Properties

Label 162.8.c.m.109.1
Level $162$
Weight $8$
Character 162.109
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{329})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 83x^{2} + 82x + 6724 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-4.28459 + 7.42113i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.8.c.m.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(-232.868 + 403.339i) q^{5} +(24.8678 + 43.0723i) q^{7} +512.000 q^{8} +3725.89 q^{10} +(151.443 + 262.306i) q^{11} +(2757.36 - 4775.88i) q^{13} +(198.943 - 344.579i) q^{14} +(-2048.00 - 3547.24i) q^{16} +22646.7 q^{17} +52805.5 q^{19} +(-14903.5 - 25813.7i) q^{20} +(1211.54 - 2098.45i) q^{22} +(10009.6 - 17337.2i) q^{23} +(-69392.3 - 120191. i) q^{25} -44117.7 q^{26} -3183.08 q^{28} +(125140. + 216748. i) q^{29} +(-131183. + 227216. i) q^{31} +(-16384.0 + 28377.9i) q^{32} +(-90586.9 - 156901. i) q^{34} -23163.7 q^{35} -460621. q^{37} +(-211222. - 365847. i) q^{38} +(-119228. + 206510. i) q^{40} +(-120202. + 208196. i) q^{41} +(-284188. - 492228. i) q^{43} -19384.6 q^{44} -160154. q^{46} +(437616. + 757973. i) q^{47} +(410535. - 711067. i) q^{49} +(-555139. + 961529. i) q^{50} +(176471. + 305656. i) q^{52} -811041. q^{53} -141064. q^{55} +(12732.3 + 22053.0i) q^{56} +(1.00112e6 - 1.73399e6i) q^{58} +(-646016. + 1.11893e6i) q^{59} +(814260. + 1.41034e6i) q^{61} +2.09893e6 q^{62} +262144. q^{64} +(1.28420e6 + 2.22430e6i) q^{65} +(921587. - 1.59623e6i) q^{67} +(-724695. + 1.25521e6i) q^{68} +(92654.6 + 160483. i) q^{70} -4.56707e6 q^{71} -1.91494e6 q^{73} +(1.84248e6 + 3.19127e6i) q^{74} +(-1.68978e6 + 2.92678e6i) q^{76} +(-7532.09 + 13046.0i) q^{77} +(905441. + 1.56827e6i) q^{79} +1.90765e6 q^{80} +1.92323e6 q^{82} +(1.54464e6 + 2.67540e6i) q^{83} +(-5.27369e6 + 9.13430e6i) q^{85} +(-2.27350e6 + 3.93782e6i) q^{86} +(77538.6 + 134301. i) q^{88} +4.10492e6 q^{89} +274278. q^{91} +(640617. + 1.10958e6i) q^{92} +(3.50093e6 - 6.06378e6i) q^{94} +(-1.22967e7 + 2.12985e7i) q^{95} +(-3.95811e6 - 6.85566e6i) q^{97} -6.56855e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} - 128 q^{4} + 48 q^{5} - 880 q^{7} + 2048 q^{8} - 768 q^{10} - 7230 q^{11} - 8560 q^{13} - 7040 q^{14} - 8192 q^{16} + 51408 q^{17} + 74096 q^{19} + 3072 q^{20} - 57840 q^{22} + 59628 q^{23}+ \cdots - 12483264 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) −232.868 + 403.339i −0.833133 + 1.44303i 0.0624081 + 0.998051i \(0.480122\pi\)
−0.895541 + 0.444978i \(0.853211\pi\)
\(6\) 0 0
\(7\) 24.8678 + 43.0723i 0.0274028 + 0.0474630i 0.879402 0.476081i \(-0.157943\pi\)
−0.851999 + 0.523544i \(0.824610\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 3725.89 1.17823
\(11\) 151.443 + 262.306i 0.0343063 + 0.0594202i 0.882669 0.469996i \(-0.155744\pi\)
−0.848362 + 0.529416i \(0.822411\pi\)
\(12\) 0 0
\(13\) 2757.36 4775.88i 0.348090 0.602909i −0.637820 0.770185i \(-0.720164\pi\)
0.985910 + 0.167276i \(0.0534971\pi\)
\(14\) 198.943 344.579i 0.0193767 0.0335614i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) 22646.7 1.11798 0.558990 0.829174i \(-0.311189\pi\)
0.558990 + 0.829174i \(0.311189\pi\)
\(18\) 0 0
\(19\) 52805.5 1.76621 0.883103 0.469179i \(-0.155450\pi\)
0.883103 + 0.469179i \(0.155450\pi\)
\(20\) −14903.5 25813.7i −0.416567 0.721515i
\(21\) 0 0
\(22\) 1211.54 2098.45i 0.0242582 0.0420164i
\(23\) 10009.6 17337.2i 0.171542 0.297120i −0.767417 0.641148i \(-0.778458\pi\)
0.938959 + 0.344028i \(0.111792\pi\)
\(24\) 0 0
\(25\) −69392.3 120191.i −0.888222 1.53845i
\(26\) −44117.7 −0.492273
\(27\) 0 0
\(28\) −3183.08 −0.0274028
\(29\) 125140. + 216748.i 0.952800 + 1.65030i 0.739324 + 0.673350i \(0.235145\pi\)
0.213476 + 0.976948i \(0.431521\pi\)
\(30\) 0 0
\(31\) −131183. + 227216.i −0.790884 + 1.36985i 0.134536 + 0.990909i \(0.457045\pi\)
−0.925420 + 0.378942i \(0.876288\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −90586.9 156901.i −0.395266 0.684620i
\(35\) −23163.7 −0.0913207
\(36\) 0 0
\(37\) −460621. −1.49499 −0.747493 0.664269i \(-0.768743\pi\)
−0.747493 + 0.664269i \(0.768743\pi\)
\(38\) −211222. 365847.i −0.624448 1.08158i
\(39\) 0 0
\(40\) −119228. + 206510.i −0.294557 + 0.510188i
\(41\) −120202. + 208196.i −0.272375 + 0.471768i −0.969470 0.245212i \(-0.921143\pi\)
0.697094 + 0.716979i \(0.254476\pi\)
\(42\) 0 0
\(43\) −284188. 492228.i −0.545087 0.944119i −0.998601 0.0528698i \(-0.983163\pi\)
0.453514 0.891249i \(-0.350170\pi\)
\(44\) −19384.6 −0.0343063
\(45\) 0 0
\(46\) −160154. −0.242597
\(47\) 437616. + 757973.i 0.614824 + 1.06491i 0.990415 + 0.138121i \(0.0441062\pi\)
−0.375592 + 0.926785i \(0.622560\pi\)
\(48\) 0 0
\(49\) 410535. 711067.i 0.498498 0.863424i
\(50\) −555139. + 961529.i −0.628068 + 1.08785i
\(51\) 0 0
