Properties

Label 162.9.b.a.161.2
Level $162$
Weight $9$
Character 162.161
Analytic conductor $65.995$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,9,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9953348299\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3364x^{6} + 4188433x^{4} + 2287495488x^{2} + 462682923264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.2
Root \(-25.8318i\) of defining polynomial
Character \(\chi\) \(=\) 162.161
Dual form 162.9.b.a.161.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.3137i q^{2} -128.000 q^{4} -618.080i q^{5} -549.440 q^{7} +1448.15i q^{8} +O(q^{10})\) \(q-11.3137i q^{2} -128.000 q^{4} -618.080i q^{5} -549.440 q^{7} +1448.15i q^{8} -6992.78 q^{10} +19275.3i q^{11} +2083.78 q^{13} +6216.21i q^{14} +16384.0 q^{16} -58190.7i q^{17} +202758. q^{19} +79114.2i q^{20} +218075. q^{22} +69096.5i q^{23} +8602.17 q^{25} -23575.3i q^{26} +70328.3 q^{28} +362035. i q^{29} +54553.0 q^{31} -185364. i q^{32} -658352. q^{34} +339598. i q^{35} +632925. q^{37} -2.29395e6i q^{38} +895075. q^{40} +5.05168e6i q^{41} +1.99703e6 q^{43} -2.46724e6i q^{44} +781737. q^{46} -7.04440e6i q^{47} -5.46292e6 q^{49} -97322.5i q^{50} -266724. q^{52} -4.75974e6i q^{53} +1.19137e7 q^{55} -795674. i q^{56} +4.09595e6 q^{58} -6.52082e6i q^{59} +9.32433e6 q^{61} -617197. i q^{62} -2.09715e6 q^{64} -1.28794e6i q^{65} +1.17800e7 q^{67} +7.44840e6i q^{68} +3.84211e6 q^{70} -3.81048e7i q^{71} +5.36350e7 q^{73} -7.16073e6i q^{74} -2.59531e7 q^{76} -1.05906e7i q^{77} -5.15683e7 q^{79} -1.01266e7i q^{80} +5.71532e7 q^{82} -3.30371e7i q^{83} -3.59665e7 q^{85} -2.25938e7i q^{86} -2.79136e7 q^{88} +1.36524e7i q^{89} -1.14491e6 q^{91} -8.84435e6i q^{92} -7.96983e7 q^{94} -1.25321e8i q^{95} -1.10521e8 q^{97} +6.18058e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1024 q^{4} - 8876 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 1024 q^{4} - 8876 q^{7} + 8448 q^{10} - 117380 q^{13} + 131072 q^{16} + 270220 q^{19} - 210816 q^{22} - 1801672 q^{25} + 1136128 q^{28} - 393344 q^{31} - 691968 q^{34} + 1830988 q^{37} - 1081344 q^{40} + 11135236 q^{43} + 5296320 q^{46} - 13586328 q^{49} + 15024640 q^{52} - 1579716 q^{55} - 32988672 q^{58} + 12184204 q^{61} - 16777216 q^{64} - 80355716 q^{67} - 18723264 q^{70} + 197085760 q^{73} - 34588160 q^{76} + 84451852 q^{79} + 144639168 q^{82} - 582634548 q^{85} + 26984448 q^{88} + 373079588 q^{91} - 210121536 q^{94} + 341136928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 11.3137i − 0.707107i
\(3\) 0 0
\(4\) −128.000 −0.500000
\(5\) − 618.080i − 0.988928i −0.869198 0.494464i \(-0.835364\pi\)
0.869198 0.494464i \(-0.164636\pi\)
\(6\) 0 0
\(7\) −549.440 −0.228838 −0.114419 0.993433i \(-0.536501\pi\)
−0.114419 + 0.993433i \(0.536501\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) −6992.78 −0.699278
\(11\) 19275.3i 1.31653i 0.752787 + 0.658264i \(0.228709\pi\)
−0.752787 + 0.658264i \(0.771291\pi\)
\(12\) 0 0
\(13\) 2083.78 0.0729589 0.0364795 0.999334i \(-0.488386\pi\)
0.0364795 + 0.999334i \(0.488386\pi\)
\(14\) 6216.21i 0.161813i
\(15\) 0 0
\(16\) 16384.0 0.250000
\(17\) − 58190.7i − 0.696719i −0.937361 0.348359i \(-0.886739\pi\)
0.937361 0.348359i \(-0.113261\pi\)
\(18\) 0 0
\(19\) 202758. 1.55584 0.777919 0.628364i \(-0.216275\pi\)
0.777919 + 0.628364i \(0.216275\pi\)
\(20\) 79114.2i 0.494464i
\(21\) 0 0
\(22\) 218075. 0.930927
\(23\) 69096.5i 0.246913i 0.992350 + 0.123457i \(0.0393980\pi\)
−0.992350 + 0.123457i \(0.960602\pi\)
\(24\) 0 0
\(25\) 8602.17 0.0220216
\(26\) − 23575.3i − 0.0515898i
\(27\) 0 0
\(28\) 70328.3 0.114419
\(29\) 362035.i 0.511868i 0.966694 + 0.255934i \(0.0823830\pi\)
−0.966694 + 0.255934i \(0.917617\pi\)
\(30\) 0 0
\(31\) 54553.0 0.0590707 0.0295353 0.999564i \(-0.490597\pi\)
0.0295353 + 0.999564i \(0.490597\pi\)
\(32\) − 185364.i − 0.176777i
\(33\) 0 0
\(34\) −658352. −0.492655
\(35\) 339598.i 0.226304i
\(36\) 0 0
\(37\) 632925. 0.337711 0.168856 0.985641i \(-0.445993\pi\)
0.168856 + 0.985641i \(0.445993\pi\)
\(38\) − 2.29395e6i − 1.10014i
\(39\) 0 0
\(40\) 895075. 0.349639
\(41\) 5.05168e6i 1.78772i 0.448344 + 0.893861i \(0.352014\pi\)
−0.448344 + 0.893861i \(0.647986\pi\)
\(42\) 0 0
\(43\) 1.99703e6 0.584131 0.292065 0.956398i \(-0.405658\pi\)
0.292065 + 0.956398i \(0.405658\pi\)
\(44\) − 2.46724e6i − 0.658264i
\(45\) 0 0
\(46\) 781737. 0.174594
\(47\) − 7.04440e6i − 1.44362i −0.692092 0.721810i \(-0.743311\pi\)
0.692092 0.721810i \(-0.256689\pi\)
\(48\) 0 0
\(49\) −5.46292e6 −0.947633
\(50\) − 97322.5i − 0.0155716i
\(51\) 0 0
\(52\) −266724. −0.0364795
\(53\) − 4.75974e6i − 0.603225i −0.953431 0.301613i \(-0.902475\pi\)
0.953431 0.301613i \(-0.0975249\pi\)
\(54\) 0 0
\(55\) 1.19137e7 1.30195
\(56\) − 795674.i − 0.0809065i
\(57\) 0 0
\(58\) 4.09595e6 0.361945
\(59\) − 6.52082e6i − 0.538139i −0.963121 0.269069i \(-0.913284\pi\)
0.963121 0.269069i \(-0.0867161\pi\)
\(60\) 0 0
