Properties

Label 162.8.c.f.109.1
Level $162$
Weight $8$
Character 162.109
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.8.c.f.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(156.000 - 270.200i) q^{5} +(-161.500 - 279.726i) q^{7} +512.000 q^{8} -2496.00 q^{10} +(1860.00 + 3221.61i) q^{11} +(7089.50 - 12279.4i) q^{13} +(-1292.00 + 2237.81i) q^{14} +(-2048.00 - 3547.24i) q^{16} -15912.0 q^{17} +22421.0 q^{19} +(9984.00 + 17292.8i) q^{20} +(14880.0 - 25772.9i) q^{22} +(28884.0 - 50028.6i) q^{23} +(-9609.50 - 16644.1i) q^{25} -113432. q^{26} +20672.0 q^{28} +(83328.0 + 144328. i) q^{29} +(-47410.0 + 82116.5i) q^{31} +(-16384.0 + 28377.9i) q^{32} +(63648.0 + 110242. i) q^{34} -100776. q^{35} +453971. q^{37} +(-89684.0 - 155337. i) q^{38} +(79872.0 - 138342. i) q^{40} +(313536. - 543060. i) q^{41} +(21236.0 + 36781.8i) q^{43} -238080. q^{44} -462144. q^{46} +(-617628. - 1.06976e6i) q^{47} +(359607. - 622858. i) q^{49} +(-76876.0 + 133153. i) q^{50} +(453728. + 785880. i) q^{52} -107280. q^{53} +1.16064e6 q^{55} +(-82688.0 - 143220. i) q^{56} +(666624. - 1.15463e6i) q^{58} +(-1.23961e6 + 2.14707e6i) q^{59} +(-1.43719e6 - 2.48929e6i) q^{61} +758560. q^{62} +262144. q^{64} +(-2.21192e6 - 3.83116e6i) q^{65} +(-750548. + 1.29999e6i) q^{67} +(509184. - 881933. i) q^{68} +(403104. + 698197. i) q^{70} -4.73314e6 q^{71} -85111.0 q^{73} +(-1.81588e6 - 3.14520e6i) q^{74} +(-717472. + 1.24270e6i) q^{76} +(600780. - 1.04058e6i) q^{77} +(590410. + 1.02262e6i) q^{79} -1.27795e6 q^{80} -5.01658e6 q^{82} +(-558264. - 966942. i) q^{83} +(-2.48227e6 + 4.29942e6i) q^{85} +(169888. - 294255. i) q^{86} +(952320. + 1.64947e6i) q^{88} -9.36814e6 q^{89} -4.57982e6 q^{91} +(1.84858e6 + 3.20183e6i) q^{92} +(-4.94102e6 + 8.55810e6i) q^{94} +(3.49768e6 - 6.05815e6i) q^{95} +(1.02000e6 + 1.76669e6i) q^{97} -5.75371e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} + 312 q^{5} - 323 q^{7} + 1024 q^{8} - 4992 q^{10} + 3720 q^{11} + 14179 q^{13} - 2584 q^{14} - 4096 q^{16} - 31824 q^{17} + 44842 q^{19} + 19968 q^{20} + 29760 q^{22} + 57768 q^{23}+ \cdots - 11507424 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 156.000 270.200i 0.558123 0.966697i −0.439531 0.898228i \(-0.644855\pi\)
0.997653 0.0684691i \(-0.0218114\pi\)
\(6\) 0 0
\(7\) −161.500 279.726i −0.177963 0.308241i 0.763220 0.646139i \(-0.223617\pi\)
−0.941183 + 0.337898i \(0.890284\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −2496.00 −0.789305
\(11\) 1860.00 + 3221.61i 0.421346 + 0.729792i 0.996071 0.0885540i \(-0.0282246\pi\)
−0.574726 + 0.818346i \(0.694891\pi\)
\(12\) 0 0
\(13\) 7089.50 12279.4i 0.894981 1.55015i 0.0611531 0.998128i \(-0.480522\pi\)
0.833828 0.552024i \(-0.186144\pi\)
\(14\) −1292.00 + 2237.81i −0.125839 + 0.217959i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) −15912.0 −0.785513 −0.392757 0.919642i \(-0.628479\pi\)
−0.392757 + 0.919642i \(0.628479\pi\)
\(18\) 0 0
\(19\) 22421.0 0.749924 0.374962 0.927040i \(-0.377656\pi\)
0.374962 + 0.927040i \(0.377656\pi\)
\(20\) 9984.00 + 17292.8i 0.279061 + 0.483348i
\(21\) 0 0
\(22\) 14880.0 25772.9i 0.297936 0.516041i
\(23\) 28884.0 50028.6i 0.495005 0.857374i −0.504978 0.863132i \(-0.668499\pi\)
0.999983 + 0.00575773i \(0.00183275\pi\)
\(24\) 0 0
\(25\) −9609.50 16644.1i −0.123002 0.213045i
\(26\) −113432. −1.26569
\(27\) 0 0
\(28\) 20672.0 0.177963
\(29\) 83328.0 + 144328.i 0.634451 + 1.09890i 0.986631 + 0.162969i \(0.0521070\pi\)
−0.352180 + 0.935932i \(0.614560\pi\)
\(30\) 0 0
\(31\) −47410.0 + 82116.5i −0.285828 + 0.495068i −0.972810 0.231607i \(-0.925602\pi\)
0.686982 + 0.726674i \(0.258935\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 63648.0 + 110242.i 0.277721 + 0.481027i
\(35\) −100776. −0.397300
\(36\) 0 0
\(37\) 453971. 1.47340 0.736702 0.676217i \(-0.236382\pi\)
0.736702 + 0.676217i \(0.236382\pi\)
\(38\) −89684.0 155337.i −0.265138 0.459233i
\(39\) 0 0
\(40\) 79872.0 138342.i 0.197326 0.341779i
\(41\) 313536. 543060.i 0.710467 1.23056i −0.254215 0.967148i \(-0.581817\pi\)
0.964682 0.263417i \(-0.0848496\pi\)
\(42\) 0 0
\(43\) 21236.0 + 36781.8i 0.0407318 + 0.0705495i 0.885673 0.464310i \(-0.153698\pi\)
−0.844941 + 0.534860i \(0.820364\pi\)
\(44\) −238080. −0.421346
\(45\) 0 0
\(46\) −462144. −0.700043
\(47\) −617628. 1.06976e6i −0.867730 1.50295i −0.864311 0.502958i \(-0.832245\pi\)
−0.00341876 0.999994i \(-0.501088\pi\)
\(48\) 0 0
\(49\) 359607. 622858.i 0.436658 0.756315i
\(50\) −76876.0 + 133153.i −0.0869753 + 0.150646i
\(51\) 0 0
\(52\) 453728. + 785880.i 0.447491 + 0.775076i
\(53\) −107280. −0.0989813 −0.0494907 0.998775i \(-0.515760\pi\)
−0.0494907 + 0.998775i \(0.515760\pi\)
\(54\) 0 0
\(55\) 1.16064e6 0.940650