\(52\) 176471. + 305656.i 0.174045 + 0.301455i
\(53\) −811041. −0.748303 −0.374151 0.927368i \(-0.622066\pi\)
−0.374151 + 0.927368i \(0.622066\pi\)
\(54\) 0 0
\(55\) −141064. −0.114327
\(56\) 12732.3 + 22053.0i 0.00968835 + 0.0167807i
\(57\) 0 0
\(58\) 1.00112e6 1.73399e6i 0.673731 1.16694i
\(59\) −646016. + 1.11893e6i −0.409507 + 0.709286i −0.994834 0.101510i \(-0.967633\pi\)
0.585328 + 0.810797i \(0.300966\pi\)
\(60\) 0 0
\(61\) 814260. + 1.41034e6i 0.459313 + 0.795554i 0.998925 0.0463604i \(-0.0147623\pi\)
−0.539612 + 0.841914i \(0.681429\pi\)
\(62\) 2.09893e6 1.11848
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 1.28420e6 + 2.22430e6i 0.580010 + 1.00461i
\(66\) 0 0
\(67\) 921587. 1.59623e6i 0.374347 0.648388i −0.615882 0.787838i \(-0.711200\pi\)
0.990229 + 0.139450i \(0.0445336\pi\)
\(68\) −724695. + 1.25521e6i −0.279495 + 0.484099i
\(69\) 0 0
\(70\) 92654.6 + 160483.i 0.0322867 + 0.0559223i
\(71\) −4.56707e6 −1.51438 −0.757188 0.653197i \(-0.773427\pi\)
−0.757188 + 0.653197i \(0.773427\pi\)
\(72\) 0 0
\(73\) −1.91494e6 −0.576136 −0.288068 0.957610i \(-0.593013\pi\)
−0.288068 + 0.957610i \(0.593013\pi\)
\(74\) 1.84248e6 + 3.19127e6i 0.528558 + 0.915489i
\(75\) 0 0
\(76\) −1.68978e6 + 2.92678e6i −0.441552 + 0.764790i
\(77\) −7532.09 + 13046.0i −0.00188017 + 0.00325656i
\(78\) 0 0
\(79\) 905441. + 1.56827e6i 0.206617 + 0.357871i 0.950647 0.310276i \(-0.100421\pi\)
−0.744030 + 0.668146i \(0.767088\pi\)
\(80\) 1.90765e6 0.416567
\(81\) 0 0
\(82\) 1.92323e6 0.385197
\(83\) 1.54464e6 + 2.67540e6i 0.296520 + 0.513588i 0.975337 0.220719i \(-0.0708405\pi\)
−0.678817 + 0.734307i \(0.737507\pi\)
\(84\) 0 0
\(85\) −5.27369e6 + 9.13430e6i −0.931426 + 1.61328i
\(86\) −2.27350e6 + 3.93782e6i −0.385435 + 0.667593i
\(87\) 0 0
\(88\) 77538.6 + 134301.i 0.0121291 + 0.0210082i
\(89\) 4.10492e6 0.617219 0.308610 0.951189i \(-0.400136\pi\)
0.308610 + 0.951189i \(0.400136\pi\)
\(90\) 0 0
\(91\) 274278. 0.0381545
\(92\) 640617. + 1.10958e6i 0.0857711 + 0.148560i
\(93\) 0 0
\(94\) 3.50093e6 6.06378e6i 0.434746 0.753002i
\(95\) −1.22967e7 + 2.12985e7i −1.47149 + 2.54869i
\(96\) 0 0
\(97\) −3.95811e6 6.85566e6i −0.440339 0.762690i 0.557375 0.830261i \(-0.311808\pi\)
−0.997714 + 0.0675709i \(0.978475\pi\)
\(98\) −6.56855e6 −0.704983
\(99\) 0 0
\(100\) 8.88222e6 0.888222
\(101\) 4.81629e6 + 8.34207e6i 0.465145 + 0.805654i 0.999208 0.0397901i \(-0.0126689\pi\)
−0.534063 + 0.845445i \(0.679336\pi\)
\(102\) 0 0
\(103\) −4.59008e6 + 7.95025e6i −0.413894 + 0.716886i −0.995312 0.0967193i \(-0.969165\pi\)
0.581417 + 0.813606i \(0.302498\pi\)
\(104\) 1.41177e6 2.44525e6i 0.123068 0.213161i
\(105\) 0 0
\(106\) 3.24416e6 + 5.61906e6i 0.264565 + 0.458240i
\(107\) −3.82175e6 −0.301591 −0.150796 0.988565i \(-0.548184\pi\)
−0.150796 + 0.988565i \(0.548184\pi\)
\(108\) 0 0
\(109\) 1.90995e7 1.41264 0.706318 0.707895i \(-0.250355\pi\)
0.706318 + 0.707895i \(0.250355\pi\)
\(110\) 564258. + 977323.i 0.0404206 + 0.0700106i
\(111\) 0 0
\(112\) 101859. 176424.i 0.00685069 0.0118658i
\(113\) 115135. 199420.i 0.00750643 0.0130015i −0.862248 0.506487i \(-0.830944\pi\)
0.869754 + 0.493485i \(0.164277\pi\)
\(114\) 0 0
\(115\) 4.66185e6 + 8.07456e6i 0.285835 + 0.495081i
\(116\) −1.60179e7 −0.952800
\(117\) 0 0
\(118\) 1.03363e7 0.579130
\(119\) 563174. + 975447.i 0.0306358 + 0.0530627i
\(120\) 0 0
\(121\) 9.69772e6 1.67969e7i 0.497646 0.861948i
\(122\) 6.51408e6 1.12827e7i 0.324783 0.562541i
\(123\) 0 0
\(124\) −8.39573e6 1.45418e7i −0.395442 0.684926i
\(125\) 2.82514e7 1.29376
\(126\) 0 0
\(127\) −3.92443e7 −1.70006 −0.850028 0.526737i \(-0.823415\pi\)
−0.850028 + 0.526737i \(0.823415\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.02736e7 1.77944e7i 0.410129 0.710365i
\(131\) −1.06388e7 + 1.84270e7i −0.413470 + 0.716151i −0.995266 0.0971836i \(-0.969017\pi\)
0.581797 + 0.813334i \(0.302350\pi\)
\(132\) 0 0
\(133\) 1.31316e6 + 2.27446e6i 0.0483990 + 0.0838295i
\(134\) −1.47454e7 −0.529407
\(135\) 0 0
\(136\) 1.15951e7 0.395266
\(137\) 9.11520e6 + 1.57880e7i 0.302862 + 0.524572i 0.976783 0.214231i \(-0.0687247\pi\)
−0.673921 + 0.738803i \(0.735391\pi\)
\(138\) 0 0
\(139\) −1.08085e7 + 1.87208e7i −0.341360 + 0.591253i −0.984686 0.174340i \(-0.944221\pi\)
0.643326 + 0.765593i \(0.277554\pi\)
\(140\) 741237. 1.28386e6i 0.0228302 0.0395430i
\(141\) 0 0
\(142\) 1.82683e7 + 3.16416e7i 0.535413 + 0.927362i
\(143\) 1.67032e6 0.0477666
\(144\) 0 0
\(145\) −1.16564e8 −3.17524
\(146\) 7.65976e6 + 1.32671e7i 0.203695 + 0.352810i
\(147\) 0 0
\(148\) 1.47399e7 2.55302e7i 0.373747 0.647348i
\(149\) 3.50300e7 6.06738e7i 0.867538 1.50262i 0.00303238 0.999995i \(-0.499035\pi\)
0.864505 0.502624i \(-0.167632\pi\)
\(150\) 0 0
\(151\) −3.10773e7 5.38275e7i −0.734555 1.27229i −0.954918 0.296868i \(-0.904058\pi\)