\(61\) 9.32433e6 0.673439 0.336720 0.941605i \(-0.390683\pi\)
0.336720 + 0.941605i \(0.390683\pi\)
\(62\) − 617197.i − 0.0417693i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) − 1.28794e6i − 0.0721511i
\(66\) 0 0
\(67\) 1.17800e7 0.584583 0.292292 0.956329i \(-0.405582\pi\)
0.292292 + 0.956329i \(0.405582\pi\)
\(68\) 7.44840e6i 0.348359i
\(69\) 0 0
\(70\) 3.84211e6 0.160021
\(71\) − 3.81048e7i − 1.49950i −0.661721 0.749750i \(-0.730174\pi\)
0.661721 0.749750i \(-0.269826\pi\)
\(72\) 0 0
\(73\) 5.36350e7 1.88867 0.944336 0.328983i \(-0.106706\pi\)
0.944336 + 0.328983i \(0.106706\pi\)
\(74\) − 7.16073e6i − 0.238798i
\(75\) 0 0
\(76\) −2.59531e7 −0.777919
\(77\) − 1.05906e7i − 0.301272i
\(78\) 0 0
\(79\) −5.15683e7 −1.32396 −0.661979 0.749522i \(-0.730283\pi\)
−0.661979 + 0.749522i \(0.730283\pi\)
\(80\) − 1.01266e7i − 0.247232i
\(81\) 0 0
\(82\) 5.71532e7 1.26411
\(83\) − 3.30371e7i − 0.696129i −0.937471 0.348065i \(-0.886839\pi\)
0.937471 0.348065i \(-0.113161\pi\)
\(84\) 0 0
\(85\) −3.59665e7 −0.689005
\(86\) − 2.25938e7i − 0.413043i
\(87\) 0 0
\(88\) −2.79136e7 −0.465463
\(89\) 1.36524e7i 0.217595i 0.994064 + 0.108798i \(0.0347001\pi\)
−0.994064 + 0.108798i \(0.965300\pi\)
\(90\) 0 0
\(91\) −1.14491e6 −0.0166958
\(92\) − 8.84435e6i − 0.123457i
\(93\) 0 0
\(94\) −7.96983e7 −1.02079
\(95\) − 1.25321e8i − 1.53861i
\(96\) 0 0
\(97\) −1.10521e8 −1.24841 −0.624206 0.781260i \(-0.714577\pi\)
−0.624206 + 0.781260i \(0.714577\pi\)
\(98\) 6.18058e7i 0.670078i
\(99\) 0 0
\(100\) −1.10108e6 −0.0110108
\(101\) − 4.09854e7i − 0.393862i −0.980417 0.196931i \(-0.936903\pi\)
0.980417 0.196931i \(-0.0630975\pi\)
\(102\) 0 0
\(103\) −1.25291e8 −1.11320 −0.556599 0.830781i \(-0.687894\pi\)
−0.556599 + 0.830781i \(0.687894\pi\)
\(104\) 3.01764e6i 0.0257949i
\(105\) 0 0
\(106\) −5.38503e7 −0.426545
\(107\) − 1.39381e8i − 1.06333i −0.846955 0.531665i \(-0.821566\pi\)
0.846955 0.531665i \(-0.178434\pi\)
\(108\) 0 0
\(109\) 2.70252e8 1.91453 0.957267 0.289205i \(-0.0933909\pi\)
0.957267 + 0.289205i \(0.0933909\pi\)
\(110\) − 1.34788e8i − 0.920619i
\(111\) 0 0
\(112\) −9.00203e6 −0.0572095
\(113\) − 2.18515e8i − 1.34019i −0.742274 0.670096i \(-0.766253\pi\)
0.742274 0.670096i \(-0.233747\pi\)
\(114\) 0 0
\(115\) 4.27071e7 0.244179
\(116\) − 4.63404e7i − 0.255934i
\(117\) 0 0
\(118\) −7.37747e7 −0.380522
\(119\) 3.19723e7i 0.159436i
\(120\) 0 0
\(121\) −1.57178e8 −0.733248
\(122\) − 1.05493e8i − 0.476194i
\(123\) 0 0
\(124\) −6.98279e6 −0.0295353
\(125\) − 2.46754e8i − 1.01071i
\(126\) 0 0
\(127\) 3.19550e8 1.22835 0.614177 0.789168i \(-0.289488\pi\)
0.614177 + 0.789168i \(0.289488\pi\)
\(128\) 2.37266e7i 0.0883883i
\(129\) 0 0
\(130\) −1.45714e7 −0.0510186
\(131\) − 3.79019e8i − 1.28699i −0.765449 0.643496i \(-0.777483\pi\)
0.765449 0.643496i \(-0.222517\pi\)
\(132\) 0 0
\(133\) −1.11404e8 −0.356035
\(134\) − 1.33276e8i − 0.413363i
\(135\) 0 0
\(136\) 8.42691e7 0.246327
\(137\) 3.40543e8i 0.966696i 0.875428 + 0.483348i \(0.160579\pi\)
−0.875428 + 0.483348i \(0.839421\pi\)
\(138\) 0 0
\(139\) −2.61367e8 −0.700150 −0.350075 0.936722i \(-0.613844\pi\)
−0.350075 + 0.936722i \(0.613844\pi\)
\(140\) − 4.34685e7i − 0.113152i
\(141\) 0 0
\(142\) −4.31107e8 −1.06031
\(143\) 4.01655e7i 0.0960526i
\(144\) 0 0
\(145\) 2.23766e8 0.506201
\(146\) − 6.06810e8i − 1.33549i
\(147\) 0 0
\(148\) −8.10144e7 −0.168856
\(149\) 6.17740e8i 1.25332i 0.779294 + 0.626658i \(0.215578\pi\)
−0.779294 + 0.626658i \(0.784422\pi\)
\(150\) 0 0
\(151\) 8.53219e8 1.64117 0.820583 0.571527i \(-0.193649\pi\)
0.820583 + 0.571527i \(0.193649\pi\)
\(152\) 2.93626e8i 0.550072i
\(153\) 0 0
\(154\) −1.19819e8 −0.213031
\(155\) − 3.37181e7i − 0.0584167i
\(156\) 0 0
\(157\) 1.09170e9 1.79682 0.898410 0.439157i \(-0.144723\pi\)
0.898410 + 0.439157i \(0.144723\pi\)
\(158\) 5.83429e8i 0.936180i
\(159\) 0 0
\(160\) −1.14570e8 −0.174819
\(161\) − 3.79644e7i − 0.0565032i
\(162\) 0 0
\(163\) 2.61300e8 0.370159 0.185080 0.982724i \(-0.440746\pi\)
0.185080 + 0.982724i \(0.440746\pi\)
\(164\) − 6.46614e8i − 0.893861i
\(165\) 0 0
\(166\) −3.73772e8 −0.492238
\(167\) 4.78413e8i 0.615088i 0.951534 + 0.307544i \(0.0995070\pi\)
−0.951534 + 0.307544i \(0.900493\pi\)
\(168\) 0 0
\(169\) −8.11389e8 −0.994677
\(170\) 4.06914e8i 0.487200i
\(171\) 0 0
\(172\) −2.55619e8 −0.292065
\(173\) 5.57282e7i 0.0622144i 0.999516 + 0.0311072i \(0.00990332\pi\)
−0.999516 + 0.0311072i \(0.990097\pi\)
\(174\) 0 0
\(175\) −4.72638e6 −0.00503937
\(176\) 3.15807e8i 0.329132i
\(177\) 0 0
\(178\) 1.54459e8 0.153863
\(179\) − 9.47029e8i − 0.922468i −0.887279 0.461234i \(-0.847407\pi\)
0.887279 0.461234i \(-0.152593\pi\)
\(180\) 0 0
\(181\) −9.11578e7 −0.0849336 −0.0424668 0.999098i \(-0.513522\pi\)
−0.0424668 + 0.999098i \(0.513522\pi\)
\(182\) 1.29532e7i 0.0118057i
\(183\) 0 0
\(184\) −1.00062e8 −0.0872970
\(185\) − 3.91198e8i − 0.333972i
\(186\) 0 0
\(187\) 1.12164e9 0.917250
\(188\) 9.01683e8i 0.721810i
\(189\) 0 0
