Properties

Label 162.9.b.a.161.1
Level $162$
Weight $9$
Character 162.161
Analytic conductor $65.995$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,9,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9953348299\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3364x^{6} + 4188433x^{4} + 2287495488x^{2} + 462682923264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-32.5932i\) of defining polynomial
Character \(\chi\) \(=\) 162.161
Dual form 162.9.b.a.161.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.3137i q^{2} -128.000 q^{4} -724.855i q^{5} -1954.36 q^{7} +1448.15i q^{8} +O(q^{10})\) \(q-11.3137i q^{2} -128.000 q^{4} -724.855i q^{5} -1954.36 q^{7} +1448.15i q^{8} -8200.80 q^{10} -25108.4i q^{11} -6033.17 q^{13} +22111.1i q^{14} +16384.0 q^{16} -146810. i q^{17} -59531.5 q^{19} +92781.5i q^{20} -284069. q^{22} +168478. i q^{23} -134790. q^{25} +68257.5i q^{26} +250158. q^{28} -876106. i q^{29} -714041. q^{31} -185364. i q^{32} -1.66096e6 q^{34} +1.41663e6i q^{35} -534900. q^{37} +673522. i q^{38} +1.04970e6 q^{40} -1.96481e6i q^{41} +6.10848e6 q^{43} +3.21388e6i q^{44} +1.90611e6 q^{46} -2.83764e6i q^{47} -1.94527e6 q^{49} +1.52498e6i q^{50} +772246. q^{52} +9.99763e6i q^{53} -1.82000e7 q^{55} -2.83022e6i q^{56} -9.91201e6 q^{58} +4.50322e6i q^{59} -1.83395e7 q^{61} +8.07845e6i q^{62} -2.09715e6 q^{64} +4.37318e6i q^{65} -2.60895e7 q^{67} +1.87917e7i q^{68} +1.60273e7 q^{70} -2.94857e6i q^{71} +2.60882e7 q^{73} +6.05170e6i q^{74} +7.62003e6 q^{76} +4.90709e7i q^{77} +6.66226e7 q^{79} -1.18760e7i q^{80} -2.22292e7 q^{82} +4.64347e7i q^{83} -1.06416e8 q^{85} -6.91095e7i q^{86} +3.63609e7 q^{88} +9.06184e7i q^{89} +1.17910e7 q^{91} -2.15651e7i q^{92} -3.21043e7 q^{94} +4.31517e7i q^{95} +1.49962e8 q^{97} +2.20083e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1024 q^{4} - 8876 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 1024 q^{4} - 8876 q^{7} + 8448 q^{10} - 117380 q^{13} + 131072 q^{16} + 270220 q^{19} - 210816 q^{22} - 1801672 q^{25} + 1136128 q^{28} - 393344 q^{31} - 691968 q^{34} + 1830988 q^{37} - 1081344 q^{40} + 11135236 q^{43} + 5296320 q^{46} - 13586328 q^{49} + 15024640 q^{52} - 1579716 q^{55} - 32988672 q^{58} + 12184204 q^{61} - 16777216 q^{64} - 80355716 q^{67} - 18723264 q^{70} + 197085760 q^{73} - 34588160 q^{76} + 84451852 q^{79} + 144639168 q^{82} - 582634548 q^{85} + 26984448 q^{88} + 373079588 q^{91} - 210121536 q^{94} + 341136928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 11.3137i − 0.707107i
\(3\) 0 0
\(4\) −128.000 −0.500000
\(5\) − 724.855i − 1.15977i −0.814699 0.579884i \(-0.803098\pi\)
0.814699 0.579884i \(-0.196902\pi\)
\(6\) 0 0
\(7\) −1954.36 −0.813978 −0.406989 0.913433i \(-0.633421\pi\)
−0.406989 + 0.913433i \(0.633421\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) −8200.80 −0.820080
\(11\) − 25108.4i − 1.71494i −0.514535 0.857469i \(-0.672035\pi\)
0.514535 0.857469i \(-0.327965\pi\)
\(12\) 0 0
\(13\) −6033.17 −0.211238 −0.105619 0.994407i \(-0.533682\pi\)
−0.105619 + 0.994407i \(0.533682\pi\)
\(14\) 22111.1i 0.575569i
\(15\) 0 0
\(16\) 16384.0 0.250000
\(17\) − 146810.i − 1.75776i −0.477043 0.878880i \(-0.658292\pi\)
0.477043 0.878880i \(-0.341708\pi\)
\(18\) 0 0
\(19\) −59531.5 −0.456807 −0.228403 0.973567i \(-0.573350\pi\)
−0.228403 + 0.973567i \(0.573350\pi\)
\(20\) 92781.5i 0.579884i
\(21\) 0 0
\(22\) −284069. −1.21264
\(23\) 168478.i 0.602048i 0.953617 + 0.301024i \(0.0973284\pi\)
−0.953617 + 0.301024i \(0.902672\pi\)
\(24\) 0 0
\(25\) −134790. −0.345063
\(26\) 68257.5i 0.149368i
\(27\) 0 0
\(28\) 250158. 0.406989
\(29\) − 876106.i − 1.23870i −0.785117 0.619348i \(-0.787397\pi\)
0.785117 0.619348i \(-0.212603\pi\)
\(30\) 0 0
\(31\) −714041. −0.773172 −0.386586 0.922253i \(-0.626346\pi\)
−0.386586 + 0.922253i \(0.626346\pi\)
\(32\) − 185364.i − 0.176777i
\(33\) 0 0
\(34\) −1.66096e6 −1.24292
\(35\) 1.41663e6i 0.944026i
\(36\) 0 0
\(37\) −534900. −0.285408 −0.142704 0.989765i \(-0.545580\pi\)
−0.142704 + 0.989765i \(0.545580\pi\)
\(38\) 673522.i 0.323011i
\(39\) 0 0
\(40\) 1.04970e6 0.410040
\(41\) − 1.96481e6i − 0.695319i −0.937621 0.347660i \(-0.886977\pi\)
0.937621 0.347660i \(-0.113023\pi\)
\(42\) 0 0
\(43\) 6.10848e6 1.78673 0.893365 0.449331i \(-0.148338\pi\)
0.893365 + 0.449331i \(0.148338\pi\)
\(44\) 3.21388e6i 0.857469i
\(45\) 0 0
\(46\) 1.90611e6 0.425712
\(47\) − 2.83764e6i − 0.581522i −0.956796 0.290761i \(-0.906091\pi\)
0.956796 0.290761i \(-0.0939085\pi\)
\(48\) 0 0
\(49\) −1.94527e6 −0.337440
\(50\) 1.52498e6i 0.243997i
\(51\) 0 0
\(52\) 772246. 0.105619
\(53\) 9.99763e6i 1.26705i 0.773722 + 0.633525i \(0.218392\pi\)
−0.773722 + 0.633525i \(0.781608\pi\)
\(54\) 0 0
\(55\) −1.82000e7 −1.98893
\(56\) − 2.83022e6i − 0.287785i
\(57\) 0 0
\(58\) −9.91201e6 −0.875890
\(59\) 4.50322e6i 0.371634i 0.982584 + 0.185817i \(0.0594932\pi\)
−0.982584 + 0.185817i \(0.940507\pi\)
\(60\) 0 0
