Properties

Label 162.8.c.f.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.f.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(156.000 + 270.200i) q^{5} +(-161.500 + 279.726i) q^{7} +512.000 q^{8} -2496.00 q^{10} +(1860.00 - 3221.61i) q^{11} +(7089.50 + 12279.4i) q^{13} +(-1292.00 - 2237.81i) q^{14} +(-2048.00 + 3547.24i) q^{16} -15912.0 q^{17} +22421.0 q^{19} +(9984.00 - 17292.8i) q^{20} +(14880.0 + 25772.9i) q^{22} +(28884.0 + 50028.6i) q^{23} +(-9609.50 + 16644.1i) q^{25} -113432. q^{26} +20672.0 q^{28} +(83328.0 - 144328. i) q^{29} +(-47410.0 - 82116.5i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(63648.0 - 110242. i) q^{34} -100776. q^{35} +453971. q^{37} +(-89684.0 + 155337. i) q^{38} +(79872.0 + 138342. i) q^{40} +(313536. + 543060. i) q^{41} +(21236.0 - 36781.8i) q^{43} -238080. q^{44} -462144. q^{46} +(-617628. + 1.06976e6i) q^{47} +(359607. + 622858. i) q^{49} +(-76876.0 - 133153. i) q^{50} +(453728. - 785880. i) q^{52} -107280. q^{53} +1.16064e6 q^{55} +(-82688.0 + 143220. i) q^{56} +(666624. + 1.15463e6i) q^{58} +(-1.23961e6 - 2.14707e6i) q^{59} +(-1.43719e6 + 2.48929e6i) q^{61} +758560. q^{62} +262144. q^{64} +(-2.21192e6 + 3.83116e6i) q^{65} +(-750548. - 1.29999e6i) q^{67} +(509184. + 881933. i) q^{68} +(403104. - 698197. i) q^{70} -4.73314e6 q^{71} -85111.0 q^{73} +(-1.81588e6 + 3.14520e6i) q^{74} +(-717472. - 1.24270e6i) q^{76} +(600780. + 1.04058e6i) q^{77} +(590410. - 1.02262e6i) q^{79} -1.27795e6 q^{80} -5.01658e6 q^{82} +(-558264. + 966942. i) q^{83} +(-2.48227e6 - 4.29942e6i) q^{85} +(169888. + 294255. i) q^{86} +(952320. - 1.64947e6i) q^{88} -9.36814e6 q^{89} -4.57982e6 q^{91} +(1.84858e6 - 3.20183e6i) q^{92} +(-4.94102e6 - 8.55810e6i) q^{94} +(3.49768e6 + 6.05815e6i) q^{95} +(1.02000e6 - 1.76669e6i) q^{97} -5.75371e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} + 312 q^{5} - 323 q^{7} + 1024 q^{8} - 4992 q^{10} + 3720 q^{11} + 14179 q^{13} - 2584 q^{14} - 4096 q^{16} - 31824 q^{17} + 44842 q^{19} + 19968 q^{20} + 29760 q^{22} + 57768 q^{23}+ \cdots - 11507424 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 156.000 + 270.200i 0.558123 + 0.966697i 0.997653 + 0.0684691i \(0.0218114\pi\)
−0.439531 + 0.898228i \(0.644855\pi\)
\(6\) 0 0
\(7\) −161.500 + 279.726i −0.177963 + 0.308241i −0.941183 0.337898i \(-0.890284\pi\)
0.763220 + 0.646139i \(0.223617\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −2496.00 −0.789305
\(11\) 1860.00 3221.61i 0.421346 0.729792i −0.574726 0.818346i \(-0.694891\pi\)
0.996071 + 0.0885540i \(0.0282246\pi\)
\(12\) 0 0
\(13\) 7089.50 + 12279.4i 0.894981 + 1.55015i 0.833828 + 0.552024i \(0.186144\pi\)
0.0611531 + 0.998128i \(0.480522\pi\)
\(14\) −1292.00 2237.81i −0.125839 0.217959i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −15912.0 −0.785513 −0.392757 0.919642i \(-0.628479\pi\)
−0.392757 + 0.919642i \(0.628479\pi\)
\(18\) 0 0
\(19\) 22421.0 0.749924 0.374962 0.927040i \(-0.377656\pi\)
0.374962 + 0.927040i \(0.377656\pi\)
\(20\) 9984.00 17292.8i 0.279061 0.483348i
\(21\) 0 0
\(22\) 14880.0 + 25772.9i 0.297936 + 0.516041i
\(23\) 28884.0 + 50028.6i 0.495005 + 0.857374i 0.999983 0.00575773i \(-0.00183275\pi\)
−0.504978 + 0.863132i \(0.668499\pi\)
\(24\) 0 0
\(25\) −9609.50 + 16644.1i −0.123002 + 0.213045i
\(26\) −113432. −1.26569
\(27\) 0 0
\(28\) 20672.0 0.177963
\(29\) 83328.0 144328.i 0.634451 1.09890i −0.352180 0.935932i \(-0.614560\pi\)
0.986631 0.162969i \(-0.0521070\pi\)
\(30\) 0 0
\(31\) −47410.0 82116.5i −0.285828 0.495068i 0.686982 0.726674i \(-0.258935\pi\)
−0.972810 + 0.231607i \(0.925602\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 63648.0 110242.i 0.277721 0.481027i
\(35\) −100776. −0.397300
\(36\) 0 0
\(37\) 453971. 1.47340 0.736702 0.676217i \(-0.236382\pi\)
0.736702 + 0.676217i \(0.236382\pi\)
\(38\) −89684.0 + 155337.i −0.265138 + 0.459233i
\(39\) 0 0
\(40\) 79872.0 + 138342.i 0.197326 + 0.341779i
\(41\) 313536. + 543060.i 0.710467 + 1.23056i 0.964682 + 0.263417i \(0.0848496\pi\)
−0.254215 + 0.967148i \(0.581817\pi\)
\(42\) 0 0
\(43\) 21236.0 36781.8i 0.0407318 0.0705495i −0.844941 0.534860i \(-0.820364\pi\)
0.885673 + 0.464310i \(0.153698\pi\)
\(44\) −238080. −0.421346
\(45\) 0 0
\(46\) −462144. −0.700043
\(47\) −617628. + 1.06976e6i −0.867730 + 1.50295i −0.00341876 + 0.999994i \(0.501088\pi\)
−0.864311 + 0.502958i \(0.832245\pi\)
\(48\) 0 0
\(49\) 359607. + 622858.i 0.436658 + 0.756315i
\(50\) −76876.0 133153.i −0.0869753 0.150646i
\(51\) 0 0
\(52\) 453728. 785880.i 0.447491 0.775076i
\(53\) −107280. −0.0989813 −0.0494907 0.998775i \(-0.515760\pi\)
−0.0494907 + 0.998775i \(0.515760\pi\)
\(54\) 0 0
\(55\) 1.16064e6 0.940650