\(190\) −1.41784e9 −1.08796
\(191\) 1.44530e9i 1.08599i 0.839737 + 0.542993i \(0.182709\pi\)
−0.839737 + 0.542993i \(0.817291\pi\)
\(192\) 0 0
\(193\) 2.13739e9 1.54048 0.770238 0.637757i \(-0.220138\pi\)
0.770238 + 0.637757i \(0.220138\pi\)
\(194\) 1.25040e9i 0.882760i
\(195\) 0 0
\(196\) 6.99253e8 0.473817
\(197\) 1.87499e7i 0.0124490i 0.999981 + 0.00622450i \(0.00198133\pi\)
−0.999981 + 0.00622450i \(0.998019\pi\)
\(198\) 0 0
\(199\) −2.25293e9 −1.43660 −0.718298 0.695736i \(-0.755078\pi\)
−0.718298 + 0.695736i \(0.755078\pi\)
\(200\) 1.24573e7i 0.00778580i
\(201\) 0 0
\(202\) −4.63697e8 −0.278502
\(203\) − 1.98916e8i − 0.117135i
\(204\) 0 0
\(205\) 3.12234e9 1.76793
\(206\) 1.41751e9i 0.787150i
\(207\) 0 0
\(208\) 3.41407e7 0.0182397
\(209\) 3.90823e9i 2.04831i
\(210\) 0 0
\(211\) 3.05079e9 1.53916 0.769578 0.638553i \(-0.220467\pi\)
0.769578 + 0.638553i \(0.220467\pi\)
\(212\) 6.09246e8i 0.301613i
\(213\) 0 0
\(214\) −1.57691e9 −0.751888
\(215\) − 1.23432e9i − 0.577663i
\(216\) 0 0
\(217\) −2.99736e7 −0.0135176
\(218\) − 3.05755e9i − 1.35378i
\(219\) 0 0
\(220\) −1.52495e9 −0.650976
\(221\) − 1.21257e8i − 0.0508319i
\(222\) 0 0
\(223\) 1.83878e9 0.743551 0.371776 0.928323i \(-0.378749\pi\)
0.371776 + 0.928323i \(0.378749\pi\)
\(224\) 1.01846e8i 0.0404532i
\(225\) 0 0
\(226\) −2.47221e9 −0.947659
\(227\) 2.46535e9i 0.928484i 0.885708 + 0.464242i \(0.153673\pi\)
−0.885708 + 0.464242i \(0.846327\pi\)
\(228\) 0 0
\(229\) −8.15259e8 −0.296452 −0.148226 0.988954i \(-0.547356\pi\)
−0.148226 + 0.988954i \(0.547356\pi\)
\(230\) − 4.83176e8i − 0.172661i
\(231\) 0 0
\(232\) −5.24282e8 −0.180973
\(233\) 4.78516e9i 1.62358i 0.583951 + 0.811789i \(0.301506\pi\)
−0.583951 + 0.811789i \(0.698494\pi\)
\(234\) 0 0
\(235\) −4.35400e9 −1.42764
\(236\) 8.34665e8i 0.269069i
\(237\) 0 0
\(238\) 3.61725e8 0.112738
\(239\) − 1.78320e9i − 0.546524i −0.961940 0.273262i \(-0.911897\pi\)
0.961940 0.273262i \(-0.0881025\pi\)
\(240\) 0 0
\(241\) −3.23819e9 −0.959918 −0.479959 0.877291i \(-0.659348\pi\)
−0.479959 + 0.877291i \(0.659348\pi\)
\(242\) 1.77827e9i 0.518485i
\(243\) 0 0
\(244\) −1.19351e9 −0.336720
\(245\) 3.37652e9i 0.937141i
\(246\) 0 0
\(247\) 4.22504e8 0.113512
\(248\) 7.90012e7i 0.0208846i
\(249\) 0 0
\(250\) −2.79171e9 −0.714677
\(251\) 2.70554e9i 0.681646i 0.940127 + 0.340823i \(0.110706\pi\)
−0.940127 + 0.340823i \(0.889294\pi\)
\(252\) 0 0
\(253\) −1.33185e9 −0.325068
\(254\) − 3.61529e9i − 0.868578i
\(255\) 0 0
\(256\) 2.68435e8 0.0625000
\(257\) 1.98000e9i 0.453872i 0.973910 + 0.226936i \(0.0728708\pi\)
−0.973910 + 0.226936i \(0.927129\pi\)
\(258\) 0 0
\(259\) −3.47755e8 −0.0772812
\(260\) 1.64857e8i 0.0360756i
\(261\) 0 0
\(262\) −4.28811e9 −0.910041
\(263\) 9.63237e8i 0.201331i 0.994920 + 0.100665i \(0.0320972\pi\)
−0.994920 + 0.100665i \(0.967903\pi\)
\(264\) 0 0
\(265\) −2.94190e9 −0.596546
\(266\) 1.26039e9i 0.251755i
\(267\) 0 0
\(268\) −1.50784e9 −0.292292
\(269\) − 6.15308e9i − 1.17512i −0.809179 0.587562i \(-0.800088\pi\)
0.809179 0.587562i \(-0.199912\pi\)
\(270\) 0 0
\(271\) 8.15716e9 1.51238 0.756191 0.654350i \(-0.227058\pi\)
0.756191 + 0.654350i \(0.227058\pi\)
\(272\) − 9.53396e8i − 0.174180i
\(273\) 0 0
\(274\) 3.85281e9 0.683558
\(275\) 1.65809e8i 0.0289920i
\(276\) 0 0
\(277\) 7.58355e9 1.28811 0.644056 0.764978i \(-0.277250\pi\)
0.644056 + 0.764978i \(0.277250\pi\)
\(278\) 2.95703e9i 0.495081i
\(279\) 0 0
\(280\) −4.91790e8 −0.0800107
\(281\) 2.77360e9i 0.444855i 0.974949 + 0.222427i \(0.0713980\pi\)
−0.974949 + 0.222427i \(0.928602\pi\)
\(282\) 0 0
\(283\) 4.14403e9 0.646067 0.323033 0.946388i \(-0.395297\pi\)
0.323033 + 0.946388i \(0.395297\pi\)
\(284\) 4.87742e9i 0.749750i
\(285\) 0 0
\(286\) 4.54421e8 0.0679194
\(287\) − 2.77559e9i − 0.409099i
\(288\) 0 0
\(289\) 3.58961e9 0.514583
\(290\) − 2.53163e9i − 0.357938i
\(291\) 0 0
\(292\) −6.86527e9 −0.944336
\(293\) − 8.18497e9i − 1.11057i −0.831659 0.555286i \(-0.812609\pi\)
0.831659 0.555286i \(-0.187391\pi\)
\(294\) 0 0
\(295\) −4.03039e9 −0.532181
\(296\) 9.16574e8i 0.119399i
\(297\) 0 0
\(298\) 6.98893e9 0.886229
\(299\) 1.43982e8i 0.0180145i
\(300\) 0 0
\(301\) −1.09725e9 −0.133671
\(302\) − 9.65307e9i − 1.16048i
\(303\) 0 0
\(304\) 3.32199e9 0.388960
\(305\) − 5.76318e9i − 0.665983i
\(306\) 0 0
\(307\) 8.92948e9 1.00525 0.502623 0.864506i \(-0.332368\pi\)
0.502623 + 0.864506i \(0.332368\pi\)
\(308\) 1.35560e9i 0.150636i
\(309\) 0 0
\(310\) −3.81477e8 −0.0413068
\(311\) 1.16159e9i 0.124169i 0.998071 + 0.0620844i \(0.0197748\pi\)
−0.998071 + 0.0620844i \(0.980225\pi\)
\(312\) 0 0
\(313\) 1.52821e9 0.159223 0.0796117 0.996826i \(-0.474632\pi\)
0.0796117 + 0.996826i \(0.474632\pi\)
\(314\) − 1.23512e10i − 1.27054i
\(315\) 0 0
\(316\) 6.60074e9 0.661979
\(317\) − 1.68572e10i − 1.66935i −0.550740 0.834677i \(-0.685654\pi\)
0.550740 0.834677i \(-0.314346\pi\)
\(318\) 0 0
\(319\) −6.97833e9 −0.673889
\(320\) 1.29621e9i 0.123616i