\(56\) −82688.0 143220.i −0.0629194 0.108980i
\(57\) 0 0
\(58\) 666624. 1.15463e6i 0.448624 0.777040i
\(59\) −1.23961e6 + 2.14707e6i −0.785785 + 1.36102i 0.142744 + 0.989760i \(0.454407\pi\)
−0.928529 + 0.371260i \(0.878926\pi\)
\(60\) 0 0
\(61\) −1.43719e6 2.48929e6i −0.810700 1.40417i −0.912375 0.409356i \(-0.865753\pi\)
0.101675 0.994818i \(-0.467580\pi\)
\(62\) 758560. 0.404221
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −2.21192e6 3.83116e6i −0.999018 1.73035i
\(66\) 0 0
\(67\) −750548. + 1.29999e6i −0.304872 + 0.528053i −0.977233 0.212170i \(-0.931947\pi\)
0.672361 + 0.740223i \(0.265280\pi\)
\(68\) 509184. 881933.i 0.196378 0.340137i
\(69\) 0 0
\(70\) 403104. + 698197.i 0.140467 + 0.243296i
\(71\) −4.73314e6 −1.56944 −0.784720 0.619850i \(-0.787193\pi\)
−0.784720 + 0.619850i \(0.787193\pi\)
\(72\) 0 0
\(73\) −85111.0 −0.0256068 −0.0128034 0.999918i \(-0.504076\pi\)
−0.0128034 + 0.999918i \(0.504076\pi\)
\(74\) −1.81588e6 3.14520e6i −0.520927 0.902272i
\(75\) 0 0
\(76\) −717472. + 1.24270e6i −0.187481 + 0.324727i
\(77\) 600780. 1.04058e6i 0.149968 0.259752i
\(78\) 0 0
\(79\) 590410. + 1.02262e6i 0.134728 + 0.233356i 0.925494 0.378763i \(-0.123651\pi\)
−0.790765 + 0.612119i \(0.790317\pi\)
\(80\) −1.27795e6 −0.279061
\(81\) 0 0
\(82\) −5.01658e6 −1.00475
\(83\) −558264. 966942.i −0.107168 0.185621i 0.807454 0.589931i \(-0.200845\pi\)
−0.914622 + 0.404310i \(0.867512\pi\)
\(84\) 0 0
\(85\) −2.48227e6 + 4.29942e6i −0.438413 + 0.759353i
\(86\) 169888. 294255.i 0.0288017 0.0498860i
\(87\) 0 0
\(88\) 952320. + 1.64947e6i 0.148968 + 0.258020i
\(89\) −9.36814e6 −1.40860 −0.704301 0.709902i \(-0.748739\pi\)
−0.704301 + 0.709902i \(0.748739\pi\)
\(90\) 0 0
\(91\) −4.57982e6 −0.637094
\(92\) 1.84858e6 + 3.20183e6i 0.247503 + 0.428687i
\(93\) 0 0
\(94\) −4.94102e6 + 8.55810e6i −0.613578 + 1.06275i
\(95\) 3.49768e6 6.05815e6i 0.418550 0.724949i
\(96\) 0 0
\(97\) 1.02000e6 + 1.76669e6i 0.113474 + 0.196543i 0.917169 0.398499i \(-0.130469\pi\)
−0.803694 + 0.595042i \(0.797135\pi\)
\(98\) −5.75371e6 −0.617528
\(99\) 0 0
\(100\) 1.23002e6 0.123002
\(101\) −7.62874e6 1.32134e7i −0.736763 1.27611i −0.953946 0.299980i \(-0.903020\pi\)
0.217183 0.976131i \(-0.430313\pi\)
\(102\) 0 0
\(103\) 9.62167e6 1.66652e7i 0.867601 1.50273i 0.00316080 0.999995i \(-0.498994\pi\)
0.864441 0.502735i \(-0.167673\pi\)
\(104\) 3.62982e6 6.28704e6i 0.316424 0.548062i
\(105\) 0 0
\(106\) 429120. + 743258.i 0.0349952 + 0.0606134i
\(107\) −1.28571e7 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(108\) 0 0
\(109\) −1.02835e7 −0.760589 −0.380294 0.924865i \(-0.624177\pi\)
−0.380294 + 0.924865i \(0.624177\pi\)
\(110\) −4.64256e6 8.04115e6i −0.332570 0.576028i
\(111\) 0 0
\(112\) −661504. + 1.14576e6i −0.0444907 + 0.0770602i
\(113\) 9.33863e6 1.61750e7i 0.608847 1.05455i −0.382583 0.923921i \(-0.624965\pi\)
0.991431 0.130634i \(-0.0417012\pi\)
\(114\) 0 0
\(115\) −9.01181e6 1.56089e7i −0.552547 0.957040i
\(116\) −1.06660e7 −0.634451
\(117\) 0 0
\(118\) 1.98338e7 1.11127
\(119\) 2.56979e6 + 4.45100e6i 0.139792 + 0.242127i
\(120\) 0 0
\(121\) 2.82439e6 4.89198e6i 0.144936 0.251036i
\(122\) −1.14975e7 + 1.99143e7i −0.573252 + 0.992901i
\(123\) 0 0
\(124\) −3.03424e6 5.25546e6i −0.142914 0.247534i
\(125\) 1.83787e7 0.841645
\(126\) 0 0
\(127\) 3.53659e6 0.153204 0.0766022 0.997062i \(-0.475593\pi\)
0.0766022 + 0.997062i \(0.475593\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.76954e7 + 3.06493e7i −0.706413 + 1.22354i
\(131\) −1.50503e7 + 2.60678e7i −0.584917 + 1.01311i 0.409969 + 0.912100i \(0.365540\pi\)
−0.994886 + 0.101007i \(0.967794\pi\)
\(132\) 0 0
\(133\) −3.62099e6 6.27174e6i −0.133459 0.231157i
\(134\) 1.20088e7 0.431154
\(135\) 0 0
\(136\) −8.14694e6 −0.277721
\(137\) −3.68663e6 6.38543e6i −0.122492 0.212162i 0.798258 0.602316i \(-0.205755\pi\)
−0.920750 + 0.390154i \(0.872422\pi\)
\(138\) 0 0
\(139\) 2.96261e7 5.13139e7i 0.935670 1.62063i 0.162235 0.986752i \(-0.448130\pi\)
0.773435 0.633876i \(-0.218537\pi\)
\(140\) 3.22483e6 5.58557e6i 0.0993251 0.172036i
\(141\) 0 0
\(142\) 1.89325e7 + 3.27921e7i 0.554881 + 0.961082i
\(143\) 5.27459e7 1.50839
\(144\) 0 0
\(145\) 5.19967e7 1.41641
\(146\) 340444. + 589666.i 0.00905338 + 0.0156809i
\(147\) 0 0
\(148\) −1.45271e7 + 2.51616e7i −0.368351 + 0.638003i
\(149\) −1.16316e7 + 2.01466e7i −0.288064 + 0.498941i −0.973347 0.229335i \(-0.926345\pi\)
0.685284 + 0.728276i \(0.259678\pi\)
\(150\) 0 0
\(151\) 2.91230e7 + 5.04425e7i 0.688361 + 1.19228i 0.972368 + 0.233455i \(0.0750030\pi\)
−0.284006 + 0.958822i \(0.591664\pi\)
\(152\) 1.14796e7 0.265138
\(153\) 0 0
\(154\) −9.61248e6 −0.212086
\(155\) 1.47919e7 + 2.56204e7i 0.319054 + 0.552617i
