547645i \(0.0174408\pi\)
−0.998499 + 0.0547645i \(0.982559\pi\)
\(972\) 0 0
\(973\) −7.51379e11 −0.838316
\(974\) − 9.34347e11i − 1.03818i
\(975\) 0 0
\(976\) 2.48293e11 0.273631
\(977\) − 1.63885e12i − 1.79871i −0.437220 0.899354i \(-0.644037\pi\)
0.437220 0.899354i \(-0.355963\pi\)
\(978\) 0 0
\(979\) 2.64269e11 0.287684
\(980\) 3.41415e11i 0.370150i
\(981\) 0 0
\(982\) −4.21785e11 −0.453571
\(983\) − 8.99399e11i − 0.963249i −0.876378 0.481624i \(-0.840047\pi\)
0.876378 0.481624i \(-0.159953\pi\)
\(984\) 0 0
\(985\) −1.09865e11 −0.116712
\(986\) − 6.40118e10i − 0.0677255i
\(987\) 0 0
\(988\) 4.59358e9 0.00482085
\(989\) 1.72038e12i 1.79820i
\(990\) 0 0
\(991\) 1.18507e12 1.22871 0.614357 0.789028i \(-0.289415\pi\)
0.614357 + 0.789028i \(0.289415\pi\)
\(992\) 1.80309e11i 0.186196i
\(993\) 0 0
\(994\) 3.91595e11 0.401136
\(995\) 7.49755e11i 0.764940i
\(996\) 0 0
\(997\) 4.46164e10 0.0451558 0.0225779 0.999745i \(-0.492813\pi\)
0.0225779 + 0.999745i \(0.492813\pi\)
\(998\) − 1.87351e11i − 0.188857i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.9.b.a.161.3 8
3.2 odd 2 inner 162.9.b.a.161.6 yes 8
9.2 odd 6 162.9.d.h.53.7 16
9.4 even 3 162.9.d.h.107.7 16
9.5 odd 6 162.9.d.h.107.2 16
9.7 even 3 162.9.d.h.53.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.9.b.a.161.3 8 1.1 even 1 trivial
162.9.b.a.161.6 yes 8 3.2 odd 2 inner
162.9.d.h.53.2 16 9.7 even 3
162.9.d.h.53.7 16 9.2 odd 6
162.9.d.h.107.2 16 9.5 odd 6
162.9.d.h.107.7 16 9.4 even 3