\(321\) 0 0
\(322\) −4.29518e8 −0.0399538
\(323\) − 1.17986e10i − 1.08398i
\(324\) 0 0
\(325\) 1.79250e7 0.00160667
\(326\) − 2.95627e9i − 0.261742i
\(327\) 0 0
\(328\) −7.31561e9 −0.632055
\(329\) 3.87048e9i 0.330355i
\(330\) 0 0
\(331\) −6.36850e9 −0.530549 −0.265274 0.964173i \(-0.585463\pi\)
−0.265274 + 0.964173i \(0.585463\pi\)
\(332\) 4.22875e9i 0.348065i
\(333\) 0 0
\(334\) 5.41262e9 0.434933
\(335\) − 7.28099e9i − 0.578111i
\(336\) 0 0
\(337\) 1.52117e10 1.17939 0.589695 0.807626i \(-0.299248\pi\)
0.589695 + 0.807626i \(0.299248\pi\)
\(338\) 9.17981e9i 0.703343i
\(339\) 0 0
\(340\) 4.60371e9 0.344502
\(341\) 1.05153e9i 0.0777683i
\(342\) 0 0
\(343\) 6.16896e9 0.445693
\(344\) 2.89200e9i 0.206521i
\(345\) 0 0
\(346\) 6.30493e8 0.0439922
\(347\) 1.09643e10i 0.756249i 0.925755 + 0.378125i \(0.123431\pi\)
−0.925755 + 0.378125i \(0.876569\pi\)
\(348\) 0 0
\(349\) −5.02924e9 −0.339001 −0.169501 0.985530i \(-0.554215\pi\)
−0.169501 + 0.985530i \(0.554215\pi\)
\(350\) 5.34729e7i 0.00356337i
\(351\) 0 0
\(352\) 3.57294e9 0.232732
\(353\) − 2.99280e10i − 1.92743i −0.266929 0.963716i \(-0.586009\pi\)
0.266929 0.963716i \(-0.413991\pi\)
\(354\) 0 0
\(355\) −2.35518e10 −1.48290
\(356\) − 1.74751e9i − 0.108798i
\(357\) 0 0
\(358\) −1.07144e10 −0.652283
\(359\) 2.07140e9i 0.124705i 0.998054 + 0.0623527i \(0.0198604\pi\)
−0.998054 + 0.0623527i \(0.980140\pi\)
\(360\) 0 0
\(361\) 2.41274e10 1.42063
\(362\) 1.03133e9i 0.0600572i
\(363\) 0 0
\(364\) 1.46549e8 0.00834789
\(365\) − 3.31507e10i − 1.86776i
\(366\) 0 0
\(367\) −2.69882e10 −1.48768 −0.743840 0.668357i \(-0.766998\pi\)
−0.743840 + 0.668357i \(0.766998\pi\)
\(368\) 1.13208e9i 0.0617283i
\(369\) 0 0
\(370\) −4.42590e9 −0.236154
\(371\) 2.61519e9i 0.138041i
\(372\) 0 0
\(373\) −2.69087e10 −1.39014 −0.695068 0.718944i \(-0.744626\pi\)
−0.695068 + 0.718944i \(0.744626\pi\)
\(374\) − 1.26899e10i − 0.648594i
\(375\) 0 0
\(376\) 1.02014e10 0.510397
\(377\) 7.54401e8i 0.0373454i
\(378\) 0 0
\(379\) 6.42912e9 0.311598 0.155799 0.987789i \(-0.450205\pi\)
0.155799 + 0.987789i \(0.450205\pi\)
\(380\) 1.60411e10i 0.769306i
\(381\) 0 0
\(382\) 1.63517e10 0.767908
\(383\) 3.43138e9i 0.159468i 0.996816 + 0.0797340i \(0.0254071\pi\)
−0.996816 + 0.0797340i \(0.974593\pi\)
\(384\) 0 0
\(385\) −6.54585e9 −0.297936
\(386\) − 2.41818e10i − 1.08928i
\(387\) 0 0
\(388\) 1.41467e10 0.624206
\(389\) 7.34763e9i 0.320885i 0.987045 + 0.160442i \(0.0512920\pi\)
−0.987045 + 0.160442i \(0.948708\pi\)
\(390\) 0 0
\(391\) 4.02077e9 0.172029
\(392\) − 7.91115e9i − 0.335039i
\(393\) 0 0
\(394\) 2.12131e8 0.00880277
\(395\) 3.18733e10i 1.30930i
\(396\) 0 0
\(397\) −2.54242e10 −1.02349 −0.511746 0.859137i \(-0.671001\pi\)
−0.511746 + 0.859137i \(0.671001\pi\)
\(398\) 2.54889e10i 1.01583i
\(399\) 0 0
\(400\) 1.40938e8 0.00550539
\(401\) 1.63772e10i 0.633376i 0.948530 + 0.316688i \(0.102571\pi\)
−0.948530 + 0.316688i \(0.897429\pi\)
\(402\) 0 0
\(403\) 1.13677e8 0.00430974
\(404\) 5.24613e9i 0.196931i
\(405\) 0 0
\(406\) −2.25048e9 −0.0828269
\(407\) 1.21998e10i 0.444607i
\(408\) 0 0
\(409\) −1.08754e10 −0.388645 −0.194323 0.980938i \(-0.562251\pi\)
−0.194323 + 0.980938i \(0.562251\pi\)
\(410\) − 3.53252e10i − 1.25011i
\(411\) 0 0
\(412\) 1.60373e10 0.556599
\(413\) 3.58280e9i 0.123147i
\(414\) 0 0
\(415\) −2.04196e10 −0.688422
\(416\) − 3.86257e8i − 0.0128974i
\(417\) 0 0
\(418\) 4.42166e10 1.44837
\(419\) − 2.62072e9i − 0.0850286i −0.999096 0.0425143i \(-0.986463\pi\)
0.999096 0.0425143i \(-0.0135368\pi\)
\(420\) 0 0
\(421\) 3.07039e10 0.977385 0.488693 0.872456i \(-0.337474\pi\)
0.488693 + 0.872456i \(0.337474\pi\)
\(422\) − 3.45158e10i − 1.08835i
\(423\) 0 0
\(424\) 6.89284e9 0.213272
\(425\) − 5.00566e8i − 0.0153428i
\(426\) 0 0
\(427\) −5.12316e9 −0.154109
\(428\) 1.78408e10i 0.531665i
\(429\) 0 0
\(430\) −1.39648e10 −0.408469
\(431\) − 1.11735e10i − 0.323804i −0.986807 0.161902i \(-0.948237\pi\)
0.986807 0.161902i \(-0.0517628\pi\)
\(432\) 0 0
\(433\) −3.08778e10 −0.878406 −0.439203 0.898388i \(-0.644739\pi\)
−0.439203 + 0.898388i \(0.644739\pi\)
\(434\) 3.39113e8i 0.00955840i
\(435\) 0 0
\(436\) −3.45923e10 −0.957267
\(437\) 1.40099e10i 0.384157i
\(438\) 0 0
\(439\) −3.27137e9 −0.0880788 −0.0440394 0.999030i \(-0.514023\pi\)
−0.0440394 + 0.999030i \(0.514023\pi\)
\(440\) 1.72528e10i 0.460310i
\(441\) 0 0
\(442\) −1.37186e9 −0.0359436
\(443\) − 3.06880e9i − 0.0796808i −0.999206 0.0398404i \(-0.987315\pi\)
0.999206 0.0398404i \(-0.0126849\pi\)
\(444\) 0 0
\(445\) 8.43829e9 0.215186
\(446\) − 2.08034e10i − 0.525770i
\(447\) 0 0
\(448\) 1.15226e9 0.0286048
\(449\) 6.75557e10i 1.66218i 0.556141 + 0.831088i \(0.312281\pi\)
−0.556141 + 0.831088i \(0.687719\pi\)
\(450\) 0 0
\(451\) −9.73725e10 −2.35359
\(452\) 2.79699e10i 0.670096i
\(453\) 0 0
\(454\) 2.78922e10 0.656537
\(455\) 7.07648e8i 0.0165109i
\(456\) 0 0
\(457\) −2.39103e10 −0.548177 −0.274089 0.961704i \(-0.588376\pi\)