\(61\) −1.83395e7 −1.32455 −0.662276 0.749260i \(-0.730409\pi\)
−0.662276 + 0.749260i \(0.730409\pi\)
\(62\) 8.07845e6i 0.546715i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) 4.37318e6i 0.244987i
\(66\) 0 0
\(67\) −2.60895e7 −1.29469 −0.647345 0.762197i \(-0.724121\pi\)
−0.647345 + 0.762197i \(0.724121\pi\)
\(68\) 1.87917e7i 0.878880i
\(69\) 0 0
\(70\) 1.60273e7 0.667527
\(71\) − 2.94857e6i − 0.116032i −0.998316 0.0580160i \(-0.981523\pi\)
0.998316 0.0580160i \(-0.0184775\pi\)
\(72\) 0 0
\(73\) 2.60882e7 0.918655 0.459328 0.888267i \(-0.348090\pi\)
0.459328 + 0.888267i \(0.348090\pi\)
\(74\) 6.05170e6i 0.201814i
\(75\) 0 0
\(76\) 7.62003e6 0.228403
\(77\) 4.90709e7i 1.39592i
\(78\) 0 0
\(79\) 6.66226e7 1.71046 0.855230 0.518248i \(-0.173416\pi\)
0.855230 + 0.518248i \(0.173416\pi\)
\(80\) − 1.18760e7i − 0.289942i
\(81\) 0 0
\(82\) −2.22292e7 −0.491665
\(83\) 4.64347e7i 0.978431i 0.872163 + 0.489215i \(0.162717\pi\)
−0.872163 + 0.489215i \(0.837283\pi\)
\(84\) 0 0
\(85\) −1.06416e8 −2.03859
\(86\) − 6.91095e7i − 1.26341i
\(87\) 0 0
\(88\) 3.63609e7 0.606322
\(89\) 9.06184e7i 1.44430i 0.691739 + 0.722148i \(0.256845\pi\)
−0.691739 + 0.722148i \(0.743155\pi\)
\(90\) 0 0
\(91\) 1.17910e7 0.171943
\(92\) − 2.15651e7i − 0.301024i
\(93\) 0 0
\(94\) −3.21043e7 −0.411198
\(95\) 4.31517e7i 0.529790i
\(96\) 0 0
\(97\) 1.49962e8 1.69392 0.846962 0.531654i \(-0.178429\pi\)
0.846962 + 0.531654i \(0.178429\pi\)
\(98\) 2.20083e7i 0.238606i
\(99\) 0 0
\(100\) 1.72532e7 0.172532
\(101\) 1.06361e8i 1.02211i 0.859547 + 0.511056i \(0.170746\pi\)
−0.859547 + 0.511056i \(0.829254\pi\)
\(102\) 0 0
\(103\) 8.17182e7 0.726056 0.363028 0.931778i \(-0.381743\pi\)
0.363028 + 0.931778i \(0.381743\pi\)
\(104\) − 8.73696e6i − 0.0746839i
\(105\) 0 0
\(106\) 1.13110e8 0.895939
\(107\) − 7.42292e7i − 0.566291i −0.959077 0.283146i \(-0.908622\pi\)
0.959077 0.283146i \(-0.0913779\pi\)
\(108\) 0 0
\(109\) 7.93457e7 0.562105 0.281052 0.959692i \(-0.409317\pi\)
0.281052 + 0.959692i \(0.409317\pi\)
\(110\) 2.05909e8i 1.40639i
\(111\) 0 0
\(112\) −3.20203e7 −0.203494
\(113\) 1.64898e8i 1.01135i 0.862724 + 0.505674i \(0.168756\pi\)
−0.862724 + 0.505674i \(0.831244\pi\)
\(114\) 0 0
\(115\) 1.22122e8 0.698236
\(116\) 1.12142e8i 0.619348i
\(117\) 0 0
\(118\) 5.09482e7 0.262785
\(119\) 2.86919e8i 1.43078i
\(120\) 0 0
\(121\) −4.16074e8 −1.94102
\(122\) 2.07488e8i 0.936599i
\(123\) 0 0
\(124\) 9.13972e7 0.386586
\(125\) − 1.85443e8i − 0.759575i
\(126\) 0 0
\(127\) −3.48082e8 −1.33803 −0.669016 0.743248i \(-0.733284\pi\)
−0.669016 + 0.743248i \(0.733284\pi\)
\(128\) 2.37266e7i 0.0883883i
\(129\) 0 0
\(130\) 4.94768e7 0.173232
\(131\) 5.12466e8i 1.74012i 0.492942 + 0.870062i \(0.335921\pi\)
−0.492942 + 0.870062i \(0.664079\pi\)
\(132\) 0 0
\(133\) 1.16346e8 0.371830
\(134\) 2.95169e8i 0.915484i
\(135\) 0 0
\(136\) 2.12603e8 0.621462
\(137\) − 3.56143e8i − 1.01098i −0.862833 0.505489i \(-0.831312\pi\)
0.862833 0.505489i \(-0.168688\pi\)
\(138\) 0 0
\(139\) −1.72193e8 −0.461272 −0.230636 0.973040i \(-0.574081\pi\)
−0.230636 + 0.973040i \(0.574081\pi\)
\(140\) − 1.81329e8i − 0.472013i
\(141\) 0 0
\(142\) −3.33593e7 −0.0820471
\(143\) 1.51483e8i 0.362260i
\(144\) 0 0
\(145\) −6.35050e8 −1.43660
\(146\) − 2.95154e8i − 0.649587i
\(147\) 0 0
\(148\) 6.84672e7 0.142704
\(149\) − 5.53392e8i − 1.12276i −0.827557 0.561382i \(-0.810270\pi\)
0.827557 0.561382i \(-0.189730\pi\)
\(150\) 0 0
\(151\) 3.04226e8 0.585179 0.292590 0.956238i \(-0.405483\pi\)
0.292590 + 0.956238i \(0.405483\pi\)
\(152\) − 8.62108e7i − 0.161505i
\(153\) 0 0
\(154\) 5.55174e8 0.987066
\(155\) 5.17576e8i 0.896701i
\(156\) 0 0
\(157\) −5.60432e8 −0.922411 −0.461205 0.887293i \(-0.652583\pi\)
−0.461205 + 0.887293i \(0.652583\pi\)
\(158\) − 7.53748e8i − 1.20948i
\(159\) 0 0
\(160\) −1.34362e8 −0.205020
\(161\) − 3.29266e8i − 0.490054i
\(162\) 0 0
\(163\) 6.12889e8 0.868223 0.434112 0.900859i \(-0.357062\pi\)
0.434112 + 0.900859i \(0.357062\pi\)
\(164\) 2.51495e8i 0.347660i
\(165\) 0 0
\(166\) 5.25348e8 0.691855
\(167\) 6.37360e8i 0.819444i 0.912211 + 0.409722i \(0.134374\pi\)
−0.912211 + 0.409722i \(0.865626\pi\)
\(168\) 0 0
\(169\) −7.79332e8 −0.955378
\(170\) 1.20396e9i 1.44150i
\(171\) 0 0
\(172\) −7.81885e8 −0.893365
\(173\) − 1.75191e9i − 1.95581i −0.209051 0.977905i \(-0.567038\pi\)
0.209051 0.977905i \(-0.432962\pi\)
\(174\) 0 0
\(175\) 2.63429e8 0.280874
\(176\) − 4.11376e8i − 0.428735i
\(177\) 0 0
\(178\) 1.02523e9 1.02127
\(179\) 7.90306e8i 0.769810i 0.922956 + 0.384905i \(0.125766\pi\)
−0.922956 + 0.384905i \(0.874234\pi\)
\(180\) 0 0
\(181\) 5.85613e8 0.545628 0.272814 0.962067i \(-0.412046\pi\)
0.272814 + 0.962067i \(0.412046\pi\)
\(182\) − 1.33400e8i − 0.121582i
\(183\) 0 0
\(184\) −2.43982e8 −0.212856
\(185\) 3.87725e8i 0.331007i
\(186\) 0 0
\(187\) −3.68616e9 −3.01445
\(188\) 3.63218e8i 0.290761i
\(189\) 0 0
\(190\) 4.88206e8 0.374618