0.220364 0.975418i \(-0.429276\pi\)
\(152\) 2.70364e7 0.624448
\(153\) 0 0
\(154\) 120513. 0.00265897
\(155\) −6.10968e7 1.05823e8i −1.31782 2.28254i
\(156\) 0 0
\(157\) −2.66627e7 + 4.61811e7i −0.549864 + 0.952392i 0.448420 + 0.893823i \(0.351987\pi\)
−0.998283 + 0.0585686i \(0.981346\pi\)
\(158\) 7.24353e6 1.25462e7i 0.146100 0.253053i
\(159\) 0 0
\(160\) −7.63061e6 1.32166e7i −0.147279 0.255094i
\(161\) 995672. 0.0188029
\(162\) 0 0
\(163\) 8.41147e6 0.152130 0.0760650 0.997103i \(-0.475764\pi\)
0.0760650 + 0.997103i \(0.475764\pi\)
\(164\) −7.69292e6 1.33245e7i −0.136188 0.235884i
\(165\) 0 0
\(166\) 1.23571e7 2.14032e7i 0.209671 0.363161i
\(167\) 1.43922e6 2.49281e6i 0.0239122 0.0414172i −0.853822 0.520566i \(-0.825721\pi\)
0.877734 + 0.479148i \(0.159054\pi\)
\(168\) 0 0
\(169\) 1.61682e7 + 2.80042e7i 0.257667 + 0.446293i
\(170\) 8.43791e7 1.31724
\(171\) 0 0
\(172\) 3.63761e7 0.545087
\(173\) −1.22544e7 2.12253e7i −0.179941 0.311668i 0.761919 0.647673i \(-0.224257\pi\)
−0.941860 + 0.336005i \(0.890924\pi\)
\(174\) 0 0
\(175\) 3.45127e6 5.97778e6i 0.0486795 0.0843154i
\(176\) 620309. 1.07441e6i 0.00857657 0.0148551i
\(177\) 0 0
\(178\) −1.64197e7 2.84397e7i −0.218220 0.377968i
\(179\) −8.25306e7 −1.07555 −0.537773 0.843089i \(-0.680734\pi\)
−0.537773 + 0.843089i \(0.680734\pi\)
\(180\) 0 0
\(181\) 4.49477e7 0.563420 0.281710 0.959500i \(-0.409098\pi\)
0.281710 + 0.959500i \(0.409098\pi\)
\(182\) −1.09711e6 1.90025e6i −0.0134897 0.0233648i
\(183\) 0 0
\(184\) 5.12494e6 8.87665e6i 0.0606494 0.105048i
\(185\) 1.07264e8 1.85786e8i 1.24552 2.15731i
\(186\) 0 0
\(187\) 3.42968e6 + 5.94037e6i 0.0383537 + 0.0664306i
\(188\) −5.60148e7 −0.614824
\(189\) 0 0
\(190\) 1.96747e8 2.08099
\(191\) 2.22501e6 + 3.85383e6i 0.0231055 + 0.0400199i 0.877347 0.479857i \(-0.159311\pi\)
−0.854241 + 0.519876i \(0.825978\pi\)
\(192\) 0 0
\(193\) −3.35159e7 + 5.80512e7i −0.335583 + 0.581247i −0.983597 0.180382i \(-0.942267\pi\)
0.648014 + 0.761629i \(0.275600\pi\)
\(194\) −3.16649e7 + 5.48452e7i −0.311367 + 0.539303i
\(195\) 0 0
\(196\) 2.62742e7 + 4.55083e7i 0.249249 + 0.431712i
\(197\) −9.80246e7 −0.913489 −0.456745 0.889598i \(-0.650985\pi\)
−0.456745 + 0.889598i \(0.650985\pi\)
\(198\) 0 0
\(199\) 5.48349e7 0.493254 0.246627 0.969110i \(-0.420678\pi\)
0.246627 + 0.969110i \(0.420678\pi\)
\(200\) −3.55289e7 6.15378e7i −0.314034 0.543923i
\(201\) 0 0
\(202\) 3.85303e7 6.67365e7i 0.328907 0.569684i
\(203\) −6.22390e6 + 1.07801e7i −0.0522187 + 0.0904455i
\(204\) 0 0
\(205\) −5.59823e7 9.69642e7i −0.453850 0.786091i
\(206\) 7.34412e7 0.585335
\(207\) 0 0
\(208\) −2.25883e7 −0.174045
\(209\) 7.99700e6 + 1.38512e7i 0.0605920 + 0.104948i
\(210\) 0 0
\(211\) −5.81377e7 + 1.00697e8i −0.426058 + 0.737955i −0.996519 0.0833704i \(-0.973432\pi\)
0.570460 + 0.821325i \(0.306765\pi\)
\(212\) 2.59533e7 4.49525e7i 0.187076 0.324025i
\(213\) 0 0
\(214\) 1.52870e7 + 2.64778e7i 0.106629 + 0.184686i
\(215\) 2.64713e8 1.81652
\(216\) 0 0
\(217\) −1.30490e7 −0.0866897
\(218\) −7.63981e7 1.32325e8i −0.499442 0.865059i
\(219\) 0 0
\(220\) 4.51406e6 7.81858e6i 0.0285817 0.0495050i
\(221\) 6.24451e7 1.08158e8i 0.389157 0.674040i
\(222\) 0 0
\(223\) 6.60745e7 + 1.14444e8i 0.398994 + 0.691078i 0.993602 0.112938i \(-0.0360260\pi\)
−0.594608 + 0.804016i \(0.702693\pi\)
\(224\) −1.62974e6 −0.00968835
\(225\) 0 0
\(226\) −1.84216e6 −0.0106157
\(227\) −2.82306e7 4.88969e7i −0.160188 0.277454i 0.774748 0.632270i \(-0.217877\pi\)
−0.934936 + 0.354816i \(0.884543\pi\)
\(228\) 0 0
\(229\) −8.89369e7 + 1.54043e8i −0.489393 + 0.847654i −0.999926 0.0122046i \(-0.996115\pi\)
0.510532 + 0.859859i \(0.329448\pi\)
\(230\) 3.72948e7 6.45965e7i 0.202116 0.350075i
\(231\) 0 0
\(232\) 6.40715e7 + 1.10975e8i 0.336866 + 0.583468i
\(233\) −1.00997e8 −0.523076 −0.261538 0.965193i \(-0.584230\pi\)
−0.261538 + 0.965193i \(0.584230\pi\)
\(234\) 0 0
\(235\) −4.07627e8 −2.04892
\(236\) −4.13450e7 7.16116e7i −0.204753 0.354643i
\(237\) 0 0
\(238\) 4.50540e6 7.80357e6i 0.0216627 0.0375210i
\(239\) −6.07131e7 + 1.05158e8i −0.287667 + 0.498254i −0.973252 0.229739i \(-0.926213\pi\)
0.685586 + 0.727992i \(0.259546\pi\)
\(240\) 0 0
\(241\) 1.14124e8 + 1.97669e8i 0.525191 + 0.909657i 0.999570 + 0.0293364i \(0.00933942\pi\)
−0.474379 + 0.880321i \(0.657327\pi\)
\(242\) −1.55163e8 −0.703778
\(243\) 0 0
\(244\) −1.04225e8 −0.459313
\(245\) 1.91201e8 + 3.31169e8i 0.830631 + 1.43869i
\(246\) 0 0
\(247\) 1.45604e8 2.52193e8i 0.614798 1.06486i
\(248\) −6.71659e7 + 1.16335e8i −0.279620 + 0.484315i
\(249\) 0 0
\(250\) −1.13006e8 1.95731e8i −0.457414 0.792265i
\(251\) 3.32724e8 1.32808 0.664042 0.747695i \(-0.268840\pi\)
0.664042 + 0.747695i \(0.268840\pi\)
\(252\) 0 0
