Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Sturm bound: | \(216\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1170 | 126 | 1044 |
Cusp forms | 1098 | 126 | 972 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{8}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)