\(191\) − 1.04588e9i − 0.785865i −0.919567 0.392933i \(-0.871461\pi\)
0.919567 0.392933i \(-0.128539\pi\)
\(192\) 0 0
\(193\) 5.58989e8 0.402878 0.201439 0.979501i \(-0.435438\pi\)
0.201439 + 0.979501i \(0.435438\pi\)
\(194\) − 1.69662e9i − 1.19778i
\(195\) 0 0
\(196\) 2.48995e8 0.168720
\(197\) − 2.83826e9i − 1.88446i −0.334963 0.942231i \(-0.608724\pi\)
0.334963 0.942231i \(-0.391276\pi\)
\(198\) 0 0
\(199\) −2.90112e9 −1.84992 −0.924960 0.380064i \(-0.875902\pi\)
−0.924960 + 0.380064i \(0.875902\pi\)
\(200\) − 1.95197e8i − 0.121998i
\(201\) 0 0
\(202\) 1.20334e9 0.722743
\(203\) 1.71223e9i 1.00827i
\(204\) 0 0
\(205\) −1.42420e9 −0.806409
\(206\) − 9.24536e8i − 0.513399i
\(207\) 0 0
\(208\) −9.88475e7 −0.0528095
\(209\) 1.49474e9i 0.783395i
\(210\) 0 0
\(211\) 3.07710e9 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(212\) − 1.27970e9i − 0.633525i
\(213\) 0 0
\(214\) −8.39808e8 −0.400428
\(215\) − 4.42776e9i − 2.07219i
\(216\) 0 0
\(217\) 1.39549e9 0.629345
\(218\) − 8.97694e8i − 0.397468i
\(219\) 0 0
\(220\) 2.32960e9 0.994466
\(221\) 8.85729e8i 0.371306i
\(222\) 0 0
\(223\) −3.62038e8 −0.146398 −0.0731989 0.997317i \(-0.523321\pi\)
−0.0731989 + 0.997317i \(0.523321\pi\)
\(224\) 3.62268e8i 0.143892i
\(225\) 0 0
\(226\) 1.86560e9 0.715131
\(227\) − 8.86169e8i − 0.333744i −0.985979 0.166872i \(-0.946633\pi\)
0.985979 0.166872i \(-0.0533666\pi\)
\(228\) 0 0
\(229\) −2.28253e9 −0.829992 −0.414996 0.909823i \(-0.636217\pi\)
−0.414996 + 0.909823i \(0.636217\pi\)
\(230\) − 1.38165e9i − 0.493728i
\(231\) 0 0
\(232\) 1.26874e9 0.437945
\(233\) − 4.45321e8i − 0.151095i −0.997142 0.0755473i \(-0.975930\pi\)
0.997142 0.0755473i \(-0.0240704\pi\)
\(234\) 0 0
\(235\) −2.05688e9 −0.674431
\(236\) − 5.76413e8i − 0.185817i
\(237\) 0 0
\(238\) 3.24612e9 1.01171
\(239\) − 4.30907e9i − 1.32066i −0.750975 0.660331i \(-0.770416\pi\)
0.750975 0.660331i \(-0.229584\pi\)
\(240\) 0 0
\(241\) −2.37226e9 −0.703226 −0.351613 0.936146i \(-0.614367\pi\)
−0.351613 + 0.936146i \(0.614367\pi\)
\(242\) 4.70734e9i 1.37251i
\(243\) 0 0
\(244\) 2.34746e9 0.662276
\(245\) 1.41004e9i 0.391352i
\(246\) 0 0
\(247\) 3.59164e8 0.0964949
\(248\) − 1.03404e9i − 0.273358i
\(249\) 0 0
\(250\) −2.09805e9 −0.537101
\(251\) − 2.58894e9i − 0.652269i −0.945323 0.326135i \(-0.894254\pi\)
0.945323 0.326135i \(-0.105746\pi\)
\(252\) 0 0
\(253\) 4.23021e9 1.03248
\(254\) 3.93810e9i 0.946132i
\(255\) 0 0
\(256\) 2.68435e8 0.0625000
\(257\) 5.35494e8i 0.122750i 0.998115 + 0.0613751i \(0.0195486\pi\)
−0.998115 + 0.0613751i \(0.980451\pi\)
\(258\) 0 0
\(259\) 1.04539e9 0.232316
\(260\) − 5.59767e8i − 0.122494i
\(261\) 0 0
\(262\) 5.79790e9 1.23045
\(263\) − 5.55561e9i − 1.16120i −0.814188 0.580602i \(-0.802817\pi\)
0.814188 0.580602i \(-0.197183\pi\)
\(264\) 0 0
\(265\) 7.24684e9 1.46948
\(266\) − 1.31630e9i − 0.262924i
\(267\) 0 0
\(268\) 3.33945e9 0.647345
\(269\) − 9.05318e9i − 1.72899i −0.502643 0.864494i \(-0.667639\pi\)
0.502643 0.864494i \(-0.332361\pi\)
\(270\) 0 0
\(271\) −1.03696e9 −0.192257 −0.0961287 0.995369i \(-0.530646\pi\)
−0.0961287 + 0.995369i \(0.530646\pi\)
\(272\) − 2.40533e9i − 0.439440i
\(273\) 0 0
\(274\) −4.02929e9 −0.714869
\(275\) 3.38437e9i 0.591763i
\(276\) 0 0
\(277\) −9.85725e8 −0.167431 −0.0837157 0.996490i \(-0.526679\pi\)
−0.0837157 + 0.996490i \(0.526679\pi\)
\(278\) 1.94815e9i 0.326169i
\(279\) 0 0
\(280\) −2.05150e9 −0.333764
\(281\) 3.59070e9i 0.575909i 0.957644 + 0.287955i \(0.0929752\pi\)
−0.957644 + 0.287955i \(0.907025\pi\)
\(282\) 0 0
\(283\) −5.47939e9 −0.854252 −0.427126 0.904192i \(-0.640474\pi\)
−0.427126 + 0.904192i \(0.640474\pi\)
\(284\) 3.77417e8i 0.0580160i
\(285\) 0 0
\(286\) 1.71384e9 0.256157
\(287\) 3.83994e9i 0.565974i
\(288\) 0 0
\(289\) −1.45774e10 −2.08972
\(290\) 7.18477e9i 1.01583i
\(291\) 0 0
\(292\) −3.33929e9 −0.459328
\(293\) 4.67021e9i 0.633674i 0.948480 + 0.316837i \(0.102621\pi\)
−0.948480 + 0.316837i \(0.897379\pi\)
\(294\) 0 0
\(295\) 3.26419e9 0.431010
\(296\) − 7.74618e8i − 0.100907i
\(297\) 0 0
\(298\) −6.26092e9 −0.793913
\(299\) − 1.01645e9i − 0.127175i
\(300\) 0 0
\(301\) −1.19382e10 −1.45436
\(302\) − 3.44193e9i − 0.413784i
\(303\) 0 0
\(304\) −9.75364e8 −0.114202
\(305\) 1.32935e10i 1.53617i
\(306\) 0 0
\(307\) 6.11231e9 0.688101 0.344050 0.938951i \(-0.388201\pi\)
0.344050 + 0.938951i \(0.388201\pi\)
\(308\) − 6.28108e9i − 0.697961i
\(309\) 0 0
\(310\) 5.85571e9 0.634063
\(311\) 1.44526e10i 1.54492i 0.635066 + 0.772458i \(0.280973\pi\)
−0.635066 + 0.772458i \(0.719027\pi\)
\(312\) 0 0
\(313\) 3.16546e9 0.329807 0.164903 0.986310i \(-0.447269\pi\)
0.164903 + 0.986310i \(0.447269\pi\)
\(314\) 6.34057e9i 0.652243i
\(315\) 0 0
\(316\) −8.52769e9 −0.855230
\(317\) − 3.73711e9i − 0.370083i −0.982731 0.185041i \(-0.940758\pi\)
0.982731 0.185041i \(-0.0592419\pi\)
\(318\) 0 0
\(319\) −2.19976e10 −2.12429
\(320\) 1.52013e9i 0.144971i
\(321\) 0 0
\(322\) −3.72522e9 −0.346520
\(323\) 8.73981e9i 0.802956i
