Properties

Label 162.8.c.b.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.b.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-60.0000 - 103.923i) q^{5} +(-188.500 + 326.492i) q^{7} +512.000 q^{8} +960.000 q^{10} +(-300.000 + 519.615i) q^{11} +(-2684.50 - 4649.69i) q^{13} +(-1508.00 - 2611.93i) q^{14} +(-2048.00 + 3547.24i) q^{16} +12168.0 q^{17} +16211.0 q^{19} +(-3840.00 + 6651.08i) q^{20} +(-2400.00 - 4156.92i) q^{22} +(-53196.0 - 92138.2i) q^{23} +(31862.5 - 55187.5i) q^{25} +42952.0 q^{26} +24128.0 q^{28} +(-88608.0 + 153474. i) q^{29} +(134030. + 232147. i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(-48672.0 + 84302.4i) q^{34} +45240.0 q^{35} +114959. q^{37} +(-64844.0 + 112313. i) q^{38} +(-30720.0 - 53208.6i) q^{40} +(56064.0 + 97105.7i) q^{41} +(57524.0 - 99634.5i) q^{43} +38400.0 q^{44} +851136. q^{46} +(-280668. + 486131. i) q^{47} +(340707. + 590122. i) q^{49} +(254900. + 441500. i) q^{50} +(-171808. + 297580. i) q^{52} -1.78776e6 q^{53} +72000.0 q^{55} +(-96512.0 + 167164. i) q^{56} +(-708864. - 1.22779e6i) q^{58} +(893172. + 1.54702e6i) q^{59} +(653419. - 1.13175e6i) q^{61} -2.14448e6 q^{62} +262144. q^{64} +(-322140. + 557963. i) q^{65} +(1.00691e6 + 1.74402e6i) q^{67} +(-389376. - 674419. i) q^{68} +(-180960. + 313432. i) q^{70} -4.06094e6 q^{71} -3.85064e6 q^{73} +(-459836. + 796459. i) q^{74} +(-518752. - 898505. i) q^{76} +(-113100. - 195895. i) q^{77} +(-518616. + 898268. i) q^{79} +491520. q^{80} -897024. q^{82} +(-4.60178e6 + 7.97052e6i) q^{83} +(-730080. - 1.26454e6i) q^{85} +(460192. + 797076. i) q^{86} +(-153600. + 266043. i) q^{88} -1.28930e6 q^{89} +2.02411e6 q^{91} +(-3.40454e6 + 5.89684e6i) q^{92} +(-2.24534e6 - 3.88905e6i) q^{94} +(-972660. - 1.68470e6i) q^{95} +(-4.27794e6 + 7.40961e6i) q^{97} -5.45131e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} - 120 q^{5} - 377 q^{7} + 1024 q^{8} + 1920 q^{10} - 600 q^{11} - 5369 q^{13} - 3016 q^{14} - 4096 q^{16} + 24336 q^{17} + 32422 q^{19} - 7680 q^{20} - 4800 q^{22} - 106392 q^{23}+ \cdots - 10902624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −60.0000 103.923i −0.214663 0.371806i 0.738506 0.674247i \(-0.235532\pi\)
−0.953168 + 0.302441i \(0.902198\pi\)
\(6\) 0 0
\(7\) −188.500 + 326.492i −0.207715 + 0.359773i −0.950994 0.309208i \(-0.899936\pi\)
0.743279 + 0.668981i \(0.233269\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 960.000 0.303579
\(11\) −300.000 + 519.615i −0.0679590 + 0.117708i −0.898003 0.439990i \(-0.854982\pi\)
0.830044 + 0.557698i \(0.188315\pi\)
\(12\) 0 0
\(13\) −2684.50 4649.69i −0.338892 0.586979i 0.645332 0.763902i \(-0.276719\pi\)
−0.984225 + 0.176923i \(0.943386\pi\)
\(14\) −1508.00 2611.93i −0.146877 0.254398i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 12168.0 0.600687 0.300343 0.953831i \(-0.402899\pi\)
0.300343 + 0.953831i \(0.402899\pi\)
\(18\) 0 0
\(19\) 16211.0 0.542216 0.271108 0.962549i \(-0.412610\pi\)
0.271108 + 0.962549i \(0.412610\pi\)
\(20\) −3840.00 + 6651.08i −0.107331 + 0.185903i
\(21\) 0 0