\(253\) 6.06354e6 0.0235399
\(254\) 1.56977e8 + 2.71892e8i 0.601061 + 1.04107i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) −2.31212e8 + 4.00470e8i −0.849657 + 1.47165i 0.0318576 + 0.999492i \(0.489858\pi\)
−0.881515 + 0.472157i \(0.843476\pi\)
\(258\) 0 0
\(259\) −1.14546e7 1.98400e7i −0.0409668 0.0709566i
\(260\) −1.64377e8 −0.580010
\(261\) 0 0
\(262\) 1.70221e8 0.584735
\(263\) −6.65315e7 1.15236e8i −0.225519 0.390610i 0.730956 0.682424i \(-0.239074\pi\)
−0.956475 + 0.291815i \(0.905741\pi\)
\(264\) 0 0
\(265\) 1.88865e8 3.27124e8i 0.623436 1.07982i
\(266\) 1.05053e7 1.81956e7i 0.0342232 0.0592764i
\(267\) 0 0
\(268\) 5.89815e7 + 1.02159e8i 0.187173 + 0.324194i
\(269\) −3.65232e8 −1.14403 −0.572013 0.820245i \(-0.693837\pi\)
−0.572013 + 0.820245i \(0.693837\pi\)
\(270\) 0 0
\(271\) 1.75400e8 0.535348 0.267674 0.963510i \(-0.413745\pi\)
0.267674 + 0.963510i \(0.413745\pi\)
\(272\) −4.63805e7 8.03333e7i −0.139747 0.242050i
\(273\) 0 0
\(274\) 7.29216e7 1.26304e8i 0.214156 0.370928i
\(275\) 2.10179e7 3.64041e7i 0.0609432 0.105557i
\(276\) 0 0
\(277\) −9.21421e7 1.59595e8i −0.260483 0.451169i 0.705888 0.708324i \(-0.250548\pi\)
−0.966370 + 0.257155i \(0.917215\pi\)
\(278\) 1.72936e8 0.482756
\(279\) 0 0
\(280\) −1.18598e7 −0.0322867
\(281\) 4.36306e7 + 7.55704e7i 0.117306 + 0.203179i 0.918699 0.394958i \(-0.129241\pi\)
−0.801393 + 0.598138i \(0.795908\pi\)
\(282\) 0 0
\(283\) −9.38103e7 + 1.62484e8i −0.246036 + 0.426146i −0.962422 0.271557i \(-0.912461\pi\)
0.716387 + 0.697703i \(0.245795\pi\)
\(284\) 1.46146e8 2.53133e8i 0.378594 0.655744i
\(285\) 0 0
\(286\) −6.68130e6 1.15723e7i −0.0168881 0.0292510i
\(287\) −1.19566e7 −0.0298554
\(288\) 0 0
\(289\) 1.02535e8 0.249879
\(290\) 4.66256e8 + 8.07579e8i 1.12262 + 1.94443i
\(291\) 0 0
\(292\) 6.12781e7 1.06137e8i 0.144034 0.249474i
\(293\) −3.05073e8 + 5.28401e8i −0.708543 + 1.22723i 0.256854 + 0.966450i \(0.417314\pi\)
−0.965397 + 0.260783i \(0.916019\pi\)
\(294\) 0 0
\(295\) −3.00873e8 5.21127e8i −0.682347 1.18186i
\(296\) −2.35838e8 −0.528558
\(297\) 0 0
\(298\) −5.60480e8 −1.22688
\(299\) −5.52003e7 9.56097e7i −0.119424 0.206849i
\(300\) 0 0
\(301\) 1.41343e7 2.44813e7i 0.0298738 0.0517430i
\(302\) −2.48619e8 + 4.30620e8i −0.519409 + 0.899642i
\(303\) 0 0
\(304\) −1.08146e8 1.87314e8i −0.220776 0.382395i
\(305\) −7.58460e8 −1.53068
\(306\) 0 0
\(307\) 7.70231e8 1.51928 0.759638 0.650346i \(-0.225376\pi\)
0.759638 + 0.650346i \(0.225376\pi\)
\(308\) −482054. 834942.i −0.000940087 0.00162828i
\(309\) 0 0
\(310\) −4.88774e8 + 8.46581e8i −0.931842 + 1.61400i
\(311\) −4.36357e8 + 7.55792e8i −0.822584 + 1.42476i 0.0811678 + 0.996700i \(0.474135\pi\)
−0.903752 + 0.428057i \(0.859198\pi\)
\(312\) 0 0
\(313\) 7.71953e6 + 1.33706e7i 0.0142294 + 0.0246460i 0.873052 0.487626i \(-0.162137\pi\)
−0.858823 + 0.512272i \(0.828804\pi\)
\(314\) 4.26603e8 0.777625
\(315\) 0 0
\(316\) −1.15896e8 −0.206617
\(317\) −1.27944e8 2.21605e8i −0.225586 0.390726i 0.730909 0.682475i \(-0.239096\pi\)
−0.956495 + 0.291749i \(0.905763\pi\)
\(318\) 0 0
\(319\) −3.79029e7 + 6.56498e7i −0.0653740 + 0.113231i
\(320\) −6.10449e7 + 1.05733e8i −0.104142 + 0.180379i
\(321\) 0 0
\(322\) −3.98269e6 6.89822e6i −0.00664784 0.0115144i
\(323\) 1.19587e9 1.97458
\(324\) 0 0
\(325\) −7.65358e8 −1.23672
\(326\) −3.36459e7 5.82763e7i −0.0537861 0.0931603i
\(327\) 0 0
\(328\) −6.15433e7 + 1.06596e8i −0.0962992 + 0.166795i
\(329\) −2.17651e7 + 3.76983e7i −0.0336958 + 0.0583628i
\(330\) 0 0
\(331\) −1.99183e8 3.44995e8i −0.301893 0.522895i 0.674671 0.738118i \(-0.264285\pi\)
−0.976565 + 0.215223i \(0.930952\pi\)
\(332\) −1.97714e8 −0.296520
\(333\) 0 0
\(334\) −2.30276e7 −0.0338170
\(335\) 4.29216e8 + 7.43423e8i 0.623762 + 1.08039i
\(336\) 0 0
\(337\) −5.81304e8 + 1.00685e9i −0.827368 + 1.43304i 0.0727283 + 0.997352i \(0.476829\pi\)
−0.900096 + 0.435691i \(0.856504\pi\)
\(338\) 1.29346e8 2.24034e8i 0.182198 0.315576i
\(339\) 0 0
\(340\) −3.37516e8 5.84595e8i −0.465713 0.806639i
\(341\) −7.94670e7 −0.108529
\(342\) 0 0
\(343\) 8.17959e7 0.109446
\(344\) −1.45504e8 2.52021e8i −0.192717 0.333796i
\(345\) 0 0
\(346\) −9.80353e7 + 1.69802e8i −0.127238 + 0.220382i
\(347\) 5.74010e8 9.94214e8i 0.737507 1.27740i −0.216108 0.976369i \(-0.569336\pi\)
0.953615 0.301030i \(-0.0973303\pi\)
\(348\) 0 0
\(349\) 6.87991e8 + 1.19164e9i 0.866351 + 1.50056i 0.865700 + 0.500564i \(0.166874\pi\)
0.000651345 1.00000i \(0.499793\pi\)
\(350\) −5.52204e7 −0.0688432
\(351\) 0 0
\(352\) −9.92494e6 −0.0121291
\(353\) 2.22495e8 + 3.85373e8i 0.269221 + 0.466304i 0.968661 0.248387i \(-0.0799005\pi\)
−0.699440 + 0.714691i \(0.746567\pi\)
\(354\) 0 0
\(355\) 1.06352e9 1.84208e9i 1.26168 2.18529i
\(356\) −1.31357e8 + 2.27518e8i −0.154305 + 0.267264i