−0.274089 + 0.961704i \(0.588376\pi\)
\(458\) 9.22360e9i 0.209623i
\(459\) 0 0
\(460\) −5.46651e9 −0.122090
\(461\) − 1.47480e10i − 0.326534i −0.986582 0.163267i \(-0.947797\pi\)
0.986582 0.163267i \(-0.0522033\pi\)
\(462\) 0 0
\(463\) −8.03448e9 −0.174837 −0.0874186 0.996172i \(-0.527862\pi\)
−0.0874186 + 0.996172i \(0.527862\pi\)
\(464\) 5.93158e9i 0.127967i
\(465\) 0 0
\(466\) 5.41379e10 1.14804
\(467\) 1.58552e10i 0.333352i 0.986012 + 0.166676i \(0.0533035\pi\)
−0.986012 + 0.166676i \(0.946697\pi\)
\(468\) 0 0
\(469\) −6.47241e9 −0.133775
\(470\) 4.92599e10i 1.00949i
\(471\) 0 0
\(472\) 9.44316e9 0.190261
\(473\) 3.84933e10i 0.769025i
\(474\) 0 0
\(475\) 1.74416e9 0.0342620
\(476\) − 4.09245e9i − 0.0797179i
\(477\) 0 0
\(478\) −2.01746e10 −0.386450
\(479\) − 9.78801e10i − 1.85931i −0.368429 0.929656i \(-0.620104\pi\)
0.368429 0.929656i \(-0.379896\pi\)
\(480\) 0 0
\(481\) 1.31888e9 0.0246391
\(482\) 3.66359e10i 0.678765i
\(483\) 0 0
\(484\) 2.01188e10 0.366624
\(485\) 6.83108e10i 1.23459i
\(486\) 0 0
\(487\) 1.43016e10 0.254255 0.127127 0.991886i \(-0.459424\pi\)
0.127127 + 0.991886i \(0.459424\pi\)
\(488\) 1.35031e10i 0.238097i
\(489\) 0 0
\(490\) 3.82010e10 0.662659
\(491\) 8.13457e10i 1.39962i 0.714331 + 0.699808i \(0.246731\pi\)
−0.714331 + 0.699808i \(0.753269\pi\)
\(492\) 0 0
\(493\) 2.10670e10 0.356628
\(494\) − 4.78009e9i − 0.0802654i
\(495\) 0 0
\(496\) 8.93797e8 0.0147677
\(497\) 2.09363e10i 0.343143i
\(498\) 0 0
\(499\) 1.00357e11 1.61863 0.809314 0.587377i \(-0.199839\pi\)
0.809314 + 0.587377i \(0.199839\pi\)
\(500\) 3.15846e10i 0.505353i
\(501\) 0 0
\(502\) 3.06097e10 0.481997
\(503\) − 8.91388e10i − 1.39250i −0.717800 0.696249i \(-0.754851\pi\)
0.717800 0.696249i \(-0.245149\pi\)
\(504\) 0 0
\(505\) −2.53323e10 −0.389501
\(506\) 1.50682e10i 0.229858i
\(507\) 0 0
\(508\) −4.09024e10 −0.614177
\(509\) 7.94775e10i 1.18406i 0.805916 + 0.592029i \(0.201673\pi\)
−0.805916 + 0.592029i \(0.798327\pi\)
\(510\) 0 0
\(511\) −2.94692e10 −0.432200
\(512\) − 3.03700e9i − 0.0441942i
\(513\) 0 0
\(514\) 2.24012e10 0.320936
\(515\) 7.74401e10i 1.10087i
\(516\) 0 0
\(517\) 1.35783e11 1.90057
\(518\) 3.93439e9i 0.0546460i
\(519\) 0 0
\(520\) 1.86514e9 0.0255093
\(521\) 5.94692e10i 0.807126i 0.914952 + 0.403563i \(0.132228\pi\)
−0.914952 + 0.403563i \(0.867772\pi\)
\(522\) 0 0
\(523\) −1.09394e11 −1.46213 −0.731063 0.682310i \(-0.760976\pi\)
−0.731063 + 0.682310i \(0.760976\pi\)
\(524\) 4.85145e10i 0.643496i
\(525\) 0 0
\(526\) 1.08978e10 0.142362
\(527\) − 3.17448e9i − 0.0411557i
\(528\) 0 0
\(529\) 7.35367e10 0.939034
\(530\) 3.32838e10i 0.421822i
\(531\) 0 0
\(532\) 1.42597e10 0.178018
\(533\) 1.05266e10i 0.130430i
\(534\) 0 0
\(535\) −8.61485e10 −1.05156
\(536\) 1.70593e10i 0.206681i
\(537\) 0 0
\(538\) −6.96142e10 −0.830938
\(539\) − 1.05299e11i − 1.24759i
\(540\) 0 0
\(541\) 1.26322e11 1.47465 0.737325 0.675538i \(-0.236089\pi\)
0.737325 + 0.675538i \(0.236089\pi\)
\(542\) − 9.22877e10i − 1.06942i
\(543\) 0 0
\(544\) −1.07864e10 −0.123164
\(545\) − 1.67037e11i − 1.89334i
\(546\) 0 0
\(547\) 8.53542e10 0.953400 0.476700 0.879066i \(-0.341833\pi\)
0.476700 + 0.879066i \(0.341833\pi\)
\(548\) − 4.35895e10i − 0.483348i
\(549\) 0 0
\(550\) 1.87592e9 0.0205005
\(551\) 7.34056e10i 0.796384i
\(552\) 0 0
\(553\) 2.83337e10 0.302972
\(554\) − 8.57981e10i − 0.910833i
\(555\) 0 0
\(556\) 3.34549e10 0.350075
\(557\) 7.02941e10i 0.730295i 0.930950 + 0.365148i \(0.118981\pi\)
−0.930950 + 0.365148i \(0.881019\pi\)
\(558\) 0 0
\(559\) 4.16136e9 0.0426176
\(560\) 5.56397e9i 0.0565761i
\(561\) 0 0
\(562\) 3.13797e10 0.314560
\(563\) 1.10285e11i 1.09770i 0.835921 + 0.548849i \(0.184934\pi\)
−0.835921 + 0.548849i \(0.815066\pi\)
\(564\) 0 0
\(565\) −1.35060e11 −1.32535
\(566\) − 4.68844e10i − 0.456838i
\(567\) 0 0
\(568\) 5.51817e10 0.530153
\(569\) − 1.27112e11i − 1.21266i −0.795213 0.606330i \(-0.792641\pi\)
0.795213 0.606330i \(-0.207359\pi\)
\(570\) 0 0
\(571\) −1.33049e11 −1.25161 −0.625803 0.779981i \(-0.715228\pi\)
−0.625803 + 0.779981i \(0.715228\pi\)
\(572\) − 5.14118e9i − 0.0480263i
\(573\) 0 0
\(574\) −3.14023e10 −0.289277
\(575\) 5.94380e8i 0.00543742i
\(576\) 0 0
\(577\) 4.19953e9 0.0378877 0.0189438 0.999821i \(-0.493970\pi\)
0.0189438 + 0.999821i \(0.493970\pi\)
\(578\) − 4.06118e10i − 0.363865i
\(579\) 0 0
\(580\) −2.86421e10 −0.253100
\(581\) 1.81519e10i 0.159301i
\(582\) 0 0
\(583\) 9.17454e10 0.794164
\(584\) 7.76717e10i 0.667746i
\(585\) 0 0
\(586\) −9.26024e10 −0.785293
\(587\) − 3.28670e10i − 0.276826i −0.990375 0.138413i \(-0.955800\pi\)
0.990375 0.138413i \(-0.0442002\pi\)
\(588\) 0 0
\(589\) 1.10611e10 0.0919045
\(590\) 4.55987e10i 0.376308i
\(591\) 0 0
\(592\) 1.03698e10 0.0844278
\(593\) − 6.35989e10i − 0.514317i −0.966369 0.257159i \(-0.917214\pi\)
0.966369 0.257159i \(-0.0827863\pi\)
\(594\) 0 0
\(595\) 1.97614e10 0.157671
\(596\) − 7.90707e10i − 0.626658i
\(597\) 0 0
\(598\) 1.62897e9 0.0127382