\(324\) 0 0
\(325\) 8.13213e8 0.0728905
\(326\) − 6.93405e9i − 0.613927i
\(327\) 0 0
\(328\) 2.84534e9 0.245832
\(329\) 5.54578e9i 0.473346i
\(330\) 0 0
\(331\) 7.57421e9 0.630994 0.315497 0.948927i \(-0.397829\pi\)
0.315497 + 0.948927i \(0.397829\pi\)
\(332\) − 5.94364e9i − 0.489215i
\(333\) 0 0
\(334\) 7.21091e9 0.579434
\(335\) 1.89111e10i 1.50154i
\(336\) 0 0
\(337\) 1.76446e10 1.36802 0.684010 0.729472i \(-0.260234\pi\)
0.684010 + 0.729472i \(0.260234\pi\)
\(338\) 8.81713e9i 0.675555i
\(339\) 0 0
\(340\) 1.36212e10 1.01930
\(341\) 1.79284e10i 1.32594i
\(342\) 0 0
\(343\) 1.50683e10 1.08865
\(344\) 8.84602e9i 0.631705i
\(345\) 0 0
\(346\) −1.98206e10 −1.38297
\(347\) − 1.59804e10i − 1.10223i −0.834430 0.551113i \(-0.814203\pi\)
0.834430 0.551113i \(-0.185797\pi\)
\(348\) 0 0
\(349\) 8.15215e9 0.549503 0.274752 0.961515i \(-0.411404\pi\)
0.274752 + 0.961515i \(0.411404\pi\)
\(350\) − 2.98036e9i − 0.198608i
\(351\) 0 0
\(352\) −4.65419e9 −0.303161
\(353\) 1.49531e10i 0.963012i 0.876443 + 0.481506i \(0.159910\pi\)
−0.876443 + 0.481506i \(0.840090\pi\)
\(354\) 0 0
\(355\) −2.13729e9 −0.134570
\(356\) − 1.15992e10i − 0.722148i
\(357\) 0 0
\(358\) 8.94130e9 0.544338
\(359\) 1.47438e10i 0.887627i 0.896119 + 0.443814i \(0.146375\pi\)
−0.896119 + 0.443814i \(0.853625\pi\)
\(360\) 0 0
\(361\) −1.34396e10 −0.791328
\(362\) − 6.62545e9i − 0.385817i
\(363\) 0 0
\(364\) −1.50925e9 −0.0859716
\(365\) − 1.89102e10i − 1.06543i
\(366\) 0 0
\(367\) 3.56912e9 0.196742 0.0983709 0.995150i \(-0.468637\pi\)
0.0983709 + 0.995150i \(0.468637\pi\)
\(368\) 2.76034e9i 0.150512i
\(369\) 0 0
\(370\) 4.38661e9 0.234057
\(371\) − 1.95390e10i − 1.03135i
\(372\) 0 0
\(373\) −3.48963e10 −1.80279 −0.901393 0.433001i \(-0.857455\pi\)
−0.901393 + 0.433001i \(0.857455\pi\)
\(374\) 4.17042e10i 2.13154i
\(375\) 0 0
\(376\) 4.10935e9 0.205599
\(377\) 5.28570e9i 0.261660i
\(378\) 0 0
\(379\) 1.86839e10 0.905548 0.452774 0.891625i \(-0.350434\pi\)
0.452774 + 0.891625i \(0.350434\pi\)
\(380\) − 5.52342e9i − 0.264895i
\(381\) 0 0
\(382\) −1.18328e10 −0.555690
\(383\) 2.81144e9i 0.130657i 0.997864 + 0.0653286i \(0.0208096\pi\)
−0.997864 + 0.0653286i \(0.979190\pi\)
\(384\) 0 0
\(385\) 3.55693e10 1.61895
\(386\) − 6.32424e9i − 0.284878i
\(387\) 0 0
\(388\) −1.91951e10 −0.846962
\(389\) 1.92834e9i 0.0842140i 0.999113 + 0.0421070i \(0.0134070\pi\)
−0.999113 + 0.0421070i \(0.986593\pi\)
\(390\) 0 0
\(391\) 2.47342e10 1.05826
\(392\) − 2.81706e9i − 0.119303i
\(393\) 0 0
\(394\) −3.21113e10 −1.33252
\(395\) − 4.82917e10i − 1.98374i
\(396\) 0 0
\(397\) −2.60079e10 −1.04699 −0.523495 0.852029i \(-0.675372\pi\)
−0.523495 + 0.852029i \(0.675372\pi\)
\(398\) 3.28224e10i 1.30809i
\(399\) 0 0
\(400\) −2.20841e9 −0.0862658
\(401\) 2.67223e9i 0.103347i 0.998664 + 0.0516734i \(0.0164555\pi\)
−0.998664 + 0.0516734i \(0.983545\pi\)
\(402\) 0 0
\(403\) 4.30793e9 0.163323
\(404\) − 1.36143e10i − 0.511056i
\(405\) 0 0
\(406\) 1.93716e10 0.712955
\(407\) 1.34305e10i 0.489457i
\(408\) 0 0
\(409\) 1.67495e10 0.598560 0.299280 0.954165i \(-0.403253\pi\)
0.299280 + 0.954165i \(0.403253\pi\)
\(410\) 1.61130e10i 0.570217i
\(411\) 0 0
\(412\) −1.04599e10 −0.363028
\(413\) − 8.80093e9i − 0.302502i
\(414\) 0 0
\(415\) 3.36584e10 1.13475
\(416\) 1.11833e9i 0.0373420i
\(417\) 0 0
\(418\) 1.69111e10 0.553944
\(419\) − 1.09485e10i − 0.355221i −0.984101 0.177611i \(-0.943163\pi\)
0.984101 0.177611i \(-0.0568367\pi\)
\(420\) 0 0
\(421\) −1.14603e10 −0.364812 −0.182406 0.983223i \(-0.558389\pi\)
−0.182406 + 0.983223i \(0.558389\pi\)
\(422\) − 3.48134e10i − 1.09773i
\(423\) 0 0
\(424\) −1.44781e10 −0.447970
\(425\) 1.97886e10i 0.606538i
\(426\) 0 0
\(427\) 3.58421e10 1.07816
\(428\) 9.50134e9i 0.283146i
\(429\) 0 0
\(430\) −5.00944e10 −1.46526
\(431\) 1.09427e10i 0.317114i 0.987350 + 0.158557i \(0.0506841\pi\)
−0.987350 + 0.158557i \(0.949316\pi\)
\(432\) 0 0
\(433\) 3.11908e10 0.887308 0.443654 0.896198i \(-0.353682\pi\)
0.443654 + 0.896198i \(0.353682\pi\)
\(434\) − 1.57882e10i − 0.445014i
\(435\) 0 0
\(436\) −1.01562e10 −0.281052
\(437\) − 1.00297e10i − 0.275019i
\(438\) 0 0
\(439\) 4.30604e10 1.15937 0.579683 0.814842i \(-0.303177\pi\)
0.579683 + 0.814842i \(0.303177\pi\)
\(440\) − 2.63564e10i − 0.703194i
\(441\) 0 0
\(442\) 1.00209e10 0.262553
\(443\) − 2.65467e10i − 0.689279i −0.938735 0.344640i \(-0.888001\pi\)
0.938735 0.344640i \(-0.111999\pi\)
\(444\) 0 0
\(445\) 6.56852e10 1.67505
\(446\) 4.09599e9i 0.103519i
\(447\) 0 0
\(448\) 4.09859e9 0.101747
\(449\) 7.44995e10i 1.83302i 0.400008 + 0.916512i \(0.369007\pi\)
−0.400008 + 0.916512i \(0.630993\pi\)
\(450\) 0 0
\(451\) −4.93332e10 −1.19243
\(452\) − 2.11069e10i − 0.505674i
\(453\) 0 0
\(454\) −1.00259e10 −0.235992
\(455\) − 8.54677e9i − 0.199414i
\(456\) 0 0
\(457\) −8.22913e10 −1.88664 −0.943320 0.331885i \(-0.892315\pi\)
−0.943320 + 0.331885i \(0.892315\pi\)
\(458\) 2.58238e10i 0.586893i