\(357\) 0 0
\(358\) 3.30122e8 + 5.71789e8i 0.380263 + 0.658635i
\(359\) −1.14314e9 −1.30397 −0.651984 0.758233i \(-0.726063\pi\)
−0.651984 + 0.758233i \(0.726063\pi\)
\(360\) 0 0
\(361\) 1.89455e9 2.11949
\(362\) −1.79791e8 3.11407e8i −0.199199 0.345023i
\(363\) 0 0
\(364\) −8.77689e6 + 1.52020e7i −0.00953863 + 0.0165214i
\(365\) 4.45928e8 7.72370e8i 0.479998 0.831381i
\(366\) 0 0
\(367\) 3.75522e8 + 6.50423e8i 0.396555 + 0.686854i 0.993298 0.115578i \(-0.0368722\pi\)
−0.596743 + 0.802432i \(0.703539\pi\)
\(368\) −8.19990e7 −0.0857711
\(369\) 0 0
\(370\) −1.71622e9 −1.76144
\(371\) −2.01688e7 3.49334e7i −0.0205056 0.0355167i
\(372\) 0 0
\(373\) 6.65173e8 1.15211e9i 0.663672 1.14951i −0.315972 0.948769i \(-0.602330\pi\)
0.979644 0.200745i \(-0.0643362\pi\)
\(374\) 2.74374e7 4.75230e7i 0.0271202 0.0469735i
\(375\) 0 0
\(376\) 2.24059e8 + 3.88082e8i 0.217373 + 0.376501i
\(377\) 1.38022e9 1.32664
\(378\) 0 0
\(379\) 1.06374e9 1.00369 0.501845 0.864958i \(-0.332655\pi\)
0.501845 + 0.864958i \(0.332655\pi\)
\(380\) −7.86989e8 1.36310e9i −0.735743 1.27434i
\(381\) 0 0
\(382\) 1.78001e7 3.08306e7i 0.0163380 0.0282983i
\(383\) −1.05087e8 + 1.82017e8i −0.0955774 + 0.165545i −0.909849 0.414939i \(-0.863803\pi\)
0.814272 + 0.580483i \(0.197136\pi\)
\(384\) 0 0
\(385\) −3.50796e6 6.07597e6i −0.00313287 0.00542629i
\(386\) 5.36254e8 0.474586
\(387\) 0 0
\(388\) 5.06639e8 0.440339
\(389\) 1.97731e8 + 3.42480e8i 0.170314 + 0.294993i 0.938530 0.345198i \(-0.112188\pi\)
−0.768216 + 0.640191i \(0.778855\pi\)
\(390\) 0 0
\(391\) 2.26686e8 3.92631e8i 0.191781 0.332174i
\(392\) 2.10194e8 3.64066e8i 0.176246 0.305267i
\(393\) 0 0
\(394\) 3.92099e8 + 6.79135e8i 0.322967 + 0.559396i
\(395\) −8.43392e8 −0.688557
\(396\) 0 0
\(397\) 1.60421e8 0.128675 0.0643375 0.997928i \(-0.479507\pi\)
0.0643375 + 0.997928i \(0.479507\pi\)
\(398\) −2.19339e8 3.79907e8i −0.174392 0.302055i
\(399\) 0 0
\(400\) −2.84231e8 + 4.92303e8i −0.222056 + 0.384611i
\(401\) 1.40643e8 2.43602e8i 0.108922 0.188658i −0.806412 0.591354i \(-0.798594\pi\)
0.915334 + 0.402696i \(0.131927\pi\)
\(402\) 0 0
\(403\) 7.23438e8 + 1.25303e9i 0.550597 + 0.953662i
\(404\) −6.16486e8 −0.465145
\(405\) 0 0
\(406\) 9.95824e7 0.0738484
\(407\) −6.97576e7 1.20824e8i −0.0512874 0.0888324i
\(408\) 0 0
\(409\) −2.07274e8 + 3.59010e8i −0.149801 + 0.259463i −0.931154 0.364627i \(-0.881197\pi\)
0.781353 + 0.624089i \(0.214530\pi\)
\(410\) −4.47858e8 + 7.75713e8i −0.320920 + 0.555850i
\(411\) 0 0
\(412\) −2.93765e8 5.08816e8i −0.206947 0.358443i
\(413\) −6.42600e7 −0.0448865
\(414\) 0 0
\(415\) −1.43879e9 −0.988163
\(416\) 9.03531e7 + 1.56496e8i 0.0615341 + 0.106580i
\(417\) 0 0
\(418\) 6.39760e7 1.10810e8i 0.0428450 0.0742097i
\(419\) 1.29962e9 2.25101e9i 0.863114 1.49496i −0.00579285 0.999983i \(-0.501844\pi\)
0.868907 0.494975i \(-0.164823\pi\)
\(420\) 0 0
\(421\) −2.89282e8 5.01051e8i −0.188944 0.327261i 0.755954 0.654625i \(-0.227173\pi\)
−0.944899 + 0.327363i \(0.893840\pi\)
\(422\) 9.30203e8 0.602538
\(423\) 0 0
\(424\) −4.15253e8 −0.264565
\(425\) −1.57151e9 2.72193e9i −0.993014 1.71995i
\(426\) 0 0
\(427\) −4.04978e7 + 7.01442e7i −0.0251729 + 0.0436008i
\(428\) 1.22296e8 2.11823e8i 0.0753978 0.130593i
\(429\) 0 0
\(430\) −1.05885e9 1.83398e9i −0.642237 1.11239i
\(431\) −7.69740e7 −0.0463099 −0.0231549 0.999732i \(-0.507371\pi\)
−0.0231549 + 0.999732i \(0.507371\pi\)
\(432\) 0 0
\(433\) −2.75020e8 −0.162801 −0.0814005 0.996681i \(-0.525939\pi\)
−0.0814005 + 0.996681i \(0.525939\pi\)
\(434\) 5.21959e7 + 9.04059e7i 0.0306494 + 0.0530864i
\(435\) 0 0
\(436\) −6.11185e8 + 1.05860e9i −0.353159 + 0.611689i
\(437\) 5.28564e8 9.15500e8i 0.302979 0.524775i
\(438\) 0 0
\(439\) −7.61497e8 1.31895e9i −0.429579 0.744052i 0.567257 0.823541i \(-0.308005\pi\)
−0.996836 + 0.0794888i \(0.974671\pi\)
\(440\) −7.22250e7 −0.0404206
\(441\) 0 0
\(442\) −9.99121e8 −0.550351
\(443\) −1.04029e9 1.80183e9i −0.568512 0.984691i −0.996713 0.0810079i \(-0.974186\pi\)
0.428202 0.903683i \(-0.359147\pi\)
\(444\) 0 0
\(445\) −9.55903e8 + 1.65567e9i −0.514226 + 0.890665i
\(446\) 5.28596e8 9.15555e8i 0.282132 0.488666i
\(447\) 0 0
\(448\) 6.51895e6 + 1.12912e7i 0.00342535 + 0.00593288i
\(449\) 1.89838e9 0.989741 0.494870 0.868967i \(-0.335216\pi\)
0.494870 + 0.868967i \(0.335216\pi\)
\(450\) 0 0
\(451\) −7.28147e7 −0.0373767
\(452\) 7.36865e6 + 1.27629e7i 0.00375322 + 0.00650076i
\(453\) 0 0
\(454\) −2.25845e8 + 3.91175e8i −0.113270 + 0.196189i
\(455\) −6.38705e7 + 1.10627e8i −0.0317878 + 0.0550581i
\(456\) 0 0
\(457\) −3.43032e8 5.94149e8i −0.168123 0.291198i 0.769637 0.638482i \(-0.220437\pi\)
−0.937760 + 0.347284i \(0.887104\pi\)
\(458\) 1.42299e9 0.692107
\(459\) 0 0
\(460\) −5.96717e8 −0.285835