\(156\) 0 0
\(157\) 1.46788e7 2.54244e7i 0.302721 0.524328i −0.674031 0.738703i \(-0.735438\pi\)
0.976751 + 0.214376i \(0.0687717\pi\)
\(158\) 4.72328e6 8.18095e6i 0.0952672 0.165008i
\(159\) 0 0
\(160\) 5.11181e6 + 8.85391e6i 0.0986631 + 0.170889i
\(161\) −1.86591e7 −0.352370
\(162\) 0 0
\(163\) −3.50196e7 −0.633366 −0.316683 0.948531i \(-0.602569\pi\)
−0.316683 + 0.948531i \(0.602569\pi\)
\(164\) 2.00663e7 + 3.47559e7i 0.355234 + 0.615282i
\(165\) 0 0
\(166\) −4.46611e6 + 7.73553e6i −0.0757794 + 0.131254i
\(167\) −3.02274e7 + 5.23554e7i −0.502219 + 0.869868i 0.497778 + 0.867305i \(0.334149\pi\)
−0.999997 + 0.00256395i \(0.999184\pi\)
\(168\) 0 0
\(169\) −6.91478e7 1.19767e8i −1.10198 1.90869i
\(170\) 3.97164e7 0.620009
\(171\) 0 0
\(172\) −2.71821e6 −0.0407318
\(173\) 3.21740e7 + 5.57270e7i 0.472437 + 0.818285i 0.999502 0.0315398i \(-0.0100411\pi\)
−0.527065 + 0.849825i \(0.676708\pi\)
\(174\) 0 0
\(175\) −3.10387e6 + 5.37606e6i −0.0437794 + 0.0758282i
\(176\) 7.61856e6 1.31957e7i 0.105336 0.182448i
\(177\) 0 0
\(178\) 3.74725e7 + 6.49044e7i 0.498016 + 0.862589i
\(179\) −1.05862e7 −0.137960 −0.0689799 0.997618i \(-0.521974\pi\)
−0.0689799 + 0.997618i \(0.521974\pi\)
\(180\) 0 0
\(181\) 6.41578e7 0.804219 0.402109 0.915592i \(-0.368277\pi\)
0.402109 + 0.915592i \(0.368277\pi\)
\(182\) 1.83193e7 + 3.17299e7i 0.225247 + 0.390139i
\(183\) 0 0
\(184\) 1.47886e7 2.56146e7i 0.175011 0.303128i
\(185\) 7.08195e7 1.22663e8i 0.822340 1.42434i
\(186\) 0 0
\(187\) −2.95963e7 5.12623e7i −0.330973 0.573261i
\(188\) 7.90564e7 0.867730
\(189\) 0 0
\(190\) −5.59628e7 −0.591919
\(191\) 7.81664e7 + 1.35388e8i 0.811715 + 1.40593i 0.911663 + 0.410939i \(0.134799\pi\)
−0.0999482 + 0.994993i \(0.531868\pi\)
\(192\) 0 0
\(193\) 1.76630e7 3.05931e7i 0.176853 0.306319i −0.763948 0.645278i \(-0.776742\pi\)
0.940801 + 0.338959i \(0.110075\pi\)
\(194\) 8.15998e6 1.41335e7i 0.0802385 0.138977i
\(195\) 0 0
\(196\) 2.30148e7 + 3.98629e7i 0.218329 + 0.378157i
\(197\) 1.06306e8 0.990666 0.495333 0.868703i \(-0.335046\pi\)
0.495333 + 0.868703i \(0.335046\pi\)
\(198\) 0 0
\(199\) 1.59628e7 0.143590 0.0717949 0.997419i \(-0.477127\pi\)
0.0717949 + 0.997419i \(0.477127\pi\)
\(200\) −4.92006e6 8.52180e6i −0.0434876 0.0753228i
\(201\) 0 0
\(202\) −6.10299e7 + 1.05707e8i −0.520970 + 0.902347i
\(203\) 2.69149e7 4.66181e7i 0.225817 0.391127i
\(204\) 0 0
\(205\) −9.78232e7 1.69435e8i −0.793055 1.37361i
\(206\) −1.53947e8 −1.22697
\(207\) 0 0
\(208\) −5.80772e7 −0.447491
\(209\) 4.17031e7 + 7.22318e7i 0.315977 + 0.547289i
\(210\) 0 0
\(211\) 1.32890e7 2.30172e7i 0.0973876 0.168680i −0.813215 0.581963i \(-0.802285\pi\)
0.910603 + 0.413283i \(0.135618\pi\)
\(212\) 3.43296e6 5.94606e6i 0.0247453 0.0428602i
\(213\) 0 0
\(214\) 5.14284e7 + 8.90767e7i 0.358720 + 0.621321i
\(215\) 1.32513e7 0.0909332
\(216\) 0 0
\(217\) 3.06269e7 0.203467
\(218\) 4.11342e7 + 7.12465e7i 0.268909 + 0.465764i
\(219\) 0 0
\(220\) −3.71405e7 + 6.43292e7i −0.235163 + 0.407313i
\(221\) −1.12808e8 + 1.95389e8i −0.703020 + 1.21767i
\(222\) 0 0
\(223\) 8.56114e7 + 1.48283e8i 0.516969 + 0.895416i 0.999806 + 0.0197061i \(0.00627304\pi\)
−0.482837 + 0.875710i \(0.660394\pi\)
\(224\) 1.05841e7 0.0629194
\(225\) 0 0
\(226\) −1.49418e8 −0.861040
\(227\) −2.16949e7 3.75766e7i −0.123102 0.213220i 0.797887 0.602807i \(-0.205951\pi\)
−0.920990 + 0.389587i \(0.872618\pi\)
\(228\) 0 0
\(229\) −1.32199e8 + 2.28975e8i −0.727451 + 1.25998i 0.230506 + 0.973071i \(0.425962\pi\)
−0.957957 + 0.286912i \(0.907371\pi\)
\(230\) −7.20945e7 + 1.24871e8i −0.390710 + 0.676730i
\(231\) 0 0
\(232\) 4.26639e7 + 7.38961e7i 0.224312 + 0.388520i
\(233\) 1.69022e8 0.875380 0.437690 0.899126i \(-0.355797\pi\)
0.437690 + 0.899126i \(0.355797\pi\)
\(234\) 0 0
\(235\) −3.85400e8 −1.93720
\(236\) −7.93352e7 1.37413e8i −0.392892 0.680510i
\(237\) 0 0
\(238\) 2.05583e7 3.56080e7i 0.0988480 0.171210i
\(239\) 3.00453e7 5.20400e7i 0.142359 0.246572i −0.786026 0.618194i \(-0.787865\pi\)
0.928384 + 0.371621i \(0.121198\pi\)
\(240\) 0 0
\(241\) 2.42028e7 + 4.19205e7i 0.111380 + 0.192915i 0.916327 0.400431i \(-0.131140\pi\)
−0.804947 + 0.593347i \(0.797806\pi\)
\(242\) −4.51902e7 −0.204970
\(243\) 0 0
\(244\) 1.83961e8 0.810700
\(245\) −1.12197e8 1.94332e8i −0.487418 0.844232i
\(246\) 0 0
\(247\) 1.58954e8 2.75316e8i 0.671168 1.16250i
\(248\) −2.42739e7 + 4.20437e7i −0.101055 + 0.175033i
\(249\) 0 0
\(250\) −7.35147e7 1.27331e8i −0.297567 0.515400i
\(251\) −2.72664e7 −0.108835 −0.0544176 0.998518i \(-0.517330\pi\)
−0.0544176 + 0.998518i \(0.517330\pi\)
\(252\) 0 0
\(253\) 2.14897e8 0.834273
\(254\) −1.41464e7 2.45022e7i −0.0541660 0.0938182i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) −1.34388e7 + 2.32767e7i −0.0493850 + 0.0855374i −0.889661 0.456621i \(-0.849059\pi\)