\(459\) 0 0
\(460\) −1.56316e10 −0.349118
\(461\) − 1.07428e10i − 0.237856i −0.992903 0.118928i \(-0.962054\pi\)
0.992903 0.118928i \(-0.0379458\pi\)
\(462\) 0 0
\(463\) 1.01613e10 0.221118 0.110559 0.993870i \(-0.464736\pi\)
0.110559 + 0.993870i \(0.464736\pi\)
\(464\) − 1.43541e10i − 0.309674i
\(465\) 0 0
\(466\) −5.03823e9 −0.106840
\(467\) 1.27531e10i 0.268131i 0.990972 + 0.134066i \(0.0428033\pi\)
−0.990972 + 0.134066i \(0.957197\pi\)
\(468\) 0 0
\(469\) 5.09882e10 1.05385
\(470\) 2.32710e10i 0.476895i
\(471\) 0 0
\(472\) −6.52137e9 −0.131393
\(473\) − 1.53374e11i − 3.06413i
\(474\) 0 0
\(475\) 8.02427e9 0.157627
\(476\) − 3.67257e10i − 0.715389i
\(477\) 0 0
\(478\) −4.87515e10 −0.933849
\(479\) − 6.12176e10i − 1.16288i −0.813590 0.581439i \(-0.802490\pi\)
0.813590 0.581439i \(-0.197510\pi\)
\(480\) 0 0
\(481\) 3.22714e9 0.0602890
\(482\) 2.68391e10i 0.497256i
\(483\) 0 0
\(484\) 5.32575e10 0.970508
\(485\) − 1.08701e11i − 1.96456i
\(486\) 0 0
\(487\) 4.91420e9 0.0873649 0.0436824 0.999045i \(-0.486091\pi\)
0.0436824 + 0.999045i \(0.486091\pi\)
\(488\) − 2.65585e10i − 0.468300i
\(489\) 0 0
\(490\) 1.59528e10 0.276728
\(491\) − 6.49799e10i − 1.11803i −0.829158 0.559015i \(-0.811179\pi\)
0.829158 0.559015i \(-0.188821\pi\)
\(492\) 0 0
\(493\) −1.28621e11 −2.17733
\(494\) − 4.06347e9i − 0.0682322i
\(495\) 0 0
\(496\) −1.16988e10 −0.193293
\(497\) 5.76257e9i 0.0944476i
\(498\) 0 0
\(499\) 1.02300e11 1.64996 0.824982 0.565159i \(-0.191185\pi\)
0.824982 + 0.565159i \(0.191185\pi\)
\(500\) 2.37367e10i 0.379787i
\(501\) 0 0
\(502\) −2.92905e10 −0.461224
\(503\) 7.51856e10i 1.17453i 0.809396 + 0.587263i \(0.199795\pi\)
−0.809396 + 0.587263i \(0.800205\pi\)
\(504\) 0 0
\(505\) 7.70967e10 1.18541
\(506\) − 4.78593e10i − 0.730070i
\(507\) 0 0
\(508\) 4.45545e10 0.669016
\(509\) 6.30144e10i 0.938790i 0.882988 + 0.469395i \(0.155528\pi\)
−0.882988 + 0.469395i \(0.844472\pi\)
\(510\) 0 0
\(511\) −5.09857e10 −0.747765
\(512\) − 3.03700e9i − 0.0441942i
\(513\) 0 0
\(514\) 6.05842e9 0.0867974
\(515\) − 5.92339e10i − 0.842057i
\(516\) 0 0
\(517\) −7.12487e10 −0.997275
\(518\) − 1.18272e10i − 0.164272i
\(519\) 0 0
\(520\) −6.33304e9 −0.0866161
\(521\) − 1.57912e10i − 0.214321i −0.994242 0.107161i \(-0.965824\pi\)
0.994242 0.107161i \(-0.0341759\pi\)
\(522\) 0 0
\(523\) −3.18186e10 −0.425279 −0.212640 0.977131i \(-0.568206\pi\)
−0.212640 + 0.977131i \(0.568206\pi\)
\(524\) − 6.55957e10i − 0.870062i
\(525\) 0 0
\(526\) −6.28545e10 −0.821095
\(527\) 1.04828e11i 1.35905i
\(528\) 0 0
\(529\) 4.99263e10 0.637538
\(530\) − 8.19886e10i − 1.03908i
\(531\) 0 0
\(532\) −1.48923e10 −0.185915
\(533\) 1.18540e10i 0.146878i
\(534\) 0 0
\(535\) −5.38054e10 −0.656767
\(536\) − 3.77816e10i − 0.457742i
\(537\) 0 0
\(538\) −1.02425e11 −1.22258
\(539\) 4.88427e10i 0.578689i
\(540\) 0 0
\(541\) −8.64637e10 −1.00936 −0.504679 0.863307i \(-0.668389\pi\)
−0.504679 + 0.863307i \(0.668389\pi\)
\(542\) 1.17318e10i 0.135947i
\(543\) 0 0
\(544\) −2.72132e10 −0.310731
\(545\) − 5.75141e10i − 0.651911i
\(546\) 0 0
\(547\) −1.34564e11 −1.50307 −0.751534 0.659695i \(-0.770686\pi\)
−0.751534 + 0.659695i \(0.770686\pi\)
\(548\) 4.55863e10i 0.505489i
\(549\) 0 0
\(550\) 3.82898e10 0.418439
\(551\) 5.21559e10i 0.565844i
\(552\) 0 0
\(553\) −1.30205e11 −1.39228
\(554\) 1.11522e10i 0.118392i
\(555\) 0 0
\(556\) 2.20408e10 0.230636
\(557\) 3.61911e10i 0.375994i 0.982170 + 0.187997i \(0.0601995\pi\)
−0.982170 + 0.187997i \(0.939800\pi\)
\(558\) 0 0
\(559\) −3.68535e10 −0.377425
\(560\) 2.32101e10i 0.236007i
\(561\) 0 0
\(562\) 4.06242e10 0.407229
\(563\) 1.28121e11i 1.27523i 0.770357 + 0.637613i \(0.220078\pi\)
−0.770357 + 0.637613i \(0.779922\pi\)
\(564\) 0 0
\(565\) 1.19527e11 1.17293
\(566\) 6.19922e10i 0.604048i
\(567\) 0 0
\(568\) 4.26999e9 0.0410235
\(569\) − 4.93793e10i − 0.471081i −0.971865 0.235540i \(-0.924314\pi\)
0.971865 0.235540i \(-0.0756860\pi\)
\(570\) 0 0
\(571\) 1.62562e11 1.52924 0.764620 0.644482i \(-0.222927\pi\)
0.764620 + 0.644482i \(0.222927\pi\)
\(572\) − 1.93899e10i − 0.181130i
\(573\) 0 0
\(574\) 4.34440e10 0.400204
\(575\) − 2.27092e10i − 0.207745i
\(576\) 0 0
\(577\) −6.12916e10 −0.552965 −0.276483 0.961019i \(-0.589169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(578\) 1.64924e11i 1.47765i
\(579\) 0 0
\(580\) 8.12864e10 0.718300
\(581\) − 9.07501e10i − 0.796421i
\(582\) 0 0
\(583\) 2.51025e11 2.17291
\(584\) 3.77797e10i 0.324794i
\(585\) 0 0
\(586\) 5.28374e10 0.448075
\(587\) − 4.63088e10i − 0.390042i −0.980799 0.195021i \(-0.937523\pi\)
0.980799 0.195021i \(-0.0624774\pi\)
\(588\) 0 0
\(589\) 4.25079e10 0.353190
\(590\) − 3.69301e10i − 0.304770i
\(591\) 0 0
\(592\) −8.76380e9 −0.0713519
\(593\) − 2.12824e11i − 1.72108i −0.509381 0.860541i \(-0.670126\pi\)
0.509381 0.860541i \(-0.329874\pi\)
\(594\) 0 0
\(595\) 2.07975e11 1.65937
\(596\) 7.08342e10i 0.561382i
\(597\) 0 0
\(598\) −1.14999e10 −0.0899266