\(461\) −7.60483e8 1.31720e9i −0.361523 0.626177i 0.626688 0.779270i \(-0.284410\pi\)
−0.988212 + 0.153093i \(0.951077\pi\)
\(462\) 0 0
\(463\) 2.50143e8 4.33260e8i 0.117126 0.202869i −0.801501 0.597993i \(-0.795965\pi\)
0.918628 + 0.395124i \(0.129298\pi\)
\(464\) 5.12572e8 8.87800e8i 0.238200 0.412575i
\(465\) 0 0
\(466\) 4.03990e8 + 6.99730e8i 0.184935 + 0.320317i
\(467\) −4.03333e9 −1.83255 −0.916274 0.400553i \(-0.868818\pi\)
−0.916274 + 0.400553i \(0.868818\pi\)
\(468\) 0 0
\(469\) 9.16714e7 0.0410326
\(470\) 1.63051e9 + 2.82412e9i 0.724403 + 1.25470i
\(471\) 0 0
\(472\) −3.30760e8 + 5.72893e8i −0.144782 + 0.250771i
\(473\) 8.60763e7 1.49089e8i 0.0373998 0.0647784i
\(474\) 0 0
\(475\) −3.66430e9 6.34675e9i −1.56878 2.71721i
\(476\) −7.20863e7 −0.0306358
\(477\) 0 0
\(478\) 9.71410e8 0.406822
\(479\) 1.30131e9 + 2.25394e9i 0.541012 + 0.937059i 0.998846 + 0.0480221i \(0.0152918\pi\)
−0.457835 + 0.889037i \(0.651375\pi\)
\(480\) 0 0
\(481\) −1.27010e9 + 2.19987e9i −0.520389 + 0.901341i
\(482\) 9.12992e8 1.58135e9i 0.371366 0.643225i
\(483\) 0 0
\(484\) 6.20654e8 + 1.07500e9i 0.248823 + 0.430974i
\(485\) 3.68687e9 1.46744
\(486\) 0 0
\(487\) 4.35516e9 1.70865 0.854325 0.519739i \(-0.173971\pi\)
0.854325 + 0.519739i \(0.173971\pi\)
\(488\) 4.16901e8 + 7.22094e8i 0.162392 + 0.281271i
\(489\) 0 0
\(490\) 1.52961e9 2.64935e9i 0.587345 1.01731i
\(491\) −2.08328e8 + 3.60834e8i −0.0794258 + 0.137569i −0.903002 0.429636i \(-0.858642\pi\)
0.823577 + 0.567205i \(0.191975\pi\)
\(492\) 0 0
\(493\) 2.83400e9 + 4.90863e9i 1.06521 + 1.84500i
\(494\) −2.32966e9 −0.869456
\(495\) 0 0
\(496\) 1.07465e9 0.395442
\(497\) −1.13573e8 1.96714e8i −0.0414981 0.0718768i
\(498\) 0 0
\(499\) 1.67135e9 2.89486e9i 0.602164 1.04298i −0.390329 0.920676i \(-0.627639\pi\)
0.992493 0.122303i \(-0.0390280\pi\)
\(500\) −9.04044e8 + 1.56585e9i −0.323441 + 0.560216i
\(501\) 0 0
\(502\) −1.33089e9 2.30518e9i −0.469549 0.813282i
\(503\) −1.48681e9 −0.520915 −0.260458 0.965485i \(-0.583873\pi\)
−0.260458 + 0.965485i \(0.583873\pi\)
\(504\) 0 0
\(505\) −4.48624e9 −1.55011
\(506\) −2.42542e7 4.20095e7i −0.00832261 0.0144152i
\(507\) 0 0
\(508\) 1.25582e9 2.17514e9i 0.425014 0.736146i
\(509\) 3.17171e8 5.49356e8i 0.106606 0.184647i −0.807787 0.589474i \(-0.799335\pi\)
0.914393 + 0.404827i \(0.132668\pi\)
\(510\) 0 0
\(511\) −4.76204e7 8.24809e7i −0.0157877 0.0273452i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 3.69939e9 1.20160
\(515\) −2.13776e9 3.70271e9i −0.689658 1.19452i
\(516\) 0 0
\(517\) −1.32547e8 + 2.29579e8i −0.0421846 + 0.0730659i
\(518\) −9.16370e7 + 1.58720e8i −0.0289679 + 0.0501739i
\(519\) 0 0
\(520\) 6.57510e8 + 1.13884e9i 0.205065 + 0.355182i
\(521\) 5.00649e9 1.55096 0.775481 0.631371i \(-0.217507\pi\)
0.775481 + 0.631371i \(0.217507\pi\)
\(522\) 0 0
\(523\) −4.06385e9 −1.24217 −0.621086 0.783743i \(-0.713308\pi\)
−0.621086 + 0.783743i \(0.713308\pi\)
\(524\) −6.80884e8 1.17933e9i −0.206735 0.358075i
\(525\) 0 0
\(526\) −5.32252e8 + 9.21888e8i −0.159466 + 0.276203i
\(527\) −2.97087e9 + 5.14570e9i −0.884192 + 1.53147i
\(528\) 0 0
\(529\) 1.50203e9 + 2.60159e9i 0.441146 + 0.764088i
\(530\) −3.02185e9 −0.881672
\(531\) 0 0
\(532\) −1.68084e8 −0.0483990
\(533\) 6.62879e8 + 1.14814e9i 0.189622 + 0.328435i
\(534\) 0 0
\(535\) 8.89962e8 1.54146e9i 0.251266 0.435205i
\(536\) 4.71852e8 8.17272e8i 0.132352 0.229240i
\(537\) 0 0
\(538\) 1.46093e9 + 2.53040e9i 0.404474 + 0.700570i
\(539\) 2.48690e8 0.0684065
\(540\) 0 0
\(541\) 6.36182e8 0.172739 0.0863696 0.996263i \(-0.472473\pi\)
0.0863696 + 0.996263i \(0.472473\pi\)
\(542\) −7.01599e8 1.21520e9i −0.189274 0.327832i
\(543\) 0 0
\(544\) −3.71044e8 + 6.42667e8i −0.0988164 + 0.171155i
\(545\) −4.44767e9 + 7.70359e9i −1.17691 + 2.03847i
\(546\) 0 0
\(547\) 1.27423e9 + 2.20704e9i 0.332884 + 0.576573i 0.983076 0.183197i \(-0.0586448\pi\)
−0.650192 + 0.759770i \(0.725311\pi\)
\(548\) −1.16675e9 −0.302862
\(549\) 0 0
\(550\) −3.36287e8 −0.0861867
\(551\) 6.60806e9 + 1.14455e10i 1.68284 + 2.91477i
\(552\) 0 0
\(553\) −4.50327e7 + 7.79989e7i −0.0113237 + 0.0196133i
\(554\) −7.37136e8 + 1.27676e9i −0.184189 + 0.319025i
\(555\) 0 0
\(556\) −6.91742e8 1.19813e9i −0.170680 0.295626i
\(557\) −3.06157e9 −0.750673 −0.375337 0.926889i \(-0.622473\pi\)
−0.375337 + 0.926889i \(0.622473\pi\)
\(558\) 0 0
\(559\) −3.13443e9 −0.758957
\(560\) 4.74392e7 + 8.21671e7i 0.0114151 + 0.0197715i
\(561\) 0 0
\(562\) 3.49045e8 6.04563e8i 0.0829476 0.143670i
\(563\) 2.12350e9 3.67801e9i 0.501502 0.868627i −0.498496 0.866892i \(-0.666114\pi\)
0.999998 0.00173536i \(-0.000552382\pi\)
\(564\) 0 0
\(565\) 5.36226e7 + 9.28770e7i 0.0125077 + 0.0216640i
\(566\) 1.50096e9 0.347947
\(567\) 0 0
\(568\) −2.33834e9 −0.535413