0.840276 + 0.542159i \(0.182393\pi\)
\(258\) 0 0
\(259\) −7.33163e7 1.26988e8i −0.262211 0.454163i
\(260\) 2.83126e8 0.999018
\(261\) 0 0
\(262\) 2.40804e8 0.827198
\(263\) −2.01854e8 3.49621e8i −0.684214 1.18509i −0.973683 0.227907i \(-0.926812\pi\)
0.289469 0.957188i \(-0.406521\pi\)
\(264\) 0 0
\(265\) −1.67357e7 + 2.89870e7i −0.0552437 + 0.0956849i
\(266\) −2.89679e7 + 5.01739e7i −0.0943695 + 0.163453i
\(267\) 0 0
\(268\) −4.80351e7 8.31992e7i −0.152436 0.264027i
\(269\) −3.44677e8 −1.07964 −0.539820 0.841780i \(-0.681508\pi\)
−0.539820 + 0.841780i \(0.681508\pi\)
\(270\) 0 0
\(271\) 3.41243e8 1.04153 0.520765 0.853700i \(-0.325647\pi\)
0.520765 + 0.853700i \(0.325647\pi\)
\(272\) 3.25878e7 + 5.64437e7i 0.0981892 + 0.170069i
\(273\) 0 0
\(274\) −2.94930e7 + 5.10834e7i −0.0866148 + 0.150021i
\(275\) 3.57473e7 6.19162e7i 0.103652 0.179531i
\(276\) 0 0
\(277\) 2.70810e7 + 4.69056e7i 0.0765570 + 0.132601i 0.901762 0.432232i \(-0.142274\pi\)
−0.825205 + 0.564833i \(0.808941\pi\)
\(278\) −4.74018e8 −1.32324
\(279\) 0 0
\(280\) −5.15973e7 −0.140467
\(281\) −2.74858e6 4.76067e6i −0.00738985 0.0127996i 0.862307 0.506386i \(-0.169019\pi\)
−0.869697 + 0.493587i \(0.835686\pi\)
\(282\) 0 0
\(283\) 2.79386e8 4.83912e8i 0.732745 1.26915i −0.222961 0.974827i \(-0.571572\pi\)
0.955706 0.294324i \(-0.0950945\pi\)
\(284\) 1.51460e8 2.62337e8i 0.392360 0.679588i
\(285\) 0 0
\(286\) −2.10984e8 3.65434e8i −0.533295 0.923694i
\(287\) −2.02544e8 −0.505747
\(288\) 0 0
\(289\) −1.57147e8 −0.382969
\(290\) −2.07987e8 3.60244e8i −0.500775 0.867368i
\(291\) 0 0
\(292\) 2.72355e6 4.71733e6i 0.00640171 0.0110881i
\(293\) −6.23684e6 + 1.08025e7i −0.0144853 + 0.0250893i −0.873177 0.487403i \(-0.837944\pi\)
0.858692 + 0.512492i \(0.171278\pi\)
\(294\) 0 0
\(295\) 3.86759e8 + 6.69886e8i 0.877129 + 1.51923i
\(296\) 2.32433e8 0.520927
\(297\) 0 0
\(298\) 1.86106e8 0.407383
\(299\) −4.09546e8 7.09355e8i −0.886041 1.53467i
\(300\) 0 0
\(301\) 6.85923e6 1.18805e7i 0.0144975 0.0251104i
\(302\) 2.32984e8 4.03540e8i 0.486745 0.843067i
\(303\) 0 0
\(304\) −4.59182e7 7.95327e7i −0.0937405 0.162363i
\(305\) −8.96807e8 −1.80988
\(306\) 0 0
\(307\) −1.80343e7 −0.0355725 −0.0177863 0.999842i \(-0.505662\pi\)
−0.0177863 + 0.999842i \(0.505662\pi\)
\(308\) 3.84499e7 + 6.65972e7i 0.0749839 + 0.129876i
\(309\) 0 0
\(310\) 1.18335e8 2.04963e8i 0.225605 0.390759i
\(311\) 2.97327e8 5.14986e8i 0.560497 0.970809i −0.436956 0.899483i \(-0.643944\pi\)
0.997453 0.0713260i \(-0.0227231\pi\)
\(312\) 0 0
\(313\) −1.86935e8 3.23782e8i −0.344577 0.596825i 0.640700 0.767791i \(-0.278644\pi\)
−0.985277 + 0.170967i \(0.945311\pi\)
\(314\) −2.34861e8 −0.428112
\(315\) 0 0
\(316\) −7.55724e7 −0.134728
\(317\) 2.94682e8 + 5.10404e8i 0.519572 + 0.899925i 0.999741 + 0.0227491i \(0.00724188\pi\)
−0.480169 + 0.877176i \(0.659425\pi\)
\(318\) 0 0
\(319\) −3.09980e8 + 5.36901e8i −0.534646 + 0.926034i
\(320\) 4.08945e7 7.08313e7i 0.0697653 0.120837i
\(321\) 0 0
\(322\) 7.46363e7 + 1.29274e8i 0.124582 + 0.215782i
\(323\) −3.56763e8 −0.589075
\(324\) 0 0
\(325\) −2.72506e8 −0.440336
\(326\) 1.40079e8 + 2.42623e8i 0.223929 + 0.387856i
\(327\) 0 0
\(328\) 1.60530e8 2.78047e8i 0.251188 0.435070i
\(329\) −1.99494e8 + 3.45533e8i −0.308847 + 0.534939i
\(330\) 0 0
\(331\) 5.78287e8 + 1.00162e9i 0.876487 + 1.51812i 0.855170 + 0.518347i \(0.173453\pi\)
0.0213168 + 0.999773i \(0.493214\pi\)
\(332\) 7.14578e7 0.107168
\(333\) 0 0
\(334\) 4.83638e8 0.710245
\(335\) 2.34171e8 + 4.05596e8i 0.340311 + 0.589437i
\(336\) 0 0
\(337\) −2.89409e8 + 5.01271e8i −0.411915 + 0.713458i −0.995099 0.0988824i \(-0.968473\pi\)
0.583184 + 0.812340i \(0.301807\pi\)
\(338\) −5.53182e8 + 9.58139e8i −0.779219 + 1.34965i
\(339\) 0 0
\(340\) −1.58865e8 2.75163e8i −0.219206 0.379677i
\(341\) −3.52730e8 −0.481729
\(342\) 0 0
\(343\) −4.98311e8 −0.666762
\(344\) 1.08728e7 + 1.88323e7i 0.0144009 + 0.0249430i
\(345\) 0 0
\(346\) 2.57392e8 4.45816e8i 0.334063 0.578615i
\(347\) 1.62500e8 2.81458e8i 0.208785 0.361627i −0.742547 0.669794i \(-0.766382\pi\)
0.951332 + 0.308167i \(0.0997157\pi\)
\(348\) 0 0
\(349\) −1.25383e8 2.17169e8i −0.157888 0.273470i 0.776219 0.630463i \(-0.217135\pi\)
−0.934107 + 0.356994i \(0.883802\pi\)
\(350\) 4.96619e7 0.0619135
\(351\) 0 0
\(352\) −1.21897e8 −0.148968
\(353\) −5.20373e8 9.01312e8i −0.629656 1.09060i −0.987621 0.156861i \(-0.949863\pi\)
0.357965 0.933735i \(-0.383471\pi\)
\(354\) 0 0
\(355\) −7.38369e8 + 1.27889e9i −0.875940 + 1.51717i
\(356\) 2.99780e8 5.19235e8i 0.352150 0.609942i
\(357\) 0 0
\(358\) 4.23446e7 + 7.33431e7i 0.0487762 + 0.0844828i