\(599\) 5.14803e10i 0.399884i 0.979808 + 0.199942i \(0.0640754\pi\)
−0.979808 + 0.199942i \(0.935925\pi\)
\(600\) 0 0
\(601\) 1.67400e11 1.28309 0.641546 0.767084i \(-0.278293\pi\)
0.641546 + 0.767084i \(0.278293\pi\)
\(602\) 1.35065e11i 1.02839i
\(603\) 0 0
\(604\) −3.89410e10 −0.292590
\(605\) 3.01593e11i 2.25113i
\(606\) 0 0
\(607\) −2.92997e10 −0.215828 −0.107914 0.994160i \(-0.534417\pi\)
−0.107914 + 0.994160i \(0.534417\pi\)
\(608\) 1.10350e10i 0.0807527i
\(609\) 0 0
\(610\) 1.50399e11 1.08624
\(611\) 1.71200e10i 0.122840i
\(612\) 0 0
\(613\) −1.71922e11 −1.21756 −0.608780 0.793339i \(-0.708341\pi\)
−0.608780 + 0.793339i \(0.708341\pi\)
\(614\) − 6.91529e10i − 0.486561i
\(615\) 0 0
\(616\) −7.10623e10 −0.493533
\(617\) − 4.57706e10i − 0.315825i −0.987453 0.157912i \(-0.949524\pi\)
0.987453 0.157912i \(-0.0504764\pi\)
\(618\) 0 0
\(619\) −1.69440e11 −1.15412 −0.577062 0.816700i \(-0.695801\pi\)
−0.577062 + 0.816700i \(0.695801\pi\)
\(620\) − 6.62498e10i − 0.448350i
\(621\) 0 0
\(622\) 1.63513e11 1.09242
\(623\) − 1.77101e11i − 1.17563i
\(624\) 0 0
\(625\) −1.87072e11 −1.22599
\(626\) − 3.58131e10i − 0.233209i
\(627\) 0 0
\(628\) 7.17353e10 0.461205
\(629\) 7.85286e10i 0.501678i
\(630\) 0 0
\(631\) −1.46027e11 −0.921116 −0.460558 0.887630i \(-0.652351\pi\)
−0.460558 + 0.887630i \(0.652351\pi\)
\(632\) 9.64798e10i 0.604739i
\(633\) 0 0
\(634\) −4.22806e10 −0.261688
\(635\) 2.52309e11i 1.55181i
\(636\) 0 0
\(637\) 1.17362e10 0.0712801
\(638\) 2.48875e11i 1.50210i
\(639\) 0 0
\(640\) 1.71983e10 0.102510
\(641\) 1.44147e11i 0.853836i 0.904290 + 0.426918i \(0.140401\pi\)
−0.904290 + 0.426918i \(0.859599\pi\)
\(642\) 0 0
\(643\) −1.17950e11 −0.690010 −0.345005 0.938601i \(-0.612123\pi\)
−0.345005 + 0.938601i \(0.612123\pi\)
\(644\) 4.21461e10i 0.245027i
\(645\) 0 0
\(646\) 9.88796e10 0.567776
\(647\) 3.46876e9i 0.0197951i 0.999951 + 0.00989753i \(0.00315053\pi\)
−0.999951 + 0.00989753i \(0.996849\pi\)
\(648\) 0 0
\(649\) 1.13069e11 0.637330
\(650\) − 9.20046e9i − 0.0515414i
\(651\) 0 0
\(652\) −7.84498e10 −0.434112
\(653\) 1.66200e11i 0.914065i 0.889450 + 0.457033i \(0.151088\pi\)
−0.889450 + 0.457033i \(0.848912\pi\)
\(654\) 0 0
\(655\) 3.71464e11 2.01814
\(656\) − 3.21914e10i − 0.173830i
\(657\) 0 0
\(658\) 6.27433e10 0.334706
\(659\) 1.81389e11i 0.961765i 0.876785 + 0.480883i \(0.159684\pi\)
−0.876785 + 0.480883i \(0.840316\pi\)
\(660\) 0 0
\(661\) −2.20363e11 −1.15434 −0.577169 0.816625i \(-0.695843\pi\)
−0.577169 + 0.816625i \(0.695843\pi\)
\(662\) − 8.56924e10i − 0.446180i
\(663\) 0 0
\(664\) −6.72446e10 −0.345928
\(665\) − 8.43340e10i − 0.431237i
\(666\) 0 0
\(667\) 1.47604e11 0.745754
\(668\) − 8.15821e10i − 0.409722i
\(669\) 0 0
\(670\) 2.13955e11 1.06175
\(671\) 4.60477e11i 2.27153i
\(672\) 0 0
\(673\) −2.54483e11 −1.24050 −0.620252 0.784403i \(-0.712970\pi\)
−0.620252 + 0.784403i \(0.712970\pi\)
\(674\) − 1.99626e11i − 0.967336i
\(675\) 0 0
\(676\) 9.97544e10 0.477689
\(677\) 1.61144e11i 0.767112i 0.923518 + 0.383556i \(0.125301\pi\)
−0.923518 + 0.383556i \(0.874699\pi\)
\(678\) 0 0
\(679\) −2.93080e11 −1.37882
\(680\) − 1.54107e11i − 0.720752i
\(681\) 0 0
\(682\) 2.02837e11 0.937583
\(683\) − 2.49823e11i − 1.14802i −0.818848 0.574010i \(-0.805387\pi\)
0.818848 0.574010i \(-0.194613\pi\)
\(684\) 0 0
\(685\) −2.58152e11 −1.17250
\(686\) − 1.70478e11i − 0.769789i
\(687\) 0 0
\(688\) 1.00081e11 0.446683
\(689\) − 6.03174e10i − 0.267649i
\(690\) 0 0
\(691\) 3.49484e10 0.153291 0.0766453 0.997058i \(-0.475579\pi\)
0.0766453 + 0.997058i \(0.475579\pi\)
\(692\) 2.24244e11i 0.977905i
\(693\) 0 0
\(694\) −1.80798e11 −0.779392
\(695\) 1.24815e11i 0.534969i
\(696\) 0 0
\(697\) −2.88453e11 −1.22220
\(698\) − 9.22310e10i − 0.388557i
\(699\) 0 0
\(700\) −3.37189e10 −0.140437
\(701\) − 5.97829e10i − 0.247574i −0.992309 0.123787i \(-0.960496\pi\)
0.992309 0.123787i \(-0.0395040\pi\)
\(702\) 0 0
\(703\) 3.18434e10 0.130376
\(704\) 5.26562e10i 0.214367i
\(705\) 0 0
\(706\) 1.69175e11 0.680953
\(707\) − 2.07869e11i − 0.831977i
\(708\) 0 0
\(709\) −4.44232e11 −1.75802 −0.879012 0.476799i \(-0.841797\pi\)
−0.879012 + 0.476799i \(0.841797\pi\)
\(710\) 2.41806e10i 0.0951556i
\(711\) 0 0
\(712\) −1.31229e11 −0.510636
\(713\) − 1.20300e11i − 0.465487i
\(714\) 0 0
\(715\) 1.09804e11 0.420138
\(716\) − 1.01159e11i − 0.384905i
\(717\) 0 0
\(718\) 1.66807e11 0.627647
\(719\) 1.62667e11i 0.608674i 0.952564 + 0.304337i \(0.0984349\pi\)
−0.952564 + 0.304337i \(0.901565\pi\)
\(720\) 0 0
\(721\) −1.59707e11 −0.590993
\(722\) 1.52051e11i 0.559553i
\(723\) 0 0
\(724\) −7.49584e10 −0.272814
\(725\) 1.18091e11i 0.427429i
\(726\) 0 0
\(727\) 3.60109e11 1.28913 0.644565 0.764549i \(-0.277038\pi\)
0.644565 + 0.764549i \(0.277038\pi\)
\(728\) 1.70752e10i 0.0607911i
\(729\) 0 0
\(730\) −2.13944e11 −0.753371
\(731\) − 8.96784e11i − 3.14064i
\(732\) 0 0
\(733\) 3.07905e11 1.06660 0.533299 0.845927i \(-0.320952\pi\)