\(569\) 2.73746e6 + 4.74142e6i 0.000622952 + 0.00107898i 0.866337 0.499460i \(-0.166468\pi\)
−0.865714 + 0.500539i \(0.833135\pi\)
\(570\) 0 0
\(571\) −2.47557e9 + 4.28782e9i −0.556479 + 0.963851i 0.441307 + 0.897356i \(0.354515\pi\)
−0.997787 + 0.0664946i \(0.978818\pi\)
\(572\) −5.34504e7 + 9.25788e7i −0.0119417 + 0.0206836i
\(573\) 0 0
\(574\) 4.78265e7 + 8.28380e7i 0.0105555 + 0.0182826i
\(575\) −2.77837e9 −0.609471
\(576\) 0 0
\(577\) −3.55867e9 −0.771210 −0.385605 0.922664i \(-0.626007\pi\)
−0.385605 + 0.922664i \(0.626007\pi\)
\(578\) −4.10140e8 7.10383e8i −0.0883455 0.153019i
\(579\) 0 0
\(580\) 3.73005e9 6.46063e9i 0.793809 1.37492i
\(581\) −7.68237e7 + 1.33063e8i −0.0162510 + 0.0281475i
\(582\) 0 0
\(583\) −1.22826e8 2.12741e8i −0.0256715 0.0444643i
\(584\) −9.80449e8 −0.203695
\(585\) 0 0
\(586\) 4.88116e9 1.00203
\(587\) −2.17427e7 3.76594e7i −0.00443690 0.00768493i 0.863798 0.503838i \(-0.168079\pi\)
−0.868235 + 0.496153i \(0.834746\pi\)
\(588\) 0 0
\(589\) −6.92720e9 + 1.19983e10i −1.39686 + 2.41944i
\(590\) −2.40698e9 + 4.16901e9i −0.482492 + 0.835701i
\(591\) 0 0
\(592\) 9.43351e8 + 1.63393e9i 0.186873 + 0.323674i
\(593\) −2.06982e9 −0.407607 −0.203804 0.979012i \(-0.565330\pi\)
−0.203804 + 0.979012i \(0.565330\pi\)
\(594\) 0 0
\(595\) −5.24581e8 −0.102095
\(596\) 2.24192e9 + 3.88312e9i 0.433769 + 0.751310i
\(597\) 0 0
\(598\) −4.41602e8 + 7.64878e8i −0.0844457 + 0.146264i
\(599\) −4.53945e9 + 7.86255e9i −0.862996 + 1.49475i 0.00602647 + 0.999982i \(0.498082\pi\)
−0.869023 + 0.494772i \(0.835252\pi\)
\(600\) 0 0
\(601\) −1.51985e8 2.63246e8i −0.0285588 0.0494653i 0.851393 0.524529i \(-0.175758\pi\)
−0.879952 + 0.475063i \(0.842425\pi\)
\(602\) −2.26148e8 −0.0422480
\(603\) 0 0
\(604\) 3.97790e9 0.734555
\(605\) 4.51657e9 + 7.82293e9i 0.829211 + 1.43624i
\(606\) 0 0
\(607\) 3.25143e9 5.63164e9i 0.590084 1.02206i −0.404136 0.914699i \(-0.632428\pi\)
0.994221 0.107357i \(-0.0342388\pi\)
\(608\) −8.65165e8 + 1.49851e9i −0.156112 + 0.270394i
\(609\) 0 0
\(610\) 3.03384e9 + 5.25477e9i 0.541176 + 0.937344i
\(611\) 4.82665e9 0.856055
\(612\) 0 0
\(613\) 2.20282e9 0.386249 0.193124 0.981174i \(-0.438138\pi\)
0.193124 + 0.981174i \(0.438138\pi\)
\(614\) −3.08092e9 5.33632e9i −0.537145 0.930363i
\(615\) 0 0
\(616\) −3.85643e6 + 6.67954e6i −0.000664742 + 0.00115137i
\(617\) 1.99310e9 3.45214e9i 0.341610 0.591685i −0.643122 0.765764i \(-0.722361\pi\)
0.984732 + 0.174078i \(0.0556946\pi\)
\(618\) 0 0
\(619\) −7.54162e8 1.30625e9i −0.127805 0.221364i 0.795021 0.606582i \(-0.207460\pi\)
−0.922826 + 0.385217i \(0.874126\pi\)
\(620\) 7.82038e9 1.31782
\(621\) 0 0
\(622\) 6.98171e9 1.16331
\(623\) 1.02080e8 + 1.76808e8i 0.0169135 + 0.0292951i
\(624\) 0 0
\(625\) −1.15756e9 + 2.00495e9i −0.189655 + 0.328492i
\(626\) 6.17562e7 1.06965e8i 0.0100617 0.0174273i
\(627\) 0 0
\(628\) −1.70641e9 2.95559e9i −0.274932 0.476196i
\(629\) −1.04315e10 −1.67136
\(630\) 0 0
\(631\) 5.99394e9 0.949751 0.474875 0.880053i \(-0.342493\pi\)
0.474875 + 0.880053i \(0.342493\pi\)
\(632\) 4.63586e8 + 8.02954e8i 0.0730500 + 0.126526i
\(633\) 0 0
\(634\) −1.02355e9 + 1.77284e9i −0.159513 + 0.276285i
\(635\) 9.13873e9 1.58287e10i 1.41637 2.45323i
\(636\) 0 0
\(637\) −2.26398e9 3.92133e9i −0.347044 0.601098i
\(638\) 6.06447e8 0.0924529
\(639\) 0 0
\(640\) 9.76718e8 0.147279
\(641\) −4.12807e9 7.15003e9i −0.619076 1.07227i −0.989655 0.143471i \(-0.954174\pi\)
0.370578 0.928801i \(-0.379160\pi\)
\(642\) 0 0
\(643\) 5.48402e9 9.49859e9i 0.813505 1.40903i −0.0968913 0.995295i \(-0.530890\pi\)
0.910396 0.413737i \(-0.135777\pi\)
\(644\) −3.18615e7 + 5.51858e7i −0.00470074 + 0.00814191i
\(645\) 0 0
\(646\) −4.78348e9 8.28524e9i −0.698121 1.20918i
\(647\) 2.91111e9 0.422565 0.211283 0.977425i \(-0.432236\pi\)
0.211283 + 0.977425i \(0.432236\pi\)
\(648\) 0 0
\(649\) −3.91337e8 −0.0561946
\(650\) 3.06143e9 + 5.30255e9i 0.437248 + 0.757336i
\(651\) 0 0
\(652\) −2.69167e8 + 4.66211e8i −0.0380325 + 0.0658743i
\(653\) −5.30674e9 + 9.19155e9i −0.745816 + 1.29179i 0.203996 + 0.978972i \(0.434607\pi\)
−0.949812 + 0.312820i \(0.898726\pi\)
\(654\) 0 0
\(655\) −4.95488e9 8.58210e9i −0.688951 1.19330i
\(656\) 9.84694e8 0.136188
\(657\) 0 0
\(658\) 3.48242e8 0.0476530
\(659\) −1.61433e9 2.79610e9i −0.219732 0.380587i 0.734994 0.678074i \(-0.237185\pi\)
−0.954726 + 0.297486i \(0.903852\pi\)
\(660\) 0 0
\(661\) −5.05736e9 + 8.75960e9i −0.681112 + 1.17972i 0.293530 + 0.955950i \(0.405170\pi\)
−0.974642 + 0.223771i \(0.928163\pi\)
\(662\) −1.59346e9 + 2.75996e9i −0.213471 + 0.369742i
\(663\) 0 0
\(664\) 7.90856e8 + 1.36980e9i 0.104836 + 0.181581i
\(665\) −1.22317e9 −0.161291
\(666\) 0 0
\(667\) 5.01041e9 0.653782
\(668\) 9.21103e7 + 1.59540e8i 0.0119561 + 0.0207086i
\(669\) 0 0