\(359\) 1.02411e9 1.16820 0.584101 0.811681i \(-0.301447\pi\)
0.584101 + 0.811681i \(0.301447\pi\)
\(360\) 0 0
\(361\) −3.91170e8 −0.437614
\(362\) −2.56631e8 4.44498e8i −0.284334 0.492481i
\(363\) 0 0
\(364\) 1.46554e8 2.53839e8i 0.159273 0.275870i
\(365\) −1.32773e7 + 2.29970e7i −0.0142917 + 0.0247540i
\(366\) 0 0
\(367\) −4.99967e8 8.65967e8i −0.527971 0.914472i −0.999468 0.0326046i \(-0.989620\pi\)
0.471498 0.881867i \(-0.343714\pi\)
\(368\) −2.36618e8 −0.247503
\(369\) 0 0
\(370\) −1.13311e9 −1.16297
\(371\) 1.73257e7 + 3.00090e7i 0.0176150 + 0.0305101i
\(372\) 0 0
\(373\) −9.62905e7 + 1.66780e8i −0.0960732 + 0.166404i −0.910056 0.414485i \(-0.863962\pi\)
0.813983 + 0.580889i \(0.197295\pi\)
\(374\) −2.36771e8 + 4.10099e8i −0.234033 + 0.405357i
\(375\) 0 0
\(376\) −3.16226e8 5.47719e8i −0.306789 0.531374i
\(377\) 2.36302e9 2.27129
\(378\) 0 0
\(379\) 1.91512e9 1.80700 0.903501 0.428585i \(-0.140988\pi\)
0.903501 + 0.428585i \(0.140988\pi\)
\(380\) 2.23851e8 + 3.87722e8i 0.209275 + 0.362475i
\(381\) 0 0
\(382\) 6.25331e8 1.08311e9i 0.573969 0.994144i
\(383\) −7.55549e8 + 1.30865e9i −0.687175 + 1.19022i 0.285573 + 0.958357i \(0.407816\pi\)
−0.972748 + 0.231865i \(0.925517\pi\)
\(384\) 0 0
\(385\) −1.87443e8 3.24661e8i −0.167401 0.289947i
\(386\) −2.82607e8 −0.250108
\(387\) 0 0
\(388\) −1.30560e8 −0.113474
\(389\) 3.68584e8 + 6.38406e8i 0.317477 + 0.549887i 0.979961 0.199189i \(-0.0638309\pi\)
−0.662484 + 0.749076i \(0.730498\pi\)
\(390\) 0 0
\(391\) −4.59602e8 + 7.96054e8i −0.388833 + 0.673479i
\(392\) 1.84119e8 3.18903e8i 0.154382 0.267398i
\(393\) 0 0
\(394\) −4.25225e8 7.36512e8i −0.350253 0.606657i
\(395\) 3.68416e8 0.300779
\(396\) 0 0
\(397\) −8.55916e8 −0.686538 −0.343269 0.939237i \(-0.611534\pi\)
−0.343269 + 0.939237i \(0.611534\pi\)
\(398\) −6.38512e7 1.10594e8i −0.0507666 0.0879304i
\(399\) 0 0
\(400\) −3.93605e7 + 6.81744e7i −0.0307504 + 0.0532613i
\(401\) 1.19476e8 2.06939e8i 0.0925288 0.160265i −0.816046 0.577987i \(-0.803838\pi\)
0.908575 + 0.417723i \(0.137172\pi\)
\(402\) 0 0
\(403\) 6.72226e8 + 1.16433e9i 0.511620 + 0.886153i
\(404\) 9.76478e8 0.736763
\(405\) 0 0
\(406\) −4.30639e8 −0.319354
\(407\) 8.44386e8 + 1.46252e9i 0.620813 + 1.07528i
\(408\) 0 0
\(409\) 4.76770e8 8.25789e8i 0.344570 0.596812i −0.640706 0.767786i \(-0.721358\pi\)
0.985275 + 0.170974i \(0.0546915\pi\)
\(410\) −7.82586e8 + 1.35548e9i −0.560775 + 0.971290i
\(411\) 0 0
\(412\) 6.15787e8 + 1.06657e9i 0.433801 + 0.751365i
\(413\) 8.00789e8 0.559362
\(414\) 0 0
\(415\) −3.48357e8 −0.239252
\(416\) 2.32309e8 + 4.02371e8i 0.158212 + 0.274031i
\(417\) 0 0
\(418\) 3.33624e8 5.77855e8i 0.223430 0.386992i
\(419\) 2.72334e8 4.71696e8i 0.180864 0.313266i −0.761311 0.648387i \(-0.775444\pi\)
0.942175 + 0.335121i \(0.108777\pi\)
\(420\) 0 0
\(421\) 3.30635e8 + 5.72677e8i 0.215954 + 0.374044i 0.953567 0.301180i \(-0.0973805\pi\)
−0.737613 + 0.675224i \(0.764047\pi\)
\(422\) −2.12624e8 −0.137727
\(423\) 0 0
\(424\) −5.49274e7 −0.0349952
\(425\) 1.52906e8 + 2.64842e8i 0.0966194 + 0.167350i
\(426\) 0 0
\(427\) −4.64213e8 + 8.04040e8i −0.288549 + 0.499782i
\(428\) 4.11428e8 7.12613e8i 0.253653 0.439340i
\(429\) 0 0
\(430\) −5.30051e7 9.18075e7i −0.0321498 0.0556850i
\(431\) −2.10789e8 −0.126817 −0.0634086 0.997988i \(-0.520197\pi\)
−0.0634086 + 0.997988i \(0.520197\pi\)
\(432\) 0 0
\(433\) −1.72888e9 −1.02343 −0.511714 0.859156i \(-0.670989\pi\)
−0.511714 + 0.859156i \(0.670989\pi\)
\(434\) −1.22507e8 2.12189e8i −0.0719364 0.124597i
\(435\) 0 0
\(436\) 3.29073e8 5.69972e8i 0.190147 0.329345i
\(437\) 6.47608e8 1.12169e9i 0.371217 0.642966i
\(438\) 0 0
\(439\) −6.97147e7 1.20749e8i −0.0393277 0.0681175i 0.845692 0.533672i \(-0.179188\pi\)
−0.885019 + 0.465554i \(0.845855\pi\)
\(440\) 5.94248e8 0.332570
\(441\) 0 0
\(442\) 1.80493e9 0.994220
\(443\) 7.00603e8 + 1.21348e9i 0.382877 + 0.663162i 0.991472 0.130319i \(-0.0416001\pi\)
−0.608595 + 0.793481i \(0.708267\pi\)
\(444\) 0 0
\(445\) −1.46143e9 + 2.53127e9i −0.786172 + 1.36169i
\(446\) 6.84891e8 1.18627e9i 0.365552 0.633155i
\(447\) 0 0
\(448\) −4.23363e7 7.33285e7i −0.0222454 0.0385301i
\(449\) 1.78420e7 0.00930209 0.00465104 0.999989i \(-0.498520\pi\)
0.00465104 + 0.999989i \(0.498520\pi\)
\(450\) 0 0
\(451\) 2.33271e9 1.19741
\(452\) 5.97672e8 + 1.03520e9i 0.304424 + 0.527277i
\(453\) 0 0
\(454\) −1.73559e8 + 3.00613e8i −0.0870466 + 0.150769i
\(455\) −7.14451e8 + 1.23747e9i −0.355576 + 0.615876i
\(456\) 0 0
\(457\) 8.72066e8 + 1.51046e9i 0.427408 + 0.740292i 0.996642 0.0818833i \(-0.0260935\pi\)
−0.569234 + 0.822176i \(0.692760\pi\)
\(458\) 2.11518e9 1.02877
\(459\) 0 0
\(460\) 1.15351e9 0.552547
\(461\) 6.79956e8 + 1.17772e9i 0.323242 + 0.559871i 0.981155 0.193223i \(-0.0618940\pi\)