\(56\) −82688.0 + 143220.i −0.0629194 + 0.108980i
\(57\) 0 0
\(58\) 666624. + 1.15463e6i 0.448624 + 0.777040i
\(59\) −1.23961e6 2.14707e6i −0.785785 1.36102i −0.928529 0.371260i \(-0.878926\pi\)
0.142744 0.989760i \(-0.454407\pi\)
\(60\) 0 0
\(61\) −1.43719e6 + 2.48929e6i −0.810700 + 1.40417i 0.101675 + 0.994818i \(0.467580\pi\)
−0.912375 + 0.409356i \(0.865753\pi\)
\(62\) 758560. 0.404221
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −2.21192e6 + 3.83116e6i −0.999018 + 1.73035i
\(66\) 0 0
\(67\) −750548. 1.29999e6i −0.304872 0.528053i 0.672361 0.740223i \(-0.265280\pi\)
−0.977233 + 0.212170i \(0.931947\pi\)
\(68\) 509184. + 881933.i 0.196378 + 0.340137i
\(69\) 0 0
\(70\) 403104. 698197.i 0.140467 0.243296i
\(71\) −4.73314e6 −1.56944 −0.784720 0.619850i \(-0.787193\pi\)
−0.784720 + 0.619850i \(0.787193\pi\)
\(72\) 0 0
\(73\) −85111.0 −0.0256068 −0.0128034 0.999918i \(-0.504076\pi\)
−0.0128034 + 0.999918i \(0.504076\pi\)
\(74\) −1.81588e6 + 3.14520e6i −0.520927 + 0.902272i
\(75\) 0 0
\(76\) −717472. 1.24270e6i −0.187481 0.324727i
\(77\) 600780. + 1.04058e6i 0.149968 + 0.259752i
\(78\) 0 0
\(79\) 590410. 1.02262e6i 0.134728 0.233356i −0.790765 0.612119i \(-0.790317\pi\)
0.925494 + 0.378763i \(0.123651\pi\)
\(80\) −1.27795e6 −0.279061
\(81\) 0 0
\(82\) −5.01658e6 −1.00475
\(83\) −558264. + 966942.i −0.107168 + 0.185621i −0.914622 0.404310i \(-0.867512\pi\)
0.807454 + 0.589931i \(0.200845\pi\)
\(84\) 0 0
\(85\) −2.48227e6 4.29942e6i −0.438413 0.759353i
\(86\) 169888. + 294255.i 0.0288017 + 0.0498860i
\(87\) 0 0
\(88\) 952320. 1.64947e6i 0.148968 0.258020i
\(89\) −9.36814e6 −1.40860 −0.704301 0.709902i \(-0.748739\pi\)
−0.704301 + 0.709902i \(0.748739\pi\)
\(90\) 0 0
\(91\) −4.57982e6 −0.637094
\(92\) 1.84858e6 3.20183e6i 0.247503 0.428687i
\(93\) 0 0
\(94\) −4.94102e6 8.55810e6i −0.613578 1.06275i
\(95\) 3.49768e6 + 6.05815e6i 0.418550 + 0.724949i
\(96\) 0 0
\(97\) 1.02000e6 1.76669e6i 0.113474 0.196543i −0.803694 0.595042i \(-0.797135\pi\)
0.917169 + 0.398499i \(0.130469\pi\)
\(98\) −5.75371e6 −0.617528
\(99\) 0 0
\(100\) 1.23002e6 0.123002
\(101\) −7.62874e6 + 1.32134e7i −0.736763 + 1.27611i 0.217183 + 0.976131i \(0.430313\pi\)
−0.953946 + 0.299980i \(0.903020\pi\)
\(102\) 0 0
\(103\) 9.62167e6 + 1.66652e7i 0.867601 + 1.50273i 0.864441 + 0.502735i \(0.167673\pi\)
0.00316080 + 0.999995i \(0.498994\pi\)
\(104\) 3.62982e6 + 6.28704e6i 0.316424 + 0.548062i
\(105\) 0 0
\(106\) 429120. 743258.i 0.0349952 0.0606134i
\(107\) −1.28571e7 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(108\) 0 0
\(109\) −1.02835e7 −0.760589 −0.380294 0.924865i \(-0.624177\pi\)
−0.380294 + 0.924865i \(0.624177\pi\)
\(110\) −4.64256e6 + 8.04115e6i −0.332570 + 0.576028i
\(111\) 0 0
\(112\) −661504. 1.14576e6i −0.0444907 0.0770602i
\(113\) 9.33863e6 + 1.61750e7i 0.608847 + 1.05455i 0.991431 + 0.130634i \(0.0417012\pi\)
−0.382583 + 0.923921i \(0.624965\pi\)
\(114\) 0 0
\(115\) −9.01181e6 + 1.56089e7i −0.552547 + 0.957040i
\(116\) −1.06660e7 −0.634451
\(117\) 0 0
\(118\) 1.98338e7 1.11127
\(119\) 2.56979e6 4.45100e6i 0.139792 0.242127i
\(120\) 0 0
\(121\) 2.82439e6 + 4.89198e6i 0.144936 + 0.251036i
\(122\) −1.14975e7 1.99143e7i −0.573252 0.992901i
\(123\) 0 0
\(124\) −3.03424e6 + 5.25546e6i −0.142914 + 0.247534i
\(125\) 1.83787e7 0.841645
\(126\) 0 0
\(127\) 3.53659e6 0.153204 0.0766022 0.997062i \(-0.475593\pi\)
0.0766022 + 0.997062i \(0.475593\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.76954e7 3.06493e7i −0.706413 1.22354i
\(131\) −1.50503e7 2.60678e7i −0.584917 1.01311i −0.994886 0.101007i \(-0.967794\pi\)
0.409969 0.912100i \(-0.365540\pi\)
\(132\) 0 0
\(133\) −3.62099e6 + 6.27174e6i −0.133459 + 0.231157i
\(134\) 1.20088e7 0.431154
\(135\) 0 0
\(136\) −8.14694e6 −0.277721
\(137\) −3.68663e6 + 6.38543e6i −0.122492 + 0.212162i −0.920750 0.390154i \(-0.872422\pi\)
0.798258 + 0.602316i \(0.205755\pi\)
\(138\) 0 0
\(139\) 2.96261e7 + 5.13139e7i 0.935670 + 1.62063i 0.773435 + 0.633876i \(0.218537\pi\)
0.162235 + 0.986752i \(0.448130\pi\)
\(140\) 3.22483e6 + 5.58557e6i 0.0993251 + 0.172036i
\(141\) 0 0
\(142\) 1.89325e7 3.27921e7i 0.554881 0.961082i
\(143\) 5.27459e7 1.50839
\(144\) 0 0
\(145\) 5.19967e7 1.41641
\(146\) 340444. 589666.i 0.00905338 0.0156809i
\(147\) 0 0
\(148\) −1.45271e7 2.51616e7i −0.368351 0.638003i
\(149\) −1.16316e7 2.01466e7i −0.288064 0.498941i 0.685284 0.728276i \(-0.259678\pi\)
−0.973347 + 0.229335i \(0.926345\pi\)
\(150\) 0 0
\(151\) 2.91230e7 5.04425e7i 0.688361 1.19228i −0.284006 0.958822i \(-0.591664\pi\)
0.972368 0.233455i \(-0.0750030\pi\)
\(152\) 1.14796e7 0.265138
\(153\) 0 0
\(154\) −9.61248e6 −0.212086
\(155\) 1.47919e7 2.56204e7i 0.319054 0.552617i
\(156\) 0 0