\(599\) − 1.02201e11i − 0.793864i −0.917848 0.396932i \(-0.870075\pi\)
0.917848 0.396932i \(-0.129925\pi\)
\(600\) 0 0
\(601\) −3.68415e10 −0.282384 −0.141192 0.989982i \(-0.545093\pi\)
−0.141192 + 0.989982i \(0.545093\pi\)
\(602\) 1.24139e10i 0.0945199i
\(603\) 0 0
\(604\) −1.09212e11 −0.820583
\(605\) 9.71487e10i 0.725130i
\(606\) 0 0
\(607\) −2.16701e11 −1.59627 −0.798134 0.602480i \(-0.794179\pi\)
−0.798134 + 0.602480i \(0.794179\pi\)
\(608\) − 3.75841e10i − 0.275036i
\(609\) 0 0
\(610\) −6.52030e10 −0.470921
\(611\) − 1.46790e10i − 0.105325i
\(612\) 0 0
\(613\) 1.77119e11 1.25436 0.627180 0.778874i \(-0.284209\pi\)
0.627180 + 0.778874i \(0.284209\pi\)
\(614\) − 1.01025e11i − 0.710817i
\(615\) 0 0
\(616\) 1.53369e10 0.106516
\(617\) − 2.00900e11i − 1.38624i −0.720822 0.693120i \(-0.756236\pi\)
0.720822 0.693120i \(-0.243764\pi\)
\(618\) 0 0
\(619\) −1.09856e11 −0.748272 −0.374136 0.927374i \(-0.622061\pi\)
−0.374136 + 0.927374i \(0.622061\pi\)
\(620\) 4.31592e9i 0.0292083i
\(621\) 0 0
\(622\) 1.31419e10 0.0878006
\(623\) − 7.50119e9i − 0.0497941i
\(624\) 0 0
\(625\) −1.49154e11 −0.977493
\(626\) − 1.72898e10i − 0.112588i
\(627\) 0 0
\(628\) −1.39738e11 −0.898410
\(629\) − 3.68303e10i − 0.235290i
\(630\) 0 0
\(631\) 2.34271e11 1.47775 0.738875 0.673842i \(-0.235357\pi\)
0.738875 + 0.673842i \(0.235357\pi\)
\(632\) − 7.46789e10i − 0.468090i
\(633\) 0 0
\(634\) −1.90717e11 −1.18041
\(635\) − 1.97507e11i − 1.21475i
\(636\) 0 0
\(637\) −1.13835e10 −0.0691383
\(638\) 7.89507e10i 0.476512i
\(639\) 0 0
\(640\) 1.46649e10 0.0874097
\(641\) 8.19659e10i 0.485514i 0.970087 + 0.242757i \(0.0780517\pi\)
−0.970087 + 0.242757i \(0.921948\pi\)
\(642\) 0 0
\(643\) 7.63003e10 0.446357 0.223179 0.974778i \(-0.428357\pi\)
0.223179 + 0.974778i \(0.428357\pi\)
\(644\) 4.85944e9i 0.0282516i
\(645\) 0 0
\(646\) −1.33486e11 −0.766491
\(647\) − 3.07177e11i − 1.75296i −0.481440 0.876479i \(-0.659886\pi\)
0.481440 0.876479i \(-0.340114\pi\)
\(648\) 0 0
\(649\) 1.25691e11 0.708475
\(650\) − 2.02799e8i − 0.00113609i
\(651\) 0 0
\(652\) −3.34464e10 −0.185080
\(653\) − 2.54588e11i − 1.40018i −0.714053 0.700092i \(-0.753142\pi\)
0.714053 0.700092i \(-0.246858\pi\)
\(654\) 0 0
\(655\) −2.34264e11 −1.27274
\(656\) 8.27666e10i 0.446930i
\(657\) 0 0
\(658\) 4.37895e10 0.233596
\(659\) 2.79368e11i 1.48127i 0.671905 + 0.740637i \(0.265476\pi\)
−0.671905 + 0.740637i \(0.734524\pi\)
\(660\) 0 0
\(661\) 1.52502e11 0.798860 0.399430 0.916764i \(-0.369208\pi\)
0.399430 + 0.916764i \(0.369208\pi\)
\(662\) 7.20514e10i 0.375155i
\(663\) 0 0
\(664\) 4.78429e10 0.246119
\(665\) 6.88564e10i 0.352093i
\(666\) 0 0
\(667\) −2.50153e10 −0.126387
\(668\) − 6.12368e10i − 0.307544i
\(669\) 0 0
\(670\) −8.23750e10 −0.408786
\(671\) 1.79729e11i 0.886602i
\(672\) 0 0
\(673\) 2.83359e11 1.38126 0.690632 0.723207i \(-0.257333\pi\)
0.690632 + 0.723207i \(0.257333\pi\)
\(674\) − 1.72101e11i − 0.833955i
\(675\) 0 0
\(676\) 1.03858e11 0.497338
\(677\) − 2.24639e11i − 1.06937i −0.845050 0.534687i \(-0.820429\pi\)
0.845050 0.534687i \(-0.179571\pi\)
\(678\) 0 0
\(679\) 6.07247e10 0.285684
\(680\) − 5.20850e10i − 0.243600i
\(681\) 0 0
\(682\) 1.18967e10 0.0549905
\(683\) − 1.17660e11i − 0.540685i −0.962764 0.270343i \(-0.912863\pi\)
0.962764 0.270343i \(-0.0871370\pi\)
\(684\) 0 0
\(685\) 2.10483e11 0.955993
\(686\) − 6.97938e10i − 0.315152i
\(687\) 0 0
\(688\) 3.27193e10 0.146033
\(689\) − 9.91825e9i − 0.0440107i
\(690\) 0 0
\(691\) −1.92479e10 −0.0844249 −0.0422124 0.999109i \(-0.513441\pi\)
−0.0422124 + 0.999109i \(0.513441\pi\)
\(692\) − 7.13321e9i − 0.0311072i
\(693\) 0 0
\(694\) 1.24047e11 0.534749
\(695\) 1.61546e11i 0.692398i
\(696\) 0 0
\(697\) 2.93960e11 1.24554
\(698\) 5.68994e10i 0.239710i
\(699\) 0 0
\(700\) 6.04977e8 0.00251969
\(701\) 7.50876e10i 0.310954i 0.987840 + 0.155477i \(0.0496915\pi\)
−0.987840 + 0.155477i \(0.950309\pi\)
\(702\) 0 0
\(703\) 1.28331e11 0.525424
\(704\) − 4.04232e10i − 0.164566i
\(705\) 0 0
\(706\) −3.38597e11 −1.36290
\(707\) 2.25190e10i 0.0901306i
\(708\) 0 0
\(709\) 1.42979e11 0.565832 0.282916 0.959145i \(-0.408698\pi\)
0.282916 + 0.959145i \(0.408698\pi\)
\(710\) 2.66458e11i 1.04857i
\(711\) 0 0
\(712\) −1.97708e10 −0.0769316
\(713\) 3.76942e9i 0.0145853i
\(714\) 0 0
\(715\) 2.48255e10 0.0949891
\(716\) 1.21220e11i 0.461234i
\(717\) 0 0
\(718\) 2.34352e10 0.0881801
\(719\) − 3.97995e11i − 1.48923i −0.667493 0.744616i \(-0.732632\pi\)
0.667493 0.744616i \(-0.267368\pi\)
\(720\) 0 0
\(721\) 6.88401e10 0.254742
\(722\) − 2.72971e11i − 1.00454i
\(723\) 0 0
\(724\) 1.16682e10 0.0424668
\(725\) 3.11428e9i 0.0112721i
\(726\) 0 0
\(727\) −2.04083e11 −0.730583 −0.365291 0.930893i \(-0.619031\pi\)
−0.365291 + 0.930893i \(0.619031\pi\)
\(728\) − 1.65801e9i − 0.00590285i
\(729\) 0 0
\(730\) −3.75057e11 −1.32071
\(731\) − 1.16208e11i − 0.406975i
\(732\) 0 0
\(733\) 1.25071e10 0.0433252 0.0216626 0.999765i \(-0.493104\pi\)