−0.657913 + 0.753094i \(0.728561\pi\)
\(462\) 0 0
\(463\) 9.88793e8 1.71264e9i 0.462991 0.801923i −0.536118 0.844143i \(-0.680110\pi\)
0.999108 + 0.0422200i \(0.0134431\pi\)
\(464\) 3.41311e8 5.91169e8i 0.158613 0.274725i
\(465\) 0 0
\(466\) −6.76087e8 1.17102e9i −0.309494 0.536059i
\(467\) −3.46852e9 −1.57592 −0.787961 0.615726i \(-0.788863\pi\)
−0.787961 + 0.615726i \(0.788863\pi\)
\(468\) 0 0
\(469\) 4.84854e8 0.217023
\(470\) 1.54160e9 + 2.67013e9i 0.684903 + 1.18629i
\(471\) 0 0
\(472\) −6.34681e8 + 1.09930e9i −0.277817 + 0.481193i
\(473\) −7.89979e7 + 1.36828e8i −0.0343243 + 0.0594514i
\(474\) 0 0
\(475\) −2.15455e8 3.73178e8i −0.0922419 0.159768i
\(476\) −3.28933e8 −0.139792
\(477\) 0 0
\(478\) −4.80725e8 −0.201325
\(479\) 1.09021e9 + 1.88830e9i 0.453247 + 0.785047i 0.998586 0.0531688i \(-0.0169321\pi\)
−0.545338 + 0.838216i \(0.683599\pi\)
\(480\) 0 0
\(481\) 3.21843e9 5.57448e9i 1.31867 2.28400i
\(482\) 1.93622e8 3.35364e8i 0.0787573 0.136412i
\(483\) 0 0
\(484\) 1.80761e8 + 3.13087e8i 0.0724678 + 0.125518i
\(485\) 6.36478e8 0.253331
\(486\) 0 0
\(487\) 3.00745e9 1.17990 0.589952 0.807439i \(-0.299147\pi\)
0.589952 + 0.807439i \(0.299147\pi\)
\(488\) −7.35842e8 1.27452e9i −0.286626 0.496450i
\(489\) 0 0
\(490\) −8.97579e8 + 1.55465e9i −0.344656 + 0.596963i
\(491\) −1.31485e9 + 2.27739e9i −0.501292 + 0.868263i 0.498707 + 0.866771i \(0.333808\pi\)
−0.999999 + 0.00149237i \(0.999525\pi\)
\(492\) 0 0
\(493\) −1.32592e9 2.29655e9i −0.498370 0.863201i
\(494\) −2.54326e9 −0.949175
\(495\) 0 0
\(496\) 3.88383e8 0.142914
\(497\) 7.64401e8 + 1.32398e9i 0.279302 + 0.483765i
\(498\) 0 0
\(499\) 1.38495e8 2.39880e8i 0.0498978 0.0864256i −0.839998 0.542590i \(-0.817444\pi\)
0.889896 + 0.456164i \(0.150777\pi\)
\(500\) −5.88118e8 + 1.01865e9i −0.210411 + 0.364443i
\(501\) 0 0
\(502\) 1.09066e8 + 1.88907e8i 0.0384791 + 0.0666477i
\(503\) 4.59216e9 1.60890 0.804451 0.594019i \(-0.202460\pi\)
0.804451 + 0.594019i \(0.202460\pi\)
\(504\) 0 0
\(505\) −4.76033e9 −1.64482
\(506\) −8.59588e8 1.48885e9i −0.294960 0.510886i
\(507\) 0 0
\(508\) −1.13171e8 + 1.96018e8i −0.0383011 + 0.0663395i
\(509\) 1.62733e9 2.81862e9i 0.546970 0.947379i −0.451510 0.892266i \(-0.649115\pi\)
0.998480 0.0551135i \(-0.0175521\pi\)
\(510\) 0 0
\(511\) 1.37454e7 + 2.38078e7i 0.00455706 + 0.00789307i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 2.15021e8 0.0698410
\(515\) −3.00196e9 5.19955e9i −0.968456 1.67741i
\(516\) 0 0
\(517\) 2.29758e9 3.97952e9i 0.731228 1.26652i
\(518\) −5.86531e8 + 1.01590e9i −0.185411 + 0.321142i
\(519\) 0 0
\(520\) −1.13251e9 1.96156e9i −0.353206 0.611771i
\(521\) −5.57306e9 −1.72648 −0.863241 0.504793i \(-0.831569\pi\)
−0.863241 + 0.504793i \(0.831569\pi\)
\(522\) 0 0
\(523\) 2.33783e9 0.714590 0.357295 0.933992i \(-0.383699\pi\)
0.357295 + 0.933992i \(0.383699\pi\)
\(524\) −9.63216e8 1.66834e9i −0.292459 0.506553i
\(525\) 0 0
\(526\) −1.61483e9 + 2.79697e9i −0.483813 + 0.837988i
\(527\) 7.54388e8 1.30664e9i 0.224521 0.388882i
\(528\) 0 0
\(529\) 3.38418e7 + 5.86157e7i 0.00993937 + 0.0172155i
\(530\) 2.67771e8 0.0781264
\(531\) 0 0
\(532\) 4.63487e8 0.133459
\(533\) −4.44563e9 7.70005e9i −1.27171 2.20266i
\(534\) 0 0
\(535\) −2.00571e9 + 3.47399e9i −0.566278 + 0.980822i
\(536\) −3.84281e8 + 6.65594e8i −0.107788 + 0.186695i
\(537\) 0 0
\(538\) 1.37871e9 + 2.38799e9i 0.381710 + 0.661142i
\(539\) 2.67548e9 0.735937
\(540\) 0 0
\(541\) −5.60874e9 −1.52291 −0.761456 0.648217i \(-0.775515\pi\)
−0.761456 + 0.648217i \(0.775515\pi\)
\(542\) −1.36497e9 2.36420e9i −0.368236 0.637804i
\(543\) 0 0
\(544\) 2.60702e8 4.51549e8i 0.0694302 0.120257i
\(545\) −1.60423e9 + 2.77861e9i −0.424502 + 0.735259i
\(546\) 0 0
\(547\) 2.25517e9 + 3.90606e9i 0.589146 + 1.02043i 0.994345 + 0.106202i \(0.0338690\pi\)
−0.405199 + 0.914229i \(0.632798\pi\)
\(548\) 4.71888e8 0.122492
\(549\) 0 0
\(550\) −5.71957e8 −0.146587
\(551\) 1.86830e9 + 3.23599e9i 0.475790 + 0.824093i
\(552\) 0 0
\(553\) 1.90702e8 3.30306e8i 0.0479532 0.0830574i
\(554\) 2.16648e8 3.75245e8i 0.0541340 0.0937628i
\(555\) 0 0
\(556\) 1.89607e9 + 3.28409e9i 0.467835 + 0.810314i
\(557\) −3.30015e8 −0.0809171 −0.0404585 0.999181i \(-0.512882\pi\)
−0.0404585 + 0.999181i \(0.512882\pi\)
\(558\) 0 0
\(559\) 6.02210e8 0.145817
\(560\) 2.06389e8 + 3.57477e8i 0.0496625 + 0.0860181i
\(561\) 0 0
\(562\) −2.19886e7 + 3.80854e7i −0.00522541 + 0.00905068i
\(563\) 1.28786e9 2.23064e9i 0.304151 0.526805i −0.672921 0.739715i \(-0.734961\pi\)
0.977072 + 0.212909i \(0.0682938\pi\)
\(564\) 0 0
\(565\) −2.91365e9 5.04659e9i −0.679623 1.17714i
\(566\) −4.47018e9 −1.03626
\(567\) 0 0
\(568\) −2.42337e9 −0.554881