\(157\) 1.46788e7 + 2.54244e7i 0.302721 + 0.524328i 0.976751 0.214376i \(-0.0687717\pi\)
−0.674031 + 0.738703i \(0.735438\pi\)
\(158\) 4.72328e6 + 8.18095e6i 0.0952672 + 0.165008i
\(159\) 0 0
\(160\) 5.11181e6 8.85391e6i 0.0986631 0.170889i
\(161\) −1.86591e7 −0.352370
\(162\) 0 0
\(163\) −3.50196e7 −0.633366 −0.316683 0.948531i \(-0.602569\pi\)
−0.316683 + 0.948531i \(0.602569\pi\)
\(164\) 2.00663e7 3.47559e7i 0.355234 0.615282i
\(165\) 0 0
\(166\) −4.46611e6 7.73553e6i −0.0757794 0.131254i
\(167\) −3.02274e7 5.23554e7i −0.502219 0.869868i −0.999997 0.00256395i \(-0.999184\pi\)
0.497778 0.867305i \(-0.334149\pi\)
\(168\) 0 0
\(169\) −6.91478e7 + 1.19767e8i −1.10198 + 1.90869i
\(170\) 3.97164e7 0.620009
\(171\) 0 0
\(172\) −2.71821e6 −0.0407318
\(173\) 3.21740e7 5.57270e7i 0.472437 0.818285i −0.527065 0.849825i \(-0.676708\pi\)
0.999502 + 0.0315398i \(0.0100411\pi\)
\(174\) 0 0
\(175\) −3.10387e6 5.37606e6i −0.0437794 0.0758282i
\(176\) 7.61856e6 + 1.31957e7i 0.105336 + 0.182448i
\(177\) 0 0
\(178\) 3.74725e7 6.49044e7i 0.498016 0.862589i
\(179\) −1.05862e7 −0.137960 −0.0689799 0.997618i \(-0.521974\pi\)
−0.0689799 + 0.997618i \(0.521974\pi\)
\(180\) 0 0
\(181\) 6.41578e7 0.804219 0.402109 0.915592i \(-0.368277\pi\)
0.402109 + 0.915592i \(0.368277\pi\)
\(182\) 1.83193e7 3.17299e7i 0.225247 0.390139i
\(183\) 0 0
\(184\) 1.47886e7 + 2.56146e7i 0.175011 + 0.303128i
\(185\) 7.08195e7 + 1.22663e8i 0.822340 + 1.42434i
\(186\) 0 0
\(187\) −2.95963e7 + 5.12623e7i −0.330973 + 0.573261i
\(188\) 7.90564e7 0.867730
\(189\) 0 0
\(190\) −5.59628e7 −0.591919
\(191\) 7.81664e7 1.35388e8i 0.811715 1.40593i −0.0999482 0.994993i \(-0.531868\pi\)
0.911663 0.410939i \(-0.134799\pi\)
\(192\) 0 0
\(193\) 1.76630e7 + 3.05931e7i 0.176853 + 0.306319i 0.940801 0.338959i \(-0.110075\pi\)
−0.763948 + 0.645278i \(0.776742\pi\)
\(194\) 8.15998e6 + 1.41335e7i 0.0802385 + 0.138977i
\(195\) 0 0
\(196\) 2.30148e7 3.98629e7i 0.218329 0.378157i
\(197\) 1.06306e8 0.990666 0.495333 0.868703i \(-0.335046\pi\)
0.495333 + 0.868703i \(0.335046\pi\)
\(198\) 0 0
\(199\) 1.59628e7 0.143590 0.0717949 0.997419i \(-0.477127\pi\)
0.0717949 + 0.997419i \(0.477127\pi\)
\(200\) −4.92006e6 + 8.52180e6i −0.0434876 + 0.0753228i
\(201\) 0 0
\(202\) −6.10299e7 1.05707e8i −0.520970 0.902347i
\(203\) 2.69149e7 + 4.66181e7i 0.225817 + 0.391127i
\(204\) 0 0
\(205\) −9.78232e7 + 1.69435e8i −0.793055 + 1.37361i
\(206\) −1.53947e8 −1.22697
\(207\) 0 0
\(208\) −5.80772e7 −0.447491
\(209\) 4.17031e7 7.22318e7i 0.315977 0.547289i
\(210\) 0 0
\(211\) 1.32890e7 + 2.30172e7i 0.0973876 + 0.168680i 0.910603 0.413283i \(-0.135618\pi\)
−0.813215 + 0.581963i \(0.802285\pi\)
\(212\) 3.43296e6 + 5.94606e6i 0.0247453 + 0.0428602i
\(213\) 0 0
\(214\) 5.14284e7 8.90767e7i 0.358720 0.621321i
\(215\) 1.32513e7 0.0909332
\(216\) 0 0
\(217\) 3.06269e7 0.203467
\(218\) 4.11342e7 7.12465e7i 0.268909 0.465764i
\(219\) 0 0
\(220\) −3.71405e7 6.43292e7i −0.235163 0.407313i
\(221\) −1.12808e8 1.95389e8i −0.703020 1.21767i
\(222\) 0 0
\(223\) 8.56114e7 1.48283e8i 0.516969 0.895416i −0.482837 0.875710i \(-0.660394\pi\)
0.999806 0.0197061i \(-0.00627304\pi\)
\(224\) 1.05841e7 0.0629194
\(225\) 0 0
\(226\) −1.49418e8 −0.861040
\(227\) −2.16949e7 + 3.75766e7i −0.123102 + 0.213220i −0.920990 0.389587i \(-0.872618\pi\)
0.797887 + 0.602807i \(0.205951\pi\)
\(228\) 0 0
\(229\) −1.32199e8 2.28975e8i −0.727451 1.25998i −0.957957 0.286912i \(-0.907371\pi\)
0.230506 0.973071i \(-0.425962\pi\)
\(230\) −7.20945e7 1.24871e8i −0.390710 0.676730i
\(231\) 0 0
\(232\) 4.26639e7 7.38961e7i 0.224312 0.388520i
\(233\) 1.69022e8 0.875380 0.437690 0.899126i \(-0.355797\pi\)
0.437690 + 0.899126i \(0.355797\pi\)
\(234\) 0 0
\(235\) −3.85400e8 −1.93720
\(236\) −7.93352e7 + 1.37413e8i −0.392892 + 0.680510i
\(237\) 0 0
\(238\) 2.05583e7 + 3.56080e7i 0.0988480 + 0.171210i
\(239\) 3.00453e7 + 5.20400e7i 0.142359 + 0.246572i 0.928384 0.371621i \(-0.121198\pi\)
−0.786026 + 0.618194i \(0.787865\pi\)
\(240\) 0 0
\(241\) 2.42028e7 4.19205e7i 0.111380 0.192915i −0.804947 0.593347i \(-0.797806\pi\)
0.916327 + 0.400431i \(0.131140\pi\)
\(242\) −4.51902e7 −0.204970
\(243\) 0 0
\(244\) 1.83961e8 0.810700
\(245\) −1.12197e8 + 1.94332e8i −0.487418 + 0.844232i
\(246\) 0 0
\(247\) 1.58954e8 + 2.75316e8i 0.671168 + 1.16250i
\(248\) −2.42739e7 4.20437e7i −0.101055 0.175033i
\(249\) 0 0
\(250\) −7.35147e7 + 1.27331e8i −0.297567 + 0.515400i
\(251\) −2.72664e7 −0.108835 −0.0544176 0.998518i \(-0.517330\pi\)
−0.0544176 + 0.998518i \(0.517330\pi\)
\(252\) 0 0
\(253\) 2.14897e8 0.834273
\(254\) −1.41464e7 + 2.45022e7i −0.0541660 + 0.0938182i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −1.34388e7 2.32767e7i −0.0493850 0.0855374i 0.840276 0.542159i \(-0.182393\pi\)