0.533299 + 0.845927i \(0.320952\pi\)
\(734\) − 4.03800e10i − 0.139117i
\(735\) 0 0
\(736\) 3.12297e10 0.106428
\(737\) 6.55065e11i 2.22032i
\(738\) 0 0
\(739\) 1.69448e11 0.568145 0.284072 0.958803i \(-0.408314\pi\)
0.284072 + 0.958803i \(0.408314\pi\)
\(740\) − 4.96288e10i − 0.165504i
\(741\) 0 0
\(742\) −2.21058e11 −0.729275
\(743\) 1.84146e11i 0.604236i 0.953270 + 0.302118i \(0.0976937\pi\)
−0.953270 + 0.302118i \(0.902306\pi\)
\(744\) 0 0
\(745\) −4.01130e11 −1.30215
\(746\) 3.94807e11i 1.27476i
\(747\) 0 0
\(748\) 4.71829e11 1.50723
\(749\) 1.45071e11i 0.460948i
\(750\) 0 0
\(751\) 1.76885e11 0.556072 0.278036 0.960571i \(-0.410317\pi\)
0.278036 + 0.960571i \(0.410317\pi\)
\(752\) − 4.64920e10i − 0.145381i
\(753\) 0 0
\(754\) 5.98008e10 0.185021
\(755\) − 2.20520e11i − 0.678672i
\(756\) 0 0
\(757\) −3.46881e11 −1.05632 −0.528161 0.849144i \(-0.677118\pi\)
−0.528161 + 0.849144i \(0.677118\pi\)
\(758\) − 2.11385e11i − 0.640319i
\(759\) 0 0
\(760\) −6.24904e10 −0.187309
\(761\) − 3.66921e11i − 1.09404i −0.837119 0.547021i \(-0.815762\pi\)
0.837119 0.547021i \(-0.184238\pi\)
\(762\) 0 0
\(763\) −1.55070e11 −0.457541
\(764\) 1.33873e11i 0.392933i
\(765\) 0 0
\(766\) 3.18078e10 0.0923886
\(767\) − 2.71687e10i − 0.0785033i
\(768\) 0 0
\(769\) 3.55240e11 1.01582 0.507910 0.861410i \(-0.330418\pi\)
0.507910 + 0.861410i \(0.330418\pi\)
\(770\) − 4.02421e11i − 1.14477i
\(771\) 0 0
\(772\) −7.15506e10 −0.201439
\(773\) − 2.00470e10i − 0.0561475i −0.999606 0.0280738i \(-0.991063\pi\)
0.999606 0.0280738i \(-0.00893733\pi\)
\(774\) 0 0
\(775\) 9.62458e10 0.266793
\(776\) 2.17168e11i 0.598892i
\(777\) 0 0
\(778\) 2.18166e10 0.0595483
\(779\) 1.16968e11i 0.317626i
\(780\) 0 0
\(781\) −7.40339e10 −0.198988
\(782\) − 2.79835e11i − 0.748299i
\(783\) 0 0
\(784\) −3.18714e10 −0.0843600
\(785\) 4.06232e11i 1.06978i
\(786\) 0 0
\(787\) 3.93335e11 1.02533 0.512665 0.858589i \(-0.328658\pi\)
0.512665 + 0.858589i \(0.328658\pi\)
\(788\) 3.63298e11i 0.942231i
\(789\) 0 0
\(790\) −5.46359e11 −1.40271
\(791\) − 3.22270e11i − 0.823216i
\(792\) 0 0
\(793\) 1.10646e11 0.279796
\(794\) 2.94245e11i 0.740334i
\(795\) 0 0
\(796\) 3.71343e11 0.924960
\(797\) − 2.19380e11i − 0.543706i −0.962339 0.271853i \(-0.912364\pi\)
0.962339 0.271853i \(-0.0876364\pi\)
\(798\) 0 0
\(799\) −4.16594e11 −1.02218
\(800\) 2.49853e10i 0.0609992i
\(801\) 0 0
\(802\) 3.02329e10 0.0730772
\(803\) − 6.55033e11i − 1.57544i
\(804\) 0 0
\(805\) −2.38670e11 −0.568349
\(806\) − 4.87387e10i − 0.115487i
\(807\) 0 0
\(808\) −1.54028e11 −0.361371
\(809\) − 7.99208e11i − 1.86580i −0.360131 0.932902i \(-0.617268\pi\)
0.360131 0.932902i \(-0.382732\pi\)
\(810\) 0 0
\(811\) −4.25096e10 −0.0982661 −0.0491331 0.998792i \(-0.515646\pi\)
−0.0491331 + 0.998792i \(0.515646\pi\)
\(812\) − 2.19165e11i − 0.504136i
\(813\) 0 0
\(814\) 1.51949e11 0.346098
\(815\) − 4.44256e11i − 1.00694i
\(816\) 0 0
\(817\) −3.63647e11 −0.816190
\(818\) − 1.89499e11i − 0.423246i
\(819\) 0 0
\(820\) 1.82298e11 0.403205
\(821\) − 2.25537e10i − 0.0496415i −0.999692 0.0248207i \(-0.992099\pi\)
0.999692 0.0248207i \(-0.00790150\pi\)
\(822\) 0 0
\(823\) −1.44899e11 −0.315840 −0.157920 0.987452i \(-0.550479\pi\)
−0.157920 + 0.987452i \(0.550479\pi\)
\(824\) 1.18341e11i 0.256699i
\(825\) 0 0
\(826\) −9.95711e10 −0.213901
\(827\) − 5.86919e11i − 1.25475i −0.778719 0.627373i \(-0.784130\pi\)
0.778719 0.627373i \(-0.215870\pi\)
\(828\) 0 0
\(829\) −2.57431e11 −0.545059 −0.272529 0.962147i \(-0.587860\pi\)
−0.272529 + 0.962147i \(0.587860\pi\)
\(830\) − 3.80802e11i − 0.802392i
\(831\) 0 0
\(832\) 1.26525e10 0.0264048
\(833\) 2.85585e11i 0.593138i
\(834\) 0 0
\(835\) 4.61994e11 0.950365
\(836\) − 1.91327e11i − 0.391698i
\(837\) 0 0
\(838\) −1.23868e11 −0.251179
\(839\) − 9.44521e11i − 1.90618i −0.302688 0.953090i \(-0.597884\pi\)
0.302688 0.953090i \(-0.402116\pi\)
\(840\) 0 0
\(841\) −2.67316e11 −0.534368
\(842\) 1.29659e11i 0.257961i
\(843\) 0 0
\(844\) −3.93869e11 −0.776215
\(845\) 5.64903e11i 1.10802i
\(846\) 0 0
\(847\) 8.13159e11 1.57994
\(848\) 1.63801e11i 0.316762i
\(849\) 0 0
\(850\) 2.23882e11 0.428887
\(851\) − 9.01187e10i − 0.171829i
\(852\) 0 0
\(853\) −1.64562e11 −0.310837 −0.155419 0.987849i \(-0.549673\pi\)
−0.155419 + 0.987849i \(0.549673\pi\)
\(854\) − 4.05507e11i − 0.762371i
\(855\) 0 0
\(856\) 1.07495e11 0.200214
\(857\) 9.58876e11i 1.77762i 0.458274 + 0.888811i \(0.348468\pi\)
−0.458274 + 0.888811i \(0.651532\pi\)
\(858\) 0 0
\(859\) 9.96658e11 1.83052 0.915258 0.402869i \(-0.131987\pi\)
0.915258 + 0.402869i \(0.131987\pi\)
\(860\) 5.66753e11i 1.03610i
\(861\) 0 0
\(862\) 1.23802e11 0.224233
\(863\) − 2.58156e10i − 0.0465413i −0.999729 0.0232706i \(-0.992592\pi\)
0.999729 0.0232706i \(-0.00740795\pi\)
\(864\) 0 0
\(865\) −1.26988e12 −2.26829
\(866\) − 3.52883e11i − 0.627422i
\(867\) 0 0
\(868\) −1.78623e11 −0.314673
\(869\) − 1.67279e12i − 2.93333i
\(870\) 0 0
\(871\) 1.57402e11 0.273488