\(569\) −1.11446e9 1.93030e9i −0.253612 0.439269i 0.710905 0.703288i \(-0.248285\pi\)
−0.964518 + 0.264018i \(0.914952\pi\)
\(570\) 0 0
\(571\) −1.41716e9 + 2.45460e9i −0.318562 + 0.551765i −0.980188 0.198069i \(-0.936533\pi\)
0.661626 + 0.749834i \(0.269866\pi\)
\(572\) −1.68787e9 + 2.92347e9i −0.377096 + 0.653150i
\(573\) 0 0
\(574\) 8.10177e8 + 1.40327e9i 0.178809 + 0.309706i
\(575\) −1.11024e9 −0.243546
\(576\) 0 0
\(577\) 1.24427e7 0.00269649 0.00134825 0.999999i \(-0.499571\pi\)
0.00134825 + 0.999999i \(0.499571\pi\)
\(578\) 6.28588e8 + 1.08875e9i 0.135400 + 0.234520i
\(579\) 0 0
\(580\) −1.66389e9 + 2.88195e9i −0.354101 + 0.613321i
\(581\) −1.80319e8 + 3.12322e8i −0.0381440 + 0.0660673i
\(582\) 0 0
\(583\) −1.99541e8 3.45615e8i −0.0417053 0.0722358i
\(584\) −4.35768e7 −0.00905338
\(585\) 0 0
\(586\) 9.97895e7 0.0204853
\(587\) −4.30705e9 7.46003e9i −0.878914 1.52232i −0.852534 0.522672i \(-0.824935\pi\)
−0.0263805 0.999652i \(-0.508398\pi\)
\(588\) 0 0
\(589\) −1.06298e9 + 1.84113e9i −0.214349 + 0.371263i
\(590\) 3.09407e9 5.35909e9i 0.620224 1.07426i
\(591\) 0 0
\(592\) −9.29733e8 1.61034e9i −0.184176 0.319001i
\(593\) 4.55490e9 0.896989 0.448495 0.893786i \(-0.351960\pi\)
0.448495 + 0.893786i \(0.351960\pi\)
\(594\) 0 0
\(595\) 1.60355e9 0.312085
\(596\) −7.44424e8 1.28938e9i −0.144032 0.249470i
\(597\) 0 0
\(598\) −3.27637e9 + 5.67484e9i −0.626526 + 1.08517i
\(599\) 3.28583e8 5.69123e8i 0.0624672 0.108196i −0.833100 0.553122i \(-0.813436\pi\)
0.895568 + 0.444925i \(0.146770\pi\)
\(600\) 0 0
\(601\) −4.19703e9 7.26947e9i −0.788645 1.36597i −0.926797 0.375562i \(-0.877450\pi\)
0.138152 0.990411i \(-0.455884\pi\)
\(602\) −1.09748e8 −0.0205025
\(603\) 0 0
\(604\) −3.72774e9 −0.688361
\(605\) −8.81208e8 1.52630e9i −0.161784 0.280218i
\(606\) 0 0
\(607\) 5.24763e8 9.08915e8i 0.0952363 0.164954i −0.814471 0.580204i \(-0.802973\pi\)
0.909707 + 0.415250i \(0.136306\pi\)
\(608\) −3.67346e8 + 6.36261e8i −0.0662846 + 0.114808i
\(609\) 0 0
\(610\) 3.58723e9 + 6.21326e9i 0.639889 + 1.10832i
\(611\) −1.75147e10 −3.10641
\(612\) 0 0
\(613\) 4.22848e9 0.741433 0.370717 0.928746i \(-0.379112\pi\)
0.370717 + 0.928746i \(0.379112\pi\)
\(614\) 7.21372e7 + 1.24945e8i 0.0125768 + 0.0217836i
\(615\) 0 0
\(616\) 3.07599e8 5.32778e8i 0.0530216 0.0918361i
\(617\) 2.42730e9 4.20421e9i 0.416031 0.720586i −0.579505 0.814968i \(-0.696754\pi\)
0.995536 + 0.0943822i \(0.0300876\pi\)
\(618\) 0 0
\(619\) −1.16137e9 2.01156e9i −0.196813 0.340891i 0.750680 0.660666i \(-0.229726\pi\)
−0.947493 + 0.319775i \(0.896393\pi\)
\(620\) −1.89337e9 −0.319054
\(621\) 0 0
\(622\) −4.75723e9 −0.792662
\(623\) 1.51295e9 + 2.62051e9i 0.250679 + 0.434188i
\(624\) 0 0
\(625\) 3.61782e9 6.26624e9i 0.592743 1.02666i
\(626\) −1.49548e9 + 2.59025e9i −0.243653 + 0.422019i
\(627\) 0 0
\(628\) 9.39444e8 + 1.62716e9i 0.151360 + 0.262164i
\(629\) −7.22359e9 −1.15738
\(630\) 0 0
\(631\) 5.84987e9 0.926923 0.463461 0.886117i \(-0.346607\pi\)
0.463461 + 0.886117i \(0.346607\pi\)
\(632\) 3.02290e8 + 5.23581e8i 0.0476336 + 0.0825038i
\(633\) 0 0
\(634\) 2.35745e9 4.08323e9i 0.367393 0.636343i
\(635\) 5.51708e8 9.55586e8i 0.0855069 0.148102i
\(636\) 0 0
\(637\) −5.09887e9 8.83150e9i −0.781602 1.35377i
\(638\) 4.95968e9 0.756104
\(639\) 0 0
\(640\) −6.54311e8 −0.0986631
\(641\) 4.90859e9 + 8.50193e9i 0.736129 + 1.27501i 0.954226 + 0.299086i \(0.0966817\pi\)
−0.218097 + 0.975927i \(0.569985\pi\)
\(642\) 0 0
\(643\) 2.36522e9 4.09668e9i 0.350859 0.607706i −0.635541 0.772067i \(-0.719223\pi\)
0.986400 + 0.164361i \(0.0525562\pi\)
\(644\) 5.97090e8 1.03419e9i 0.0880926 0.152581i
\(645\) 0 0
\(646\) 1.42705e9 + 2.47173e9i 0.208270 + 0.360734i
\(647\) 4.28999e9 0.622718 0.311359 0.950292i \(-0.399216\pi\)
0.311359 + 0.950292i \(0.399216\pi\)
\(648\) 0 0
\(649\) −9.22271e9 −1.32435
\(650\) 1.09002e9 + 1.88798e9i 0.155682 + 0.269650i
\(651\) 0 0
\(652\) 1.12063e9 1.94099e9i 0.158342 0.274256i
\(653\) −6.60538e9 + 1.14409e10i −0.928328 + 1.60791i −0.142209 + 0.989837i \(0.545421\pi\)
−0.786119 + 0.618075i \(0.787913\pi\)
\(654\) 0 0
\(655\) 4.69568e9 + 8.13316e9i 0.652911 + 1.13087i
\(656\) −2.56849e9 −0.355234
\(657\) 0 0
\(658\) 3.19190e9 0.436776
\(659\) 2.80273e9 + 4.85448e9i 0.381490 + 0.660760i 0.991275 0.131807i \(-0.0420778\pi\)
−0.609786 + 0.792566i \(0.708744\pi\)
\(660\) 0 0
\(661\) 8.85352e8 1.53347e9i 0.119237 0.206524i −0.800229 0.599695i \(-0.795289\pi\)
0.919465 + 0.393171i \(0.128622\pi\)
\(662\) 4.62630e9 8.01298e9i 0.619770 1.07347i
\(663\) 0 0
\(664\) −2.85831e8 4.95074e8i −0.0378897 0.0656269i
\(665\) −2.25950e9 −0.297945
\(666\) 0 0
\(667\) 9.62738e9 1.25623
\(668\) −1.93455e9 3.35074e9i −0.251109 0.434934i
\(669\) 0 0