−0.889661 + 0.456621i \(0.849059\pi\)
\(258\) 0 0
\(259\) −7.33163e7 + 1.26988e8i −0.262211 + 0.454163i
\(260\) 2.83126e8 0.999018
\(261\) 0 0
\(262\) 2.40804e8 0.827198
\(263\) −2.01854e8 + 3.49621e8i −0.684214 + 1.18509i 0.289469 + 0.957188i \(0.406521\pi\)
−0.973683 + 0.227907i \(0.926812\pi\)
\(264\) 0 0
\(265\) −1.67357e7 2.89870e7i −0.0552437 0.0956849i
\(266\) −2.89679e7 5.01739e7i −0.0943695 0.163453i
\(267\) 0 0
\(268\) −4.80351e7 + 8.31992e7i −0.152436 + 0.264027i
\(269\) −3.44677e8 −1.07964 −0.539820 0.841780i \(-0.681508\pi\)
−0.539820 + 0.841780i \(0.681508\pi\)
\(270\) 0 0
\(271\) 3.41243e8 1.04153 0.520765 0.853700i \(-0.325647\pi\)
0.520765 + 0.853700i \(0.325647\pi\)
\(272\) 3.25878e7 5.64437e7i 0.0981892 0.170069i
\(273\) 0 0
\(274\) −2.94930e7 5.10834e7i −0.0866148 0.150021i
\(275\) 3.57473e7 + 6.19162e7i 0.103652 + 0.179531i
\(276\) 0 0
\(277\) 2.70810e7 4.69056e7i 0.0765570 0.132601i −0.825205 0.564833i \(-0.808941\pi\)
0.901762 + 0.432232i \(0.142274\pi\)
\(278\) −4.74018e8 −1.32324
\(279\) 0 0
\(280\) −5.15973e7 −0.140467
\(281\) −2.74858e6 + 4.76067e6i −0.00738985 + 0.0127996i −0.869697 0.493587i \(-0.835686\pi\)
0.862307 + 0.506386i \(0.169019\pi\)
\(282\) 0 0
\(283\) 2.79386e8 + 4.83912e8i 0.732745 + 1.26915i 0.955706 + 0.294324i \(0.0950945\pi\)
−0.222961 + 0.974827i \(0.571572\pi\)
\(284\) 1.51460e8 + 2.62337e8i 0.392360 + 0.679588i
\(285\) 0 0
\(286\) −2.10984e8 + 3.65434e8i −0.533295 + 0.923694i
\(287\) −2.02544e8 −0.505747
\(288\) 0 0
\(289\) −1.57147e8 −0.382969
\(290\) −2.07987e8 + 3.60244e8i −0.500775 + 0.867368i
\(291\) 0 0
\(292\) 2.72355e6 + 4.71733e6i 0.00640171 + 0.0110881i
\(293\) −6.23684e6 1.08025e7i −0.0144853 0.0250893i 0.858692 0.512492i \(-0.171278\pi\)
−0.873177 + 0.487403i \(0.837944\pi\)
\(294\) 0 0
\(295\) 3.86759e8 6.69886e8i 0.877129 1.51923i
\(296\) 2.32433e8 0.520927
\(297\) 0 0
\(298\) 1.86106e8 0.407383
\(299\) −4.09546e8 + 7.09355e8i −0.886041 + 1.53467i
\(300\) 0 0
\(301\) 6.85923e6 + 1.18805e7i 0.0144975 + 0.0251104i
\(302\) 2.32984e8 + 4.03540e8i 0.486745 + 0.843067i
\(303\) 0 0
\(304\) −4.59182e7 + 7.95327e7i −0.0937405 + 0.162363i
\(305\) −8.96807e8 −1.80988
\(306\) 0 0
\(307\) −1.80343e7 −0.0355725 −0.0177863 0.999842i \(-0.505662\pi\)
−0.0177863 + 0.999842i \(0.505662\pi\)
\(308\) 3.84499e7 6.65972e7i 0.0749839 0.129876i
\(309\) 0 0
\(310\) 1.18335e8 + 2.04963e8i 0.225605 + 0.390759i
\(311\) 2.97327e8 + 5.14986e8i 0.560497 + 0.970809i 0.997453 + 0.0713260i \(0.0227231\pi\)
−0.436956 + 0.899483i \(0.643944\pi\)
\(312\) 0 0
\(313\) −1.86935e8 + 3.23782e8i −0.344577 + 0.596825i −0.985277 0.170967i \(-0.945311\pi\)
0.640700 + 0.767791i \(0.278644\pi\)
\(314\) −2.34861e8 −0.428112
\(315\) 0 0
\(316\) −7.55724e7 −0.134728
\(317\) 2.94682e8 5.10404e8i 0.519572 0.899925i −0.480169 0.877176i \(-0.659425\pi\)
0.999741 0.0227491i \(-0.00724188\pi\)
\(318\) 0 0
\(319\) −3.09980e8 5.36901e8i −0.534646 0.926034i
\(320\) 4.08945e7 + 7.08313e7i 0.0697653 + 0.120837i
\(321\) 0 0
\(322\) 7.46363e7 1.29274e8i 0.124582 0.215782i
\(323\) −3.56763e8 −0.589075
\(324\) 0 0
\(325\) −2.72506e8 −0.440336
\(326\) 1.40079e8 2.42623e8i 0.223929 0.387856i
\(327\) 0 0
\(328\) 1.60530e8 + 2.78047e8i 0.251188 + 0.435070i
\(329\) −1.99494e8 3.45533e8i −0.308847 0.534939i
\(330\) 0 0
\(331\) 5.78287e8 1.00162e9i 0.876487 1.51812i 0.0213168 0.999773i \(-0.493214\pi\)
0.855170 0.518347i \(-0.173453\pi\)
\(332\) 7.14578e7 0.107168
\(333\) 0 0
\(334\) 4.83638e8 0.710245
\(335\) 2.34171e8 4.05596e8i 0.340311 0.589437i
\(336\) 0 0
\(337\) −2.89409e8 5.01271e8i −0.411915 0.713458i 0.583184 0.812340i \(-0.301807\pi\)
−0.995099 + 0.0988824i \(0.968473\pi\)
\(338\) −5.53182e8 9.58139e8i −0.779219 1.34965i
\(339\) 0 0
\(340\) −1.58865e8 + 2.75163e8i −0.219206 + 0.379677i
\(341\) −3.52730e8 −0.481729
\(342\) 0 0
\(343\) −4.98311e8 −0.666762
\(344\) 1.08728e7 1.88323e7i 0.0144009 0.0249430i
\(345\) 0 0
\(346\) 2.57392e8 + 4.45816e8i 0.334063 + 0.578615i
\(347\) 1.62500e8 + 2.81458e8i 0.208785 + 0.361627i 0.951332 0.308167i \(-0.0997157\pi\)
−0.742547 + 0.669794i \(0.766382\pi\)
\(348\) 0 0
\(349\) −1.25383e8 + 2.17169e8i −0.157888 + 0.273470i −0.934107 0.356994i \(-0.883802\pi\)
0.776219 + 0.630463i \(0.217135\pi\)
\(350\) 4.96619e7 0.0619135
\(351\) 0 0
\(352\) −1.21897e8 −0.148968
\(353\) −5.20373e8 + 9.01312e8i −0.629656 + 1.09060i 0.357965 + 0.933735i \(0.383471\pi\)
−0.987621 + 0.156861i \(0.949863\pi\)
\(354\) 0 0
\(355\) −7.38369e8 1.27889e9i −0.875940 1.51717i
\(356\) 2.99780e8 + 5.19235e8i 0.352150 + 0.609942i
\(357\) 0 0
\(358\) 4.23446e7 7.33431e7i 0.0487762 0.0844828i