\(872\) 1.14905e11i 0.198734i
\(873\) 0 0
\(874\) −1.13473e11 −0.194468
\(875\) 3.62423e11i 0.618277i
\(876\) 0 0
\(877\) 2.32514e10 0.0393052 0.0196526 0.999807i \(-0.493744\pi\)
0.0196526 + 0.999807i \(0.493744\pi\)
\(878\) − 4.87173e11i − 0.819795i
\(879\) 0 0
\(880\) −2.98188e11 −0.497233
\(881\) − 4.50262e11i − 0.747415i −0.927547 0.373708i \(-0.878086\pi\)
0.927547 0.373708i \(-0.121914\pi\)
\(882\) 0 0
\(883\) 4.70736e11 0.774345 0.387173 0.922007i \(-0.373452\pi\)
0.387173 + 0.922007i \(0.373452\pi\)
\(884\) − 1.13373e11i − 0.185653i
\(885\) 0 0
\(886\) −3.00341e11 −0.487394
\(887\) 9.97354e11i 1.61122i 0.592446 + 0.805610i \(0.298162\pi\)
−0.592446 + 0.805610i \(0.701838\pi\)
\(888\) 0 0
\(889\) 6.80278e11 1.08913
\(890\) − 7.43143e11i − 1.18444i
\(891\) 0 0
\(892\) 4.63409e10 0.0731989
\(893\) 1.68929e11i 0.265643i
\(894\) 0 0
\(895\) 5.72858e11 0.892801
\(896\) − 4.63703e10i − 0.0719462i
\(897\) 0 0
\(898\) 8.42866e11 1.29614
\(899\) 6.25576e11i 0.957725i
\(900\) 0 0
\(901\) 1.46775e12 2.22717
\(902\) 5.58141e11i 0.843175i
\(903\) 0 0
\(904\) −2.38797e11 −0.357566
\(905\) − 4.24485e11i − 0.632802i
\(906\) 0 0
\(907\) −9.86539e11 −1.45776 −0.728879 0.684643i \(-0.759958\pi\)
−0.728879 + 0.684643i \(0.759958\pi\)
\(908\) 1.13430e11i 0.166872i
\(909\) 0 0
\(910\) −9.66956e10 −0.141007
\(911\) 2.94621e11i 0.427751i 0.976861 + 0.213875i \(0.0686086\pi\)
−0.976861 + 0.213875i \(0.931391\pi\)
\(912\) 0 0
\(913\) 1.16590e12 1.67795
\(914\) 9.31019e11i 1.33406i
\(915\) 0 0
\(916\) 2.92163e11 0.414996
\(917\) − 1.00154e12i − 1.41642i
\(918\) 0 0
\(919\) 1.09311e12 1.53250 0.766252 0.642540i \(-0.222119\pi\)
0.766252 + 0.642540i \(0.222119\pi\)
\(920\) 1.76851e11i 0.246864i
\(921\) 0 0
\(922\) −1.21541e11 −0.168190
\(923\) 1.77892e10i 0.0245104i
\(924\) 0 0
\(925\) 7.20994e10 0.0984838
\(926\) − 1.14962e11i − 0.156354i
\(927\) 0 0
\(928\) −1.62398e11 −0.218973
\(929\) 5.36626e11i 0.720458i 0.932864 + 0.360229i \(0.117302\pi\)
−0.932864 + 0.360229i \(0.882698\pi\)
\(930\) 0 0
\(931\) 1.15805e11 0.154145
\(932\) 5.70010e10i 0.0755473i
\(933\) 0 0
\(934\) 1.44285e11 0.189598
\(935\) 2.67194e12i 3.49607i
\(936\) 0 0
\(937\) −2.36202e11 −0.306426 −0.153213 0.988193i \(-0.548962\pi\)
−0.153213 + 0.988193i \(0.548962\pi\)
\(938\) − 5.76866e11i − 0.745184i
\(939\) 0 0
\(940\) 2.63281e11 0.337216
\(941\) − 9.00493e11i − 1.14848i −0.818688 0.574238i \(-0.805298\pi\)
0.818688 0.574238i \(-0.194702\pi\)
\(942\) 0 0
\(943\) 3.31026e11 0.418615
\(944\) 7.37808e10i 0.0929085i
\(945\) 0 0
\(946\) −1.73523e12 −2.16667
\(947\) − 6.90632e11i − 0.858710i −0.903136 0.429355i \(-0.858741\pi\)
0.903136 0.429355i \(-0.141259\pi\)
\(948\) 0 0
\(949\) −1.57394e11 −0.194055
\(950\) − 9.07843e10i − 0.111459i
\(951\) 0 0
\(952\) −4.15504e11 −0.505856
\(953\) 6.18684e11i 0.750062i 0.927012 + 0.375031i \(0.122368\pi\)
−0.927012 + 0.375031i \(0.877632\pi\)
\(954\) 0 0
\(955\) −7.58111e11 −0.911422
\(956\) 5.51561e11i 0.660331i
\(957\) 0 0
\(958\) −6.92598e11 −0.822278
\(959\) 6.96031e11i 0.822914i
\(960\) 0 0
\(961\) −3.43037e11 −0.402205
\(962\) − 3.65110e10i − 0.0426308i
\(963\) 0 0
\(964\) 3.03650e11 0.351613
\(965\) − 4.05186e11i − 0.467246i
\(966\) 0 0
\(967\) −1.49456e12 −1.70926 −0.854631 0.519236i \(-0.826216\pi\)
−0.854631 + 0.519236i \(0.826216\pi\)
\(968\) − 6.02539e11i − 0.686253i
\(969\) 0 0
\(970\) −1.22981e12 −1.38915
\(971\) 2.58703e11i 0.291022i 0.989357 + 0.145511i \(0.0464826\pi\)
−0.989357 + 0.145511i \(0.953517\pi\)
\(972\) 0 0
\(973\) 3.36528e11 0.375465
\(974\) − 5.55978e10i − 0.0617763i
\(975\) 0 0
\(976\) −3.00475e11 −0.331138
\(977\) − 2.98819e11i − 0.327966i −0.986463 0.163983i \(-0.947566\pi\)
0.986463 0.163983i \(-0.0524343\pi\)
\(978\) 0 0
\(979\) 2.27528e12 2.47688
\(980\) − 1.80485e11i − 0.195676i
\(981\) 0 0
\(982\) −7.35164e11 −0.790566
\(983\) 1.07496e12i 1.15128i 0.817705 + 0.575638i \(0.195246\pi\)
−0.817705 + 0.575638i \(0.804754\pi\)
\(984\) 0 0
\(985\) −2.05733e12 −2.18554
\(986\) 1.45518e12i 1.53960i
\(987\) 0 0
\(988\) −4.59729e10 −0.0482475
\(989\) 1.02914e12i 1.07570i
\(990\) 0 0
\(991\) −5.51000e11 −0.571290 −0.285645 0.958335i \(-0.592208\pi\)
−0.285645 + 0.958335i \(0.592208\pi\)
\(992\) 1.32357e11i 0.136679i
\(993\) 0 0
\(994\) 6.51961e10 0.0667845
\(995\) 2.10289e12i 2.14548i
\(996\) 0 0
\(997\) 9.18894e11 0.930004 0.465002 0.885310i \(-0.346054\pi\)
0.465002 + 0.885310i \(0.346054\pi\)
\(998\) − 1.15740e12i − 1.16670i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.9.b.a.161.1 8
3.2 odd 2 inner 162.9.b.a.161.8 yes 8
9.2 odd 6 162.9.d.h.53.5 16
9.4 even 3 162.9.d.h.107.5 16
9.5 odd 6 162.9.d.h.107.4 16
9.7 even 3 162.9.d.h.53.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.9.b.a.161.1 8 1.1 even 1 trivial
162.9.b.a.161.8 yes 8 3.2 odd 2 inner
162.9.d.h.53.4 16 9.7 even 3
162.9.d.h.53.5 16 9.2 odd 6
162.9.d.h.107.4 16 9.5 odd 6
162.9.d.h.107.5 16 9.4 even 3