0.0216626 + 0.999765i \(0.493104\pi\)
\(734\) 3.05337e11i 1.05195i
\(735\) 0 0
\(736\) 1.28080e10 0.0436485
\(737\) 2.27063e11i 0.769621i
\(738\) 0 0
\(739\) −4.31386e11 −1.44640 −0.723200 0.690639i \(-0.757329\pi\)
−0.723200 + 0.690639i \(0.757329\pi\)
\(740\) 5.00734e10i 0.166986i
\(741\) 0 0
\(742\) 2.95875e10 0.0976097
\(743\) 2.05331e10i 0.0673752i 0.999432 + 0.0336876i \(0.0107251\pi\)
−0.999432 + 0.0336876i \(0.989275\pi\)
\(744\) 0 0
\(745\) 3.81813e11 1.23944
\(746\) 3.04437e11i 0.982975i
\(747\) 0 0
\(748\) −1.43570e11 −0.458625
\(749\) 7.65815e10i 0.243330i
\(750\) 0 0
\(751\) −2.80002e11 −0.880240 −0.440120 0.897939i \(-0.645064\pi\)
−0.440120 + 0.897939i \(0.645064\pi\)
\(752\) − 1.15415e11i − 0.360905i
\(753\) 0 0
\(754\) 8.53507e9 0.0264072
\(755\) − 5.27358e11i − 1.62300i
\(756\) 0 0
\(757\) 4.02781e10 0.122655 0.0613275 0.998118i \(-0.480467\pi\)
0.0613275 + 0.998118i \(0.480467\pi\)
\(758\) − 7.27372e10i − 0.220333i
\(759\) 0 0
\(760\) 1.81484e11 0.543982
\(761\) − 1.10593e11i − 0.329754i −0.986314 0.164877i \(-0.947277\pi\)
0.986314 0.164877i \(-0.0527227\pi\)
\(762\) 0 0
\(763\) −1.48487e11 −0.438118
\(764\) − 1.84998e11i − 0.542993i
\(765\) 0 0
\(766\) 3.88216e10 0.112761
\(767\) − 1.35880e10i − 0.0392620i
\(768\) 0 0
\(769\) 2.93433e10 0.0839082 0.0419541 0.999120i \(-0.486642\pi\)
0.0419541 + 0.999120i \(0.486642\pi\)
\(770\) 7.40579e10i 0.210673i
\(771\) 0 0
\(772\) −2.73586e11 −0.770238
\(773\) 5.67214e11i 1.58865i 0.607492 + 0.794326i \(0.292176\pi\)
−0.607492 + 0.794326i \(0.707824\pi\)
\(774\) 0 0
\(775\) 4.69275e8 0.00130083
\(776\) − 1.60051e11i − 0.441380i
\(777\) 0 0
\(778\) 8.31289e10 0.226900
\(779\) 1.02427e12i 2.78141i
\(780\) 0 0
\(781\) 7.34482e11 1.97414
\(782\) − 4.54898e10i − 0.121643i
\(783\) 0 0
\(784\) −8.95044e10 −0.236908
\(785\) − 6.74758e11i − 1.77693i
\(786\) 0 0
\(787\) 6.30035e11 1.64235 0.821175 0.570676i \(-0.193319\pi\)
0.821175 + 0.570676i \(0.193319\pi\)
\(788\) − 2.39999e9i − 0.00622450i
\(789\) 0 0
\(790\) 3.60606e11 0.925815
\(791\) 1.20061e11i 0.306687i
\(792\) 0 0
\(793\) 1.94299e10 0.0491334
\(794\) 2.87642e11i 0.723718i
\(795\) 0 0
\(796\) 2.88374e11 0.718298
\(797\) − 1.08992e11i − 0.270124i −0.990837 0.135062i \(-0.956877\pi\)
0.990837 0.135062i \(-0.0431233\pi\)
\(798\) 0 0
\(799\) −4.09918e11 −1.00580
\(800\) − 1.59453e9i − 0.00389290i
\(801\) 0 0
\(802\) 1.85287e11 0.447864
\(803\) 1.03383e12i 2.48649i
\(804\) 0 0
\(805\) −2.34650e10 −0.0558776
\(806\) − 1.28610e9i − 0.00304744i
\(807\) 0 0
\(808\) 5.93532e10 0.139251
\(809\) − 5.44516e10i − 0.127121i −0.997978 0.0635604i \(-0.979754\pi\)
0.997978 0.0635604i \(-0.0202455\pi\)
\(810\) 0 0
\(811\) −7.27746e11 −1.68227 −0.841137 0.540822i \(-0.818113\pi\)
−0.841137 + 0.540822i \(0.818113\pi\)
\(812\) 2.54613e10i 0.0585675i
\(813\) 0 0
\(814\) 1.38025e11 0.314384
\(815\) − 1.61504e11i − 0.366061i
\(816\) 0 0
\(817\) 4.04914e11 0.908813
\(818\) 1.23041e11i 0.274814i
\(819\) 0 0
\(820\) −3.99659e11 −0.883964
\(821\) 7.22729e11i 1.59075i 0.606116 + 0.795376i \(0.292727\pi\)
−0.606116 + 0.795376i \(0.707273\pi\)
\(822\) 0 0
\(823\) 1.33800e11 0.291647 0.145824 0.989311i \(-0.453417\pi\)
0.145824 + 0.989311i \(0.453417\pi\)
\(824\) − 1.81441e11i − 0.393575i
\(825\) 0 0
\(826\) 4.05348e10 0.0870778
\(827\) 8.49721e11i 1.81658i 0.418343 + 0.908289i \(0.362611\pi\)
−0.418343 + 0.908289i \(0.637389\pi\)
\(828\) 0 0
\(829\) −6.24241e11 −1.32170 −0.660852 0.750517i \(-0.729805\pi\)
−0.660852 + 0.750517i \(0.729805\pi\)
\(830\) 2.31021e11i 0.486788i
\(831\) 0 0
\(832\) −4.37000e9 −0.00911987
\(833\) 3.17891e11i 0.660234i
\(834\) 0 0
\(835\) 2.95697e11 0.608277
\(836\) − 5.00253e11i − 1.02415i
\(837\) 0 0
\(838\) −2.96501e10 −0.0601243
\(839\) 2.86199e11i 0.577590i 0.957391 + 0.288795i \(0.0932547\pi\)
−0.957391 + 0.288795i \(0.906745\pi\)
\(840\) 0 0
\(841\) 3.69177e11 0.737991
\(842\) − 3.47375e11i − 0.691116i
\(843\) 0 0
\(844\) −3.90501e11 −0.769578
\(845\) 5.01503e11i 0.983664i
\(846\) 0 0
\(847\) 8.63601e10 0.167795
\(848\) − 7.79836e10i − 0.150806i
\(849\) 0 0
\(850\) −5.66326e9 −0.0108490
\(851\) 4.37329e10i 0.0833854i
\(852\) 0 0
\(853\) −6.86295e11 −1.29633 −0.648163 0.761501i \(-0.724463\pi\)
−0.648163 + 0.761501i \(0.724463\pi\)
\(854\) 5.79620e10i 0.108971i
\(855\) 0 0
\(856\) 2.01845e11 0.375944
\(857\) 2.02706e11i 0.375788i 0.982189 + 0.187894i \(0.0601661\pi\)
−0.982189 + 0.187894i \(0.939834\pi\)
\(858\) 0 0
\(859\) −6.99529e11 −1.28479 −0.642396 0.766373i \(-0.722060\pi\)
−0.642396 + 0.766373i \(0.722060\pi\)
\(860\) 1.57993e11i 0.288832i
\(861\) 0 0
\(862\) −1.26414e11 −0.228964
\(863\) − 5.41586e11i − 0.976392i −0.872734 0.488196i \(-0.837655\pi\)
0.872734 0.488196i \(-0.162345\pi\)
\(864\) 0 0
\(865\) 3.44445e10 0.0615255
\(866\) 3.49343e11i 0.621127i
\(867\) 0 0
\(868\) 3.83662e9 0.00675881
\(869\) − 9.93994e11i − 1.74303i
\(870\) 0 0
\(871\) 2.45470e10 0.0426506