\(359\) 1.02411e9 1.16820 0.584101 0.811681i \(-0.301447\pi\)
0.584101 + 0.811681i \(0.301447\pi\)
\(360\) 0 0
\(361\) −3.91170e8 −0.437614
\(362\) −2.56631e8 + 4.44498e8i −0.284334 + 0.492481i
\(363\) 0 0
\(364\) 1.46554e8 + 2.53839e8i 0.159273 + 0.275870i
\(365\) −1.32773e7 2.29970e7i −0.0142917 0.0247540i
\(366\) 0 0
\(367\) −4.99967e8 + 8.65967e8i −0.527971 + 0.914472i 0.471498 + 0.881867i \(0.343714\pi\)
−0.999468 + 0.0326046i \(0.989620\pi\)
\(368\) −2.36618e8 −0.247503
\(369\) 0 0
\(370\) −1.13311e9 −1.16297
\(371\) 1.73257e7 3.00090e7i 0.0176150 0.0305101i
\(372\) 0 0
\(373\) −9.62905e7 1.66780e8i −0.0960732 0.166404i 0.813983 0.580889i \(-0.197295\pi\)
−0.910056 + 0.414485i \(0.863962\pi\)
\(374\) −2.36771e8 4.10099e8i −0.234033 0.405357i
\(375\) 0 0
\(376\) −3.16226e8 + 5.47719e8i −0.306789 + 0.531374i
\(377\) 2.36302e9 2.27129
\(378\) 0 0
\(379\) 1.91512e9 1.80700 0.903501 0.428585i \(-0.140988\pi\)
0.903501 + 0.428585i \(0.140988\pi\)
\(380\) 2.23851e8 3.87722e8i 0.209275 0.362475i
\(381\) 0 0
\(382\) 6.25331e8 + 1.08311e9i 0.573969 + 0.994144i
\(383\) −7.55549e8 1.30865e9i −0.687175 1.19022i −0.972748 0.231865i \(-0.925517\pi\)
0.285573 0.958357i \(-0.407816\pi\)
\(384\) 0 0
\(385\) −1.87443e8 + 3.24661e8i −0.167401 + 0.289947i
\(386\) −2.82607e8 −0.250108
\(387\) 0 0
\(388\) −1.30560e8 −0.113474
\(389\) 3.68584e8 6.38406e8i 0.317477 0.549887i −0.662484 0.749076i \(-0.730498\pi\)
0.979961 + 0.199189i \(0.0638309\pi\)
\(390\) 0 0
\(391\) −4.59602e8 7.96054e8i −0.388833 0.673479i
\(392\) 1.84119e8 + 3.18903e8i 0.154382 + 0.267398i
\(393\) 0 0
\(394\) −4.25225e8 + 7.36512e8i −0.350253 + 0.606657i
\(395\) 3.68416e8 0.300779
\(396\) 0 0
\(397\) −8.55916e8 −0.686538 −0.343269 0.939237i \(-0.611534\pi\)
−0.343269 + 0.939237i \(0.611534\pi\)
\(398\) −6.38512e7 + 1.10594e8i −0.0507666 + 0.0879304i
\(399\) 0 0
\(400\) −3.93605e7 6.81744e7i −0.0307504 0.0532613i
\(401\) 1.19476e8 + 2.06939e8i 0.0925288 + 0.160265i 0.908575 0.417723i \(-0.137172\pi\)
−0.816046 + 0.577987i \(0.803838\pi\)
\(402\) 0 0
\(403\) 6.72226e8 1.16433e9i 0.511620 0.886153i
\(404\) 9.76478e8 0.736763
\(405\) 0 0
\(406\) −4.30639e8 −0.319354
\(407\) 8.44386e8 1.46252e9i 0.620813 1.07528i
\(408\) 0 0
\(409\) 4.76770e8 + 8.25789e8i 0.344570 + 0.596812i 0.985275 0.170974i \(-0.0546915\pi\)
−0.640706 + 0.767786i \(0.721358\pi\)
\(410\) −7.82586e8 1.35548e9i −0.560775 0.971290i
\(411\) 0 0
\(412\) 6.15787e8 1.06657e9i 0.433801 0.751365i
\(413\) 8.00789e8 0.559362
\(414\) 0 0
\(415\) −3.48357e8 −0.239252
\(416\) 2.32309e8 4.02371e8i 0.158212 0.274031i
\(417\) 0 0
\(418\) 3.33624e8 + 5.77855e8i 0.223430 + 0.386992i
\(419\) 2.72334e8 + 4.71696e8i 0.180864 + 0.313266i 0.942175 0.335121i \(-0.108777\pi\)
−0.761311 + 0.648387i \(0.775444\pi\)
\(420\) 0 0
\(421\) 3.30635e8 5.72677e8i 0.215954 0.374044i −0.737613 0.675224i \(-0.764047\pi\)
0.953567 + 0.301180i \(0.0973805\pi\)
\(422\) −2.12624e8 −0.137727
\(423\) 0 0
\(424\) −5.49274e7 −0.0349952
\(425\) 1.52906e8 2.64842e8i 0.0966194 0.167350i
\(426\) 0 0
\(427\) −4.64213e8 8.04040e8i −0.288549 0.499782i
\(428\) 4.11428e8 + 7.12613e8i 0.253653 + 0.439340i
\(429\) 0 0
\(430\) −5.30051e7 + 9.18075e7i −0.0321498 + 0.0556850i
\(431\) −2.10789e8 −0.126817 −0.0634086 0.997988i \(-0.520197\pi\)
−0.0634086 + 0.997988i \(0.520197\pi\)
\(432\) 0 0
\(433\) −1.72888e9 −1.02343 −0.511714 0.859156i \(-0.670989\pi\)
−0.511714 + 0.859156i \(0.670989\pi\)
\(434\) −1.22507e8 + 2.12189e8i −0.0719364 + 0.124597i
\(435\) 0 0
\(436\) 3.29073e8 + 5.69972e8i 0.190147 + 0.329345i
\(437\) 6.47608e8 + 1.12169e9i 0.371217 + 0.642966i
\(438\) 0 0
\(439\) −6.97147e7 + 1.20749e8i −0.0393277 + 0.0681175i −0.885019 0.465554i \(-0.845855\pi\)
0.845692 + 0.533672i \(0.179188\pi\)
\(440\) 5.94248e8 0.332570
\(441\) 0 0
\(442\) 1.80493e9 0.994220
\(443\) 7.00603e8 1.21348e9i 0.382877 0.663162i −0.608595 0.793481i \(-0.708267\pi\)
0.991472 + 0.130319i \(0.0416001\pi\)
\(444\) 0 0
\(445\) −1.46143e9 2.53127e9i −0.786172 1.36169i
\(446\) 6.84891e8 + 1.18627e9i 0.365552 + 0.633155i
\(447\) 0 0
\(448\) −4.23363e7 + 7.33285e7i −0.0222454 + 0.0385301i
\(449\) 1.78420e7 0.00930209 0.00465104 0.999989i \(-0.498520\pi\)
0.00465104 + 0.999989i \(0.498520\pi\)
\(450\) 0 0
\(451\) 2.33271e9 1.19741
\(452\) 5.97672e8 1.03520e9i 0.304424 0.527277i
\(453\) 0 0
\(454\) −1.73559e8 3.00613e8i −0.0870466 0.150769i
\(455\) −7.14451e8 1.23747e9i −0.355576 0.615876i
\(456\) 0 0
\(457\) 8.72066e8 1.51046e9i 0.427408 0.740292i −0.569234 0.822176i \(-0.692760\pi\)
0.996642 + 0.0818833i \(0.0260935\pi\)
\(458\) 2.11518e9 1.02877
\(459\) 0 0
\(460\) 1.15351e9 0.552547