\(670\) 1.87337e9 3.24477e9i 0.240637 0.416795i
\(671\) 5.34635e9 9.26015e9i 0.683170 1.18329i
\(672\) 0 0
\(673\) 3.68018e8 + 6.37426e8i 0.0465389 + 0.0806077i 0.888356 0.459154i \(-0.151848\pi\)
−0.841818 + 0.539762i \(0.818514\pi\)
\(674\) 4.63055e9 0.582536
\(675\) 0 0
\(676\) 8.85091e9 1.10198
\(677\) 3.11281e9 + 5.39154e9i 0.385560 + 0.667810i 0.991847 0.127437i \(-0.0406749\pi\)
−0.606287 + 0.795246i \(0.707342\pi\)
\(678\) 0 0
\(679\) 3.29459e8 5.70640e8i 0.0403885 0.0699549i
\(680\) −1.27092e9 + 2.20130e9i −0.155002 + 0.268472i
\(681\) 0 0
\(682\) 1.41092e9 + 2.44379e9i 0.170317 + 0.294997i
\(683\) 6.78088e9 0.814355 0.407178 0.913349i \(-0.366513\pi\)
0.407178 + 0.913349i \(0.366513\pi\)
\(684\) 0 0
\(685\) −2.30046e9 −0.273462
\(686\) 1.99324e9 + 3.45240e9i 0.235736 + 0.408306i
\(687\) 0 0
\(688\) 8.69827e7 1.50658e8i 0.0101829 0.0176374i
\(689\) −7.60562e8 + 1.31733e9i −0.0885864 + 0.153436i
\(690\) 0 0
\(691\) 2.07498e9 + 3.59398e9i 0.239244 + 0.414383i 0.960498 0.278288i \(-0.0897670\pi\)
−0.721253 + 0.692671i \(0.756434\pi\)
\(692\) −4.11827e9 −0.472437
\(693\) 0 0
\(694\) −2.60000e9 −0.295267
\(695\) −9.24334e9 1.60099e10i −1.04444 1.80902i
\(696\) 0 0
\(697\) −4.98898e9 + 8.64118e9i −0.558081 + 0.966625i
\(698\) −1.00306e9 + 1.73735e9i −0.111644 + 0.193372i
\(699\) 0 0
\(700\) −1.98648e8 3.44068e8i −0.0218897 0.0379141i
\(701\) 1.61210e10 1.76758 0.883791 0.467881i \(-0.154983\pi\)
0.883791 + 0.467881i \(0.154983\pi\)
\(702\) 0 0
\(703\) 1.01785e10 1.10494
\(704\) 4.87588e8 + 8.44527e8i 0.0526682 + 0.0912240i
\(705\) 0 0
\(706\) −4.16298e9 + 7.21050e9i −0.445234 + 0.771168i
\(707\) −2.46408e9 + 4.26791e9i −0.262233 + 0.454201i
\(708\) 0 0
\(709\) −5.66442e9 9.81106e9i −0.596889 1.03384i −0.993277 0.115759i \(-0.963070\pi\)
0.396388 0.918083i \(-0.370263\pi\)
\(710\) 1.18139e10 1.23877
\(711\) 0 0
\(712\) −4.79649e9 −0.498016
\(713\) 2.73878e9 + 4.74371e9i 0.282972 + 0.490122i
\(714\) 0 0
\(715\) 8.22836e9 1.42519e10i 0.841864 1.45815i
\(716\) 3.38757e8 5.86745e8i 0.0344900 0.0597384i
\(717\) 0 0
\(718\) −4.09646e9 7.09528e9i −0.413022 0.715375i
\(719\) 8.97759e9 0.900760 0.450380 0.892837i \(-0.351289\pi\)
0.450380 + 0.892837i \(0.351289\pi\)
\(720\) 0 0
\(721\) −6.21560e9 −0.617603
\(722\) 1.56468e9 + 2.71011e9i 0.154720 + 0.267983i
\(723\) 0 0
\(724\) −2.05305e9 + 3.55598e9i −0.201055 + 0.348237i
\(725\) 1.60148e9 2.77385e9i 0.156077 0.270333i
\(726\) 0 0
\(727\) 9.90246e9 + 1.71516e10i 0.955813 + 1.65552i 0.732497 + 0.680770i \(0.238355\pi\)
0.223315 + 0.974746i \(0.428312\pi\)
\(728\) −2.34487e9 −0.225247
\(729\) 0 0
\(730\) 2.12437e8 0.0202116
\(731\) −3.37907e8 5.85272e8i −0.0319953 0.0554175i
\(732\) 0 0
\(733\) −9.43023e9 + 1.63336e10i −0.884420 + 1.53186i −0.0380432 + 0.999276i \(0.512112\pi\)
−0.846377 + 0.532584i \(0.821221\pi\)
\(734\) −3.99973e9 + 6.92774e9i −0.373332 + 0.646629i
\(735\) 0 0
\(736\) 9.46471e8 + 1.63934e9i 0.0875054 + 0.151564i
\(737\) −5.58408e9 −0.513825
\(738\) 0 0
\(739\) −1.38397e10 −1.26145 −0.630725 0.776006i \(-0.717243\pi\)
−0.630725 + 0.776006i \(0.717243\pi\)
\(740\) 4.53245e9 + 7.85043e9i 0.411170 + 0.712168i
\(741\) 0 0
\(742\) 1.38606e8 2.40072e8i 0.0124557 0.0215739i
\(743\) −9.04418e9 + 1.56650e10i −0.808926 + 1.40110i 0.104683 + 0.994506i \(0.466617\pi\)
−0.913609 + 0.406595i \(0.866716\pi\)
\(744\) 0 0
\(745\) 3.62907e9 + 6.28573e9i 0.321550 + 0.556940i
\(746\) 1.54065e9 0.135868
\(747\) 0 0
\(748\) 3.78833e9 0.330973
\(749\) 2.07642e9 + 3.59647e9i 0.180563 + 0.312745i
\(750\) 0 0
\(751\) 1.11013e9 1.92281e9i 0.0956390 0.165652i −0.814236 0.580534i \(-0.802844\pi\)
0.909875 + 0.414882i \(0.136177\pi\)
\(752\) −2.52980e9 + 4.38175e9i −0.216932 + 0.375738i
\(753\) 0 0
\(754\) −9.45206e9 1.63715e10i −0.803021 1.39087i
\(755\) 1.81727e10 1.53676
\(756\) 0 0
\(757\) 2.21883e10 1.85904 0.929521 0.368770i \(-0.120221\pi\)
0.929521 + 0.368770i \(0.120221\pi\)
\(758\) −7.66048e9 1.32683e10i −0.638872 1.10656i
\(759\) 0 0
\(760\) 1.79081e9 3.10177e9i 0.147980 0.256308i
\(761\) 1.51911e9 2.63117e9i 0.124952 0.216423i −0.796762 0.604293i \(-0.793456\pi\)
0.921714 + 0.387870i \(0.126789\pi\)
\(762\) 0 0
\(763\) 1.66079e9 + 2.87658e9i 0.135357 + 0.234444i
\(764\) −1.00053e10 −0.811715
\(765\) 0 0
\(766\) 1.20888e10 0.971812
\(767\) 1.75765e10 + 3.04433e10i 1.40653 + 2.43617i
\(768\) 0 0
\(769\) 9.12045e9 1.57971e10i 0.723226 1.25266i −0.236474 0.971638i \(-0.575992\pi\)
0.959700 0.281027i \(-0.0906750\pi\)
\(770\) −1.49955e9 + 2.59729e9i −0.118370 + 0.205023i
\(771\) 0 0
\(772\) 1.13043e9 + 1.95796e9i 0.0884266 + 0.153159i
\(773\) 1.20659e10 0.939576 0.469788 0.882779i \(-0.344330\pi\)
0.469788 + 0.882779i \(0.344330\pi\)