\(872\) 3.91367e11i 0.676890i
\(873\) 0 0
\(874\) 1.58504e11 0.271640
\(875\) 1.35577e11i 0.231288i
\(876\) 0 0
\(877\) 1.42507e11 0.240901 0.120451 0.992719i \(-0.461566\pi\)
0.120451 + 0.992719i \(0.461566\pi\)
\(878\) 3.70113e10i 0.0622811i
\(879\) 0 0
\(880\) 1.95194e11 0.325488
\(881\) 5.82792e11i 0.967409i 0.875231 + 0.483705i \(0.160709\pi\)
−0.875231 + 0.483705i \(0.839291\pi\)
\(882\) 0 0
\(883\) −4.46455e11 −0.734404 −0.367202 0.930141i \(-0.619684\pi\)
−0.367202 + 0.930141i \(0.619684\pi\)
\(884\) 1.55208e10i 0.0254159i
\(885\) 0 0
\(886\) −3.47195e10 −0.0563428
\(887\) 7.82518e11i 1.26415i 0.774906 + 0.632077i \(0.217797\pi\)
−0.774906 + 0.632077i \(0.782203\pi\)
\(888\) 0 0
\(889\) −1.75574e11 −0.281094
\(890\) − 9.54683e10i − 0.152160i
\(891\) 0 0
\(892\) −2.35364e11 −0.371776
\(893\) − 1.42831e12i − 2.24604i
\(894\) 0 0
\(895\) −5.85340e11 −0.912254
\(896\) − 1.30363e10i − 0.0202266i
\(897\) 0 0
\(898\) 7.64306e11 1.17534
\(899\) 1.97501e10i 0.0302364i
\(900\) 0 0
\(901\) −2.76972e11 −0.420278
\(902\) 1.10164e12i 1.66424i
\(903\) 0 0
\(904\) 3.16443e11 0.473830
\(905\) 5.63428e10i 0.0839933i
\(906\) 0 0
\(907\) −5.34694e11 −0.790089 −0.395044 0.918662i \(-0.629271\pi\)
−0.395044 + 0.918662i \(0.629271\pi\)
\(908\) − 3.15564e11i − 0.464242i
\(909\) 0 0
\(910\) 8.00612e9 0.0116750
\(911\) − 1.09432e12i − 1.58880i −0.607394 0.794400i \(-0.707785\pi\)
0.607394 0.794400i \(-0.292215\pi\)
\(912\) 0 0
\(913\) 6.36801e11 0.916474
\(914\) 2.70515e11i 0.387620i
\(915\) 0 0
\(916\) 1.04353e11 0.148226
\(917\) 2.08248e11i 0.294513i
\(918\) 0 0
\(919\) −1.14588e12 −1.60648 −0.803242 0.595653i \(-0.796893\pi\)
−0.803242 + 0.595653i \(0.796893\pi\)
\(920\) 6.18465e10i 0.0863305i
\(921\) 0 0
\(922\) −1.66854e11 −0.230895
\(923\) − 7.94021e10i − 0.109402i
\(924\) 0 0
\(925\) 5.44453e9 0.00743693
\(926\) 9.08998e10i 0.123629i
\(927\) 0 0
\(928\) 6.71081e10 0.0904864
\(929\) 4.39923e10i 0.0590627i 0.999564 + 0.0295314i \(0.00940149\pi\)
−0.999564 + 0.0295314i \(0.990599\pi\)
\(930\) 0 0
\(931\) −1.10765e12 −1.47436
\(932\) − 6.12501e11i − 0.811789i
\(933\) 0 0
\(934\) 1.79381e11 0.235716
\(935\) − 6.93265e11i − 0.907095i
\(936\) 0 0
\(937\) 5.55029e11 0.720041 0.360021 0.932944i \(-0.382770\pi\)
0.360021 + 0.932944i \(0.382770\pi\)
\(938\) 7.32270e10i 0.0945932i
\(939\) 0 0
\(940\) 5.57312e11 0.713818
\(941\) − 1.91990e11i − 0.244862i −0.992477 0.122431i \(-0.960931\pi\)
0.992477 0.122431i \(-0.0390689\pi\)
\(942\) 0 0
\(943\) −3.49053e11 −0.441412
\(944\) − 1.06837e11i − 0.134535i
\(945\) 0 0
\(946\) 4.35502e11 0.543783
\(947\) − 6.16187e11i − 0.766147i −0.923718 0.383074i \(-0.874866\pi\)
0.923718 0.383074i \(-0.125134\pi\)
\(948\) 0 0
\(949\) 1.11763e11 0.137796
\(950\) − 1.97330e10i − 0.0242269i
\(951\) 0 0
\(952\) −4.63008e10 −0.0563691
\(953\) 1.34665e12i 1.63261i 0.577618 + 0.816307i \(0.303982\pi\)
−0.577618 + 0.816307i \(0.696018\pi\)
\(954\) 0 0
\(955\) 8.93310e11 1.07396
\(956\) 2.28250e11i 0.273262i
\(957\) 0 0
\(958\) −1.10739e12 −1.31473
\(959\) − 1.87108e11i − 0.221217i
\(960\) 0 0
\(961\) −8.49915e11 −0.996511
\(962\) − 1.49214e10i − 0.0174224i
\(963\) 0 0
\(964\) 4.14488e11 0.479959
\(965\) − 1.32108e12i − 1.52342i
\(966\) 0 0
\(967\) −1.39724e11 −0.159796 −0.0798978 0.996803i \(-0.525459\pi\)
−0.0798978 + 0.996803i \(0.525459\pi\)
\(968\) − 2.27618e11i − 0.259242i
\(969\) 0 0
\(970\) 7.72848e11 0.872986
\(971\) − 1.72539e12i − 1.94093i −0.241242 0.970465i \(-0.577555\pi\)
0.241242 0.970465i \(-0.422445\pi\)
\(972\) 0 0
\(973\) 1.43605e11 0.160221
\(974\) − 1.61804e11i − 0.179785i
\(975\) 0 0
\(976\) 1.52770e11 0.168360
\(977\) − 1.11223e12i − 1.22072i −0.792125 0.610358i \(-0.791025\pi\)
0.792125 0.610358i \(-0.208975\pi\)
\(978\) 0 0
\(979\) −2.63154e11 −0.286471
\(980\) − 4.32194e11i − 0.468570i
\(981\) 0 0
\(982\) 9.20322e11 0.989678
\(983\) 1.23691e12i 1.32472i 0.749186 + 0.662360i \(0.230445\pi\)
−0.749186 + 0.662360i \(0.769555\pi\)
\(984\) 0 0
\(985\) 1.15889e10 0.0123112
\(986\) − 2.38346e11i − 0.252174i
\(987\) 0 0
\(988\) −5.40805e10 −0.0567562
\(989\) 1.37987e11i 0.144230i
\(990\) 0 0
\(991\) 4.57888e11 0.474749 0.237375 0.971418i \(-0.423713\pi\)
0.237375 + 0.971418i \(0.423713\pi\)
\(992\) − 1.01122e10i − 0.0104423i
\(993\) 0 0
\(994\) 2.36867e11 0.242639
\(995\) 1.39249e12i 1.42069i
\(996\) 0 0
\(997\) 1.76730e12 1.78867 0.894333 0.447402i \(-0.147651\pi\)
0.894333 + 0.447402i \(0.147651\pi\)
\(998\) − 1.13541e12i − 1.14454i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.9.b.a.161.2 8
3.2 odd 2 inner 162.9.b.a.161.7 yes 8
9.2 odd 6 162.9.d.h.53.6 16
9.4 even 3 162.9.d.h.107.6 16
9.5 odd 6 162.9.d.h.107.3 16
9.7 even 3 162.9.d.h.53.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.9.b.a.161.2 8 1.1 even 1 trivial
162.9.b.a.161.7 yes 8 3.2 odd 2 inner
162.9.d.h.53.3 16 9.7 even 3
162.9.d.h.53.6 16 9.2 odd 6
162.9.d.h.107.3 16 9.5 odd 6
162.9.d.h.107.6 16 9.4 even 3