\(461\) 6.79956e8 1.17772e9i 0.323242 0.559871i −0.657913 0.753094i \(-0.728561\pi\)
0.981155 + 0.193223i \(0.0618940\pi\)
\(462\) 0 0
\(463\) 9.88793e8 + 1.71264e9i 0.462991 + 0.801923i 0.999108 0.0422200i \(-0.0134431\pi\)
−0.536118 + 0.844143i \(0.680110\pi\)
\(464\) 3.41311e8 + 5.91169e8i 0.158613 + 0.274725i
\(465\) 0 0
\(466\) −6.76087e8 + 1.17102e9i −0.309494 + 0.536059i
\(467\) −3.46852e9 −1.57592 −0.787961 0.615726i \(-0.788863\pi\)
−0.787961 + 0.615726i \(0.788863\pi\)
\(468\) 0 0
\(469\) 4.84854e8 0.217023
\(470\) 1.54160e9 2.67013e9i 0.684903 1.18629i
\(471\) 0 0
\(472\) −6.34681e8 1.09930e9i −0.277817 0.481193i
\(473\) −7.89979e7 1.36828e8i −0.0343243 0.0594514i
\(474\) 0 0
\(475\) −2.15455e8 + 3.73178e8i −0.0922419 + 0.159768i
\(476\) −3.28933e8 −0.139792
\(477\) 0 0
\(478\) −4.80725e8 −0.201325
\(479\) 1.09021e9 1.88830e9i 0.453247 0.785047i −0.545338 0.838216i \(-0.683599\pi\)
0.998586 + 0.0531688i \(0.0169321\pi\)
\(480\) 0 0
\(481\) 3.21843e9 + 5.57448e9i 1.31867 + 2.28400i
\(482\) 1.93622e8 + 3.35364e8i 0.0787573 + 0.136412i
\(483\) 0 0
\(484\) 1.80761e8 3.13087e8i 0.0724678 0.125518i
\(485\) 6.36478e8 0.253331
\(486\) 0 0
\(487\) 3.00745e9 1.17990 0.589952 0.807439i \(-0.299147\pi\)
0.589952 + 0.807439i \(0.299147\pi\)
\(488\) −7.35842e8 + 1.27452e9i −0.286626 + 0.496450i
\(489\) 0 0
\(490\) −8.97579e8 1.55465e9i −0.344656 0.596963i
\(491\) −1.31485e9 2.27739e9i −0.501292 0.868263i −0.999999 0.00149237i \(-0.999525\pi\)
0.498707 0.866771i \(-0.333808\pi\)
\(492\) 0 0
\(493\) −1.32592e9 + 2.29655e9i −0.498370 + 0.863201i
\(494\) −2.54326e9 −0.949175
\(495\) 0 0
\(496\) 3.88383e8 0.142914
\(497\) 7.64401e8 1.32398e9i 0.279302 0.483765i
\(498\) 0 0
\(499\) 1.38495e8 + 2.39880e8i 0.0498978 + 0.0864256i 0.889896 0.456164i \(-0.150777\pi\)
−0.839998 + 0.542590i \(0.817444\pi\)
\(500\) −5.88118e8 1.01865e9i −0.210411 0.364443i
\(501\) 0 0
\(502\) 1.09066e8 1.88907e8i 0.0384791 0.0666477i
\(503\) 4.59216e9 1.60890 0.804451 0.594019i \(-0.202460\pi\)
0.804451 + 0.594019i \(0.202460\pi\)
\(504\) 0 0
\(505\) −4.76033e9 −1.64482
\(506\) −8.59588e8 + 1.48885e9i −0.294960 + 0.510886i
\(507\) 0 0
\(508\) −1.13171e8 1.96018e8i −0.0383011 0.0663395i
\(509\) 1.62733e9 + 2.81862e9i 0.546970 + 0.947379i 0.998480 + 0.0551135i \(0.0175521\pi\)
−0.451510 + 0.892266i \(0.649115\pi\)
\(510\) 0 0
\(511\) 1.37454e7 2.38078e7i 0.00455706 0.00789307i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 2.15021e8 0.0698410
\(515\) −3.00196e9 + 5.19955e9i −0.968456 + 1.67741i
\(516\) 0 0
\(517\) 2.29758e9 + 3.97952e9i 0.731228 + 1.26652i
\(518\) −5.86531e8 1.01590e9i −0.185411 0.321142i
\(519\) 0 0
\(520\) −1.13251e9 + 1.96156e9i −0.353206 + 0.611771i
\(521\) −5.57306e9 −1.72648 −0.863241 0.504793i \(-0.831569\pi\)
−0.863241 + 0.504793i \(0.831569\pi\)
\(522\) 0 0
\(523\) 2.33783e9 0.714590 0.357295 0.933992i \(-0.383699\pi\)
0.357295 + 0.933992i \(0.383699\pi\)
\(524\) −9.63216e8 + 1.66834e9i −0.292459 + 0.506553i
\(525\) 0 0
\(526\) −1.61483e9 2.79697e9i −0.483813 0.837988i
\(527\) 7.54388e8 + 1.30664e9i 0.224521 + 0.388882i
\(528\) 0 0
\(529\) 3.38418e7 5.86157e7i 0.00993937 0.0172155i
\(530\) 2.67771e8 0.0781264
\(531\) 0 0
\(532\) 4.63487e8 0.133459
\(533\) −4.44563e9 + 7.70005e9i −1.27171 + 2.20266i
\(534\) 0 0
\(535\) −2.00571e9 3.47399e9i −0.566278 0.980822i
\(536\) −3.84281e8 6.65594e8i −0.107788 0.186695i
\(537\) 0 0
\(538\) 1.37871e9 2.38799e9i 0.381710 0.661142i
\(539\) 2.67548e9 0.735937
\(540\) 0 0
\(541\) −5.60874e9 −1.52291 −0.761456 0.648217i \(-0.775515\pi\)
−0.761456 + 0.648217i \(0.775515\pi\)
\(542\) −1.36497e9 + 2.36420e9i −0.368236 + 0.637804i
\(543\) 0 0
\(544\) 2.60702e8 + 4.51549e8i 0.0694302 + 0.120257i
\(545\) −1.60423e9 2.77861e9i −0.424502 0.735259i
\(546\) 0 0
\(547\) 2.25517e9 3.90606e9i 0.589146 1.02043i −0.405199 0.914229i \(-0.632798\pi\)
0.994345 0.106202i \(-0.0338690\pi\)
\(548\) 4.71888e8 0.122492
\(549\) 0 0
\(550\) −5.71957e8 −0.146587
\(551\) 1.86830e9 3.23599e9i 0.475790 0.824093i
\(552\) 0 0
\(553\) 1.90702e8 + 3.30306e8i 0.0479532 + 0.0830574i
\(554\) 2.16648e8 + 3.75245e8i 0.0541340 + 0.0937628i
\(555\) 0 0
\(556\) 1.89607e9 3.28409e9i 0.467835 0.810314i
\(557\) −3.30015e8 −0.0809171 −0.0404585 0.999181i \(-0.512882\pi\)
−0.0404585 + 0.999181i \(0.512882\pi\)
\(558\) 0 0
\(559\) 6.02210e8 0.145817
\(560\) 2.06389e8 3.57477e8i 0.0496625 0.0860181i
\(561\) 0 0
\(562\) −2.19886e7 3.80854e7i −0.00522541 0.00905068i
\(563\) 1.28786e9 + 2.23064e9i 0.304151 + 0.526805i 0.977072 0.212909i \(-0.0682938\pi\)
−0.672921 + 0.739715i \(0.734961\pi\)
\(564\) 0 0
\(565\) −2.91365e9 + 5.04659e9i −0.679623 + 1.17714i
\(566\) −4.47018e9 −1.03626
\(567\) 0 0
\(568\) −2.42337e9 −0.554881
