Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(243\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 228 | 32 | 196 |
Cusp forms | 204 | 32 | 172 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
162.9.b.a | $8$ | $65.995$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8876\) | \(q+8\beta _{4}q^{2}-2^{7}q^{4}+(-66\beta _{4}-\beta _{6}+\cdots)q^{5}+\cdots\) |
162.9.b.b | $8$ | $65.995$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(1492\) | \(q+8\beta _{4}q^{2}-2^{7}q^{4}+(150\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{5}+\cdots\) |
162.9.b.c | $16$ | $65.995$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(3692\) | \(q-\beta _{8}q^{2}-2^{7}q^{4}-\beta _{10}q^{5}+(231-\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(162, [\chi]) \cong \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)