\(670\) 3.43373e9 5.94739e9i 0.441066 0.763949i
\(671\) −2.46627e8 + 4.27171e8i −0.0315146 + 0.0545850i
\(672\) 0 0
\(673\) 6.36689e9 + 1.10278e10i 0.805146 + 1.39455i 0.916192 + 0.400739i \(0.131247\pi\)
−0.111046 + 0.993815i \(0.535420\pi\)
\(674\) 9.30086e9 1.17007
\(675\) 0 0
\(676\) −2.06953e9 −0.257667
\(677\) −2.30338e8 3.98958e8i −0.0285303 0.0494159i 0.851408 0.524504i \(-0.175749\pi\)
−0.879938 + 0.475089i \(0.842416\pi\)
\(678\) 0 0
\(679\) 1.96859e8 3.40970e8i 0.0241330 0.0417996i
\(680\) −2.70013e9 + 4.67676e9i −0.329309 + 0.570380i
\(681\) 0 0
\(682\) 3.17868e8 + 5.50563e8i 0.0383708 + 0.0664602i
\(683\) 1.53853e9 0.184771 0.0923856 0.995723i \(-0.470551\pi\)
0.0923856 + 0.995723i \(0.470551\pi\)
\(684\) 0 0
\(685\) −8.49055e9 −1.00930
\(686\) −3.27183e8 5.66698e8i −0.0386952 0.0670220i
\(687\) 0 0
\(688\) −1.16403e9 + 2.01617e9i −0.136272 + 0.236030i
\(689\) −2.23633e9 + 3.87344e9i −0.260477 + 0.451159i
\(690\) 0 0
\(691\) −4.53240e9 7.85035e9i −0.522583 0.905140i −0.999655 0.0262760i \(-0.991635\pi\)
0.477072 0.878864i \(-0.341698\pi\)
\(692\) 1.56857e9 0.179941
\(693\) 0 0
\(694\) −9.18415e9 −1.04299
\(695\) −5.03389e9 8.71895e9i −0.568797 0.985185i
\(696\) 0 0
\(697\) −2.72218e9 + 4.71495e9i −0.304510 + 0.527427i
\(698\) 5.50393e9 9.53308e9i 0.612603 1.06106i
\(699\) 0 0
\(700\) 2.20881e8 + 3.82578e8i 0.0243398 + 0.0421577i
\(701\) −9.14932e9 −1.00317 −0.501586 0.865108i \(-0.667250\pi\)
−0.501586 + 0.865108i \(0.667250\pi\)
\(702\) 0 0
\(703\) −2.43233e10 −2.64046
\(704\) 3.96998e7 + 6.87620e7i 0.00428828 + 0.00742753i
\(705\) 0 0
\(706\) 1.77996e9 3.08298e9i 0.190368 0.329727i
\(707\) −2.39541e8 + 4.14898e8i −0.0254925 + 0.0441543i
\(708\) 0 0
\(709\) −1.06905e8 1.85165e8i −0.0112651 0.0195118i 0.860338 0.509724i \(-0.170253\pi\)
−0.871603 + 0.490212i \(0.836919\pi\)
\(710\) −1.70164e10 −1.78428
\(711\) 0 0
\(712\) 2.10172e9 0.218220
\(713\) 2.62620e9 + 4.54871e9i 0.271340 + 0.469975i
\(714\) 0 0
\(715\) −3.88965e8 + 6.73707e8i −0.0397960 + 0.0689287i
\(716\) 2.64098e9 4.57431e9i 0.268887 0.465725i
\(717\) 0 0
\(718\) 4.57254e9 + 7.91987e9i 0.461022 + 0.798514i
\(719\) 8.06712e9 0.809408 0.404704 0.914448i \(-0.367375\pi\)
0.404704 + 0.914448i \(0.367375\pi\)
\(720\) 0 0
\(721\) −4.56581e8 −0.0453674
\(722\) −7.57819e9 1.31258e10i −0.749351 1.29791i
\(723\) 0 0
\(724\) −1.43833e9 + 2.49125e9i −0.140855 + 0.243968i
\(725\) 1.73675e10 3.00813e10i 1.69260 2.93166i
\(726\) 0 0
\(727\) −7.82244e9 1.35489e10i −0.755043 1.30777i −0.945353 0.326049i \(-0.894283\pi\)
0.190310 0.981724i \(-0.439051\pi\)
\(728\) 1.40430e8 0.0134897
\(729\) 0 0
\(730\) −7.13485e9 −0.678820
\(731\) −6.43592e9 1.11473e10i −0.609397 1.05551i
\(732\) 0 0
\(733\) 4.90783e9 8.50061e9i 0.460283 0.797234i −0.538691 0.842503i \(-0.681081\pi\)
0.998975 + 0.0452688i \(0.0144144\pi\)
\(734\) 3.00417e9 5.20338e9i 0.280407 0.485679i
\(735\) 0 0
\(736\) 3.27996e8 + 5.68106e8i 0.0303247 + 0.0525239i
\(737\) 5.58270e8 0.0513698
\(738\) 0 0
\(739\) −3.29280e8 −0.0300131 −0.0150065 0.999887i \(-0.504777\pi\)
−0.0150065 + 0.999887i \(0.504777\pi\)
\(740\) 6.86488e9 + 1.18903e10i 0.622761 + 1.07865i
\(741\) 0 0
\(742\) −1.61351e8 + 2.79467e8i −0.0144996 + 0.0251141i
\(743\) 3.03824e9 5.26239e9i 0.271745 0.470676i −0.697564 0.716523i \(-0.745733\pi\)
0.969309 + 0.245846i \(0.0790659\pi\)
\(744\) 0 0
\(745\) 1.63147e10 + 2.82579e10i 1.44555 + 2.50376i
\(746\) −1.06428e10 −0.938574
\(747\) 0 0
\(748\) −4.38999e8 −0.0383537
\(749\) −9.50385e7 1.64612e8i −0.00826444 0.0143144i
\(750\) 0 0
\(751\) 4.49540e9 7.78627e9i 0.387283 0.670795i −0.604800 0.796378i \(-0.706747\pi\)
0.992083 + 0.125583i \(0.0400802\pi\)
\(752\) 1.79248e9 3.10466e9i 0.153706 0.266227i
\(753\) 0 0
\(754\) −5.52087e9 9.56243e9i −0.469038 0.812397i
\(755\) 2.89476e10 2.44793
\(756\) 0 0
\(757\) −4.08451e9 −0.342219 −0.171109 0.985252i \(-0.554735\pi\)
−0.171109 + 0.985252i \(0.554735\pi\)
\(758\) −4.25497e9 7.36982e9i −0.354858 0.614632i
\(759\) 0 0
\(760\) −6.29591e9 + 1.09048e10i −0.520249 + 0.901097i
\(761\) −9.07760e9 + 1.57229e10i −0.746663 + 1.29326i 0.202751 + 0.979230i \(0.435012\pi\)
−0.949414 + 0.314028i \(0.898321\pi\)
\(762\) 0 0
\(763\) 4.74964e8 + 8.22661e8i 0.0387101 + 0.0670479i
\(764\) −2.84801e8 −0.0231055
\(765\) 0 0
\(766\) 1.68140e9 0.135167
\(767\) 3.56259e9 + 6.17059e9i 0.285090 + 0.493791i
\(768\) 0 0
\(769\) 1.93456e9 3.35075e9i 0.153405 0.265705i −0.779072 0.626934i \(-0.784309\pi\)
0.932477 + 0.361229i \(0.117643\pi\)
\(770\) −2.80637e7 + 4.86078e7i −0.00221527 + 0.00383697i
\(771\) 0 0
\(772\) −2.14502e9 3.71528e9i −0.167791 0.290623i
\(773\) −5.34479e9 −0.416201 −0.208100 0.978107i \(-0.566728\pi\)
−0.208100 + 0.978107i \(0.566728\pi\)
\(774\) 0 0