\(569\) −1.11446e9 + 1.93030e9i −0.253612 + 0.439269i −0.964518 0.264018i \(-0.914952\pi\)
0.710905 + 0.703288i \(0.248285\pi\)
\(570\) 0 0
\(571\) −1.41716e9 2.45460e9i −0.318562 0.551765i 0.661626 0.749834i \(-0.269866\pi\)
−0.980188 + 0.198069i \(0.936533\pi\)
\(572\) −1.68787e9 2.92347e9i −0.377096 0.653150i
\(573\) 0 0
\(574\) 8.10177e8 1.40327e9i 0.178809 0.309706i
\(575\) −1.11024e9 −0.243546
\(576\) 0 0
\(577\) 1.24427e7 0.00269649 0.00134825 0.999999i \(-0.499571\pi\)
0.00134825 + 0.999999i \(0.499571\pi\)
\(578\) 6.28588e8 1.08875e9i 0.135400 0.234520i
\(579\) 0 0
\(580\) −1.66389e9 2.88195e9i −0.354101 0.613321i
\(581\) −1.80319e8 3.12322e8i −0.0381440 0.0660673i
\(582\) 0 0
\(583\) −1.99541e8 + 3.45615e8i −0.0417053 + 0.0722358i
\(584\) −4.35768e7 −0.00905338
\(585\) 0 0
\(586\) 9.97895e7 0.0204853
\(587\) −4.30705e9 + 7.46003e9i −0.878914 + 1.52232i −0.0263805 + 0.999652i \(0.508398\pi\)
−0.852534 + 0.522672i \(0.824935\pi\)
\(588\) 0 0
\(589\) −1.06298e9 1.84113e9i −0.214349 0.371263i
\(590\) 3.09407e9 + 5.35909e9i 0.620224 + 1.07426i
\(591\) 0 0
\(592\) −9.29733e8 + 1.61034e9i −0.184176 + 0.319001i
\(593\) 4.55490e9 0.896989 0.448495 0.893786i \(-0.351960\pi\)
0.448495 + 0.893786i \(0.351960\pi\)
\(594\) 0 0
\(595\) 1.60355e9 0.312085
\(596\) −7.44424e8 + 1.28938e9i −0.144032 + 0.249470i
\(597\) 0 0
\(598\) −3.27637e9 5.67484e9i −0.626526 1.08517i
\(599\) 3.28583e8 + 5.69123e8i 0.0624672 + 0.108196i 0.895568 0.444925i \(-0.146770\pi\)
−0.833100 + 0.553122i \(0.813436\pi\)
\(600\) 0 0
\(601\) −4.19703e9 + 7.26947e9i −0.788645 + 1.36597i 0.138152 + 0.990411i \(0.455884\pi\)
−0.926797 + 0.375562i \(0.877450\pi\)
\(602\) −1.09748e8 −0.0205025
\(603\) 0 0
\(604\) −3.72774e9 −0.688361
\(605\) −8.81208e8 + 1.52630e9i −0.161784 + 0.280218i
\(606\) 0 0
\(607\) 5.24763e8 + 9.08915e8i 0.0952363 + 0.164954i 0.909707 0.415250i \(-0.136306\pi\)
−0.814471 + 0.580204i \(0.802973\pi\)
\(608\) −3.67346e8 6.36261e8i −0.0662846 0.114808i
\(609\) 0 0
\(610\) 3.58723e9 6.21326e9i 0.639889 1.10832i
\(611\) −1.75147e10 −3.10641
\(612\) 0 0
\(613\) 4.22848e9 0.741433 0.370717 0.928746i \(-0.379112\pi\)
0.370717 + 0.928746i \(0.379112\pi\)
\(614\) 7.21372e7 1.24945e8i 0.0125768 0.0217836i
\(615\) 0 0
\(616\) 3.07599e8 + 5.32778e8i 0.0530216 + 0.0918361i
\(617\) 2.42730e9 + 4.20421e9i 0.416031 + 0.720586i 0.995536 0.0943822i \(-0.0300876\pi\)
−0.579505 + 0.814968i \(0.696754\pi\)
\(618\) 0 0
\(619\) −1.16137e9 + 2.01156e9i −0.196813 + 0.340891i −0.947493 0.319775i \(-0.896393\pi\)
0.750680 + 0.660666i \(0.229726\pi\)
\(620\) −1.89337e9 −0.319054
\(621\) 0 0
\(622\) −4.75723e9 −0.792662
\(623\) 1.51295e9 2.62051e9i 0.250679 0.434188i
\(624\) 0 0
\(625\) 3.61782e9 + 6.26624e9i 0.592743 + 1.02666i
\(626\) −1.49548e9 2.59025e9i −0.243653 0.422019i
\(627\) 0 0
\(628\) 9.39444e8 1.62716e9i 0.151360 0.262164i
\(629\) −7.22359e9 −1.15738
\(630\) 0 0
\(631\) 5.84987e9 0.926923 0.463461 0.886117i \(-0.346607\pi\)
0.463461 + 0.886117i \(0.346607\pi\)
\(632\) 3.02290e8 5.23581e8i 0.0476336 0.0825038i
\(633\) 0 0
\(634\) 2.35745e9 + 4.08323e9i 0.367393 + 0.636343i
\(635\) 5.51708e8 + 9.55586e8i 0.0855069 + 0.148102i
\(636\) 0 0
\(637\) −5.09887e9 + 8.83150e9i −0.781602 + 1.35377i
\(638\) 4.95968e9 0.756104
\(639\) 0 0
\(640\) −6.54311e8 −0.0986631
\(641\) 4.90859e9 8.50193e9i 0.736129 1.27501i −0.218097 0.975927i \(-0.569985\pi\)
0.954226 0.299086i \(-0.0966817\pi\)
\(642\) 0 0
\(643\) 2.36522e9 + 4.09668e9i 0.350859 + 0.607706i 0.986400 0.164361i \(-0.0525562\pi\)
−0.635541 + 0.772067i \(0.719223\pi\)
\(644\) 5.97090e8 + 1.03419e9i 0.0880926 + 0.152581i
\(645\) 0 0
\(646\) 1.42705e9 2.47173e9i 0.208270 0.360734i
\(647\) 4.28999e9 0.622718 0.311359 0.950292i \(-0.399216\pi\)
0.311359 + 0.950292i \(0.399216\pi\)
\(648\) 0 0
\(649\) −9.22271e9 −1.32435
\(650\) 1.09002e9 1.88798e9i 0.155682 0.269650i
\(651\) 0 0
\(652\) 1.12063e9 + 1.94099e9i 0.158342 + 0.274256i
\(653\) −6.60538e9 1.14409e10i −0.928328 1.60791i −0.786119 0.618075i \(-0.787913\pi\)
−0.142209 0.989837i \(-0.545421\pi\)
\(654\) 0 0
\(655\) 4.69568e9 8.13316e9i 0.652911 1.13087i
\(656\) −2.56849e9 −0.355234
\(657\) 0 0
\(658\) 3.19190e9 0.436776
\(659\) 2.80273e9 4.85448e9i 0.381490 0.660760i −0.609786 0.792566i \(-0.708744\pi\)
0.991275 + 0.131807i \(0.0420778\pi\)
\(660\) 0 0
\(661\) 8.85352e8 + 1.53347e9i 0.119237 + 0.206524i 0.919465 0.393171i \(-0.128622\pi\)
−0.800229 + 0.599695i \(0.795289\pi\)
\(662\) 4.62630e9 + 8.01298e9i 0.619770 + 1.07347i
\(663\) 0 0
\(664\) −2.85831e8 + 4.95074e8i −0.0378897 + 0.0656269i
\(665\) −2.25950e9 −0.297945
\(666\) 0 0
\(667\) 9.62738e9 1.25623
\(668\) −1.93455e9 + 3.35074e9i −0.251109 + 0.434934i
\(669\) 0 0
\(670\) 1.87337e9 + 3.24477e9i 0.240637 + 0.416795i
\(671\) 5.34635e9 + 9.26015e9i 0.683170 + 1.18329i
\(672\) 0 0
\(673\) 3.68018e8 6.37426e8i 0.0465389 0.0806077i −0.841818 0.539762i \(-0.818514\pi\)
0.888356 + 0.459154i \(0.151848\pi\)
\(674\) 4.63055e9 0.582536
\(675\) 0 0
\(676\) 8.85091e9 1.10198
\(677\) 3.11281e9 5.39154e9i 0.385560 0.667810i −0.606287 0.795246i \(-0.707342\pi\)
0.991847 + 0.127437i \(0.0406749\pi\)
\(678\) 0 0
\(679\) 3.29459e8 + 5.70640e8i 0.0403885 + 0.0699549i
\(680\) −1.27092e9 2.20130e9i −0.155002 0.268472i
\(681\) 0 0
\(682\) 1.41092e9 2.44379e9i 0.170317 0.294997i
\(683\) 6.78088e9 0.814355 0.407178 0.913349i \(-0.366513\pi\)
0.407178 + 0.913349i \(0.366513\pi\)
\(684\) 0 0
\(685\) −2.30046e9 −0.273462
\(686\) 1.99324e9 3.45240e9i 0.235736 0.408306i
\(687\) 0 0
\(688\) 8.69827e7 + 1.50658e8i 0.0101829 + 0.0176374i
\(689\) −7.60562e8 1.31733e9i −0.0885864 0.153436i
\(690\) 0 0
\(691\) 2.07498e9 3.59398e9i 0.239244 0.414383i −0.721253 0.692671i \(-0.756434\pi\)
0.960498 + 0.278288i \(0.0897670\pi\)
\(692\) −4.11827e9 −0.472437
\(693\) 0 0
\(694\) −2.60000e9 −0.295267
\(695\) −9.24334e9 + 1.60099e10i −1.04444 + 1.80902i
\(696\) 0 0
\(697\) −4.98898e9 8.64118e9i −0.558081 0.966625i
\(698\) −1.00306e9 1.73735e9i −0.111644 0.193372i
\(699\) 0 0
\(700\) −1.98648e8 + 3.44068e8i −0.0218897 + 0.0379141i
\(701\) 1.61210e10 1.76758 0.883791 0.467881i \(-0.154983\pi\)
0.883791 + 0.467881i \(0.154983\pi\)
\(702\) 0 0
\(703\) 1.01785e10 1.10494
\(704\) 4.87588e8 8.44527e8i 0.0526682 0.0912240i
\(705\) 0 0
\(706\) −4.16298e9 7.21050e9i −0.445234 0.771168i
\(707\) −2.46408e9 4.26791e9i −0.262233 0.454201i
\(708\) 0 0
\(709\) −5.66442e9 + 9.81106e9i −0.596889 + 1.03384i 0.396388 + 0.918083i \(0.370263\pi\)
−0.993277 + 0.115759i \(0.963070\pi\)
\(710\) 1.18139e10 1.23877
\(711\) 0 0
\(712\) −4.79649e9 −0.498016
\(713\) 2.73878e9 4.74371e9i 0.282972 0.490122i
\(714\) 0 0
\(715\) 8.22836e9 + 1.42519e10i 0.841864 + 1.45815i
\(716\) 3.38757e8 + 5.86745e8i 0.0344900 + 0.0597384i
\(717\) 0 0
\(718\) −4.09646e9 + 7.09528e9i −0.413022 + 0.715375i
\(719\) 8.97759e9 0.900760 0.450380 0.892837i \(-0.351289\pi\)
0.450380 + 0.892837i \(0.351289\pi\)
\(720\) 0 0
\(721\) −6.21560e9 −0.617603
\(722\) 1.56468e9 2.71011e9i 0.154720 0.267983i
\(723\) 0 0
\(724\) −2.05305e9 3.55598e9i −0.201055 0.348237i
\(725\) 1.60148e9 + 2.77385e9i 0.156077 + 0.270333i
\(726\) 0 0
\(727\) 9.90246e9 1.71516e10i 0.955813 1.65552i 0.223315 0.974746i \(-0.428312\pi\)
0.732497 0.680770i \(-0.238355\pi\)
\(728\) −2.34487e9 −0.225247
\(729\) 0 0
\(730\) 2.12437e8 0.0202116
\(731\) −3.37907e8 + 5.85272e8i −0.0319953 + 0.0554175i
\(732\) 0 0
\(733\) −9.43023e9 1.63336e10i −0.884420 1.53186i −0.846377 0.532584i \(-0.821221\pi\)
−0.0380432 0.999276i \(-0.512112\pi\)
\(734\) −3.99973e9 6.92774e9i −0.373332 0.646629i
\(735\) 0 0
\(736\) 9.46471e8 1.63934e9i 0.0875054 0.151564i
\(737\) −5.58408e9 −0.513825
\(738\) 0 0
\(739\) −1.38397e10 −1.26145 −0.630725 0.776006i \(-0.717243\pi\)
−0.630725 + 0.776006i \(0.717243\pi\)
\(740\) 4.53245e9 7.85043e9i 0.411170 0.712168i
\(741\) 0 0
\(742\) 1.38606e8 + 2.40072e8i 0.0124557 + 0.0215739i
\(743\) −9.04418e9 1.56650e10i −0.808926 1.40110i −0.913609 0.406595i \(-0.866716\pi\)
0.104683 0.994506i \(-0.466617\pi\)
\(744\) 0 0
\(745\) 3.62907e9 6.28573e9i 0.321550 0.556940i
\(746\) 1.54065e9 0.135868
\(747\) 0 0
\(748\) 3.78833e9 0.330973
\(749\) 2.07642e9 3.59647e9i 0.180563 0.312745i
\(750\) 0 0
\(751\) 1.11013e9 + 1.92281e9i 0.0956390 + 0.165652i 0.909875 0.414882i \(-0.136177\pi\)
−0.814236 + 0.580534i \(0.802844\pi\)
\(752\) −2.52980e9 4.38175e9i −0.216932 0.375738i
\(753\) 0 0
\(754\) −9.45206e9 + 1.63715e10i −0.803021 + 1.39087i
\(755\) 1.81727e10 1.53676
\(756\) 0 0
\(757\) 2.21883e10 1.85904 0.929521 0.368770i \(-0.120221\pi\)
0.929521 + 0.368770i \(0.120221\pi\)
\(758\) −7.66048e9 + 1.32683e10i −0.638872 + 1.10656i
\(759\) 0 0
\(760\) 1.79081e9 + 3.10177e9i 0.147980 + 0.256308i
\(761\) 1.51911e9 + 2.63117e9i 0.124952 + 0.216423i 0.921714 0.387870i \(-0.126789\pi\)
−0.796762 + 0.604293i \(0.793456\pi\)
\(762\) 0 0
\(763\) 1.66079e9 2.87658e9i 0.135357 0.234444i
\(764\) −1.00053e10 −0.811715
\(765\) 0 0
\(766\) 1.20888e10 0.971812
\(767\) 1.75765e10 3.04433e10i 1.40653 2.43617i
\(768\) 0 0
\(769\) 9.12045e9 + 1.57971e10i 0.723226 + 1.25266i 0.959700 + 0.281027i \(0.0906750\pi\)
−0.236474 + 0.971638i \(0.575992\pi\)
\(770\) −1.49955e9 2.59729e9i −0.118370 0.205023i
\(771\) 0 0
\(772\) 1.13043e9 1.95796e9i 0.0884266 0.153159i
\(773\) 1.20659e10 0.939576 0.469788 0.882779i \(-0.344330\pi\)
0.469788 + 0.882779i \(0.344330\pi\)