\(22\) −2400.00 4156.92i −0.0480543 0.0832324i
\(23\) −53196.0 92138.2i −0.911657 1.57904i −0.811723 0.584042i \(-0.801470\pi\)
−0.0999341 0.994994i \(-0.531863\pi\)
\(24\) 0 0
\(25\) 31862.5 55187.5i 0.407840 0.706400i
\(26\) 42952.0 0.479266
\(27\) 0 0
\(28\) 24128.0 0.207715
\(29\) −88608.0 + 153474.i −0.674652 + 1.16853i 0.301918 + 0.953334i \(0.402373\pi\)
−0.976570 + 0.215198i \(0.930960\pi\)
\(30\) 0 0
\(31\) 134030. + 232147.i 0.808046 + 1.39958i 0.914215 + 0.405229i \(0.132808\pi\)
−0.106169 + 0.994348i \(0.533859\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −48672.0 + 84302.4i −0.212375 + 0.367844i
\(35\) 45240.0 0.178355
\(36\) 0 0
\(37\) 114959. 0.373110 0.186555 0.982445i \(-0.440268\pi\)
0.186555 + 0.982445i \(0.440268\pi\)
\(38\) −64844.0 + 112313.i −0.191702 + 0.332038i
\(39\) 0 0
\(40\) −30720.0 53208.6i −0.0758947 0.131453i
\(41\) 56064.0 + 97105.7i 0.127040 + 0.220040i 0.922529 0.385929i \(-0.126119\pi\)
−0.795488 + 0.605969i \(0.792786\pi\)
\(42\) 0 0
\(43\) 57524.0 99634.5i 0.110334 0.191104i −0.805571 0.592499i \(-0.798141\pi\)
0.915905 + 0.401395i \(0.131475\pi\)
\(44\) 38400.0 0.0679590
\(45\) 0 0
\(46\) 851136. 1.28928
\(47\) −280668. + 486131.i −0.394321 + 0.682985i −0.993014 0.117994i \(-0.962354\pi\)
0.598693 + 0.800979i \(0.295687\pi\)
\(48\) 0 0
\(49\) 340707. + 590122.i 0.413709 + 0.716565i
\(50\) 254900. + 441500.i 0.288386 + 0.499500i
\(51\) 0 0
\(52\) −171808. + 297580.i −0.169446 + 0.293489i
\(53\) −1.78776e6 −1.64947 −0.824734 0.565521i \(-0.808675\pi\)
−0.824734 + 0.565521i \(0.808675\pi\)
\(54\) 0 0
\(55\) 72000.0 0.0583530
\(56\) −96512.0 + 167164.i −0.0734384 + 0.127199i
\(57\) 0 0
\(58\) −708864. 1.22779e6i −0.477051 0.826277i
\(59\) 893172. + 1.54702e6i 0.566178 + 0.980649i 0.996939 + 0.0781831i \(0.0249119\pi\)
−0.430761 + 0.902466i \(0.641755\pi\)
\(60\) 0 0
\(61\) 653419. 1.13175e6i 0.368584 0.638407i −0.620760 0.784001i \(-0.713176\pi\)
0.989344 + 0.145594i \(0.0465092\pi\)
\(62\) −2.14448e6 −1.14275
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −322140. + 557963.i −0.145495 + 0.252005i
\(66\) 0 0
\(67\) 1.00691e6 + 1.74402e6i 0.409005 + 0.708417i 0.994778 0.102058i \(-0.0325427\pi\)
−0.585774 + 0.810475i \(0.699209\pi\)
\(68\) −389376. 674419.i −0.150172 0.260105i
\(69\) 0 0
\(70\) −180960. + 313432.i −0.0630579 + 0.109219i
\(71\) −4.06094e6 −1.34655 −0.673275 0.739392i \(-0.735113\pi\)
−0.673275 + 0.739392i \(0.735113\pi\)
\(72\) 0 0
\(73\) −3.85064e6 −1.15852 −0.579259 0.815144i \(-0.696658\pi\)
−0.579259 + 0.815144i \(0.696658\pi\)
\(74\) −459836. + 796459.i −0.131914 + 0.228482i
\(75\) 0 0
\(76\) −518752. 898505.i −0.135554 0.234786i
\(77\) −113100. 195895.i −0.0282322 0.0488996i
\(78\) 0 0
\(79\) −518616. + 898268.i −0.118345 + 0.204980i −0.919112 0.393996i \(-0.871092\pi\)
0.800767 + 0.598976i \(0.204426\pi\)
\(80\) 491520. 0.107331
\(81\) 0 0
\(82\) −897024. −0.179662
\(83\) −4.60178e6 + 7.97052e6i −0.883391 + 1.53008i −0.0358439 + 0.999357i \(0.511412\pi\)
−0.847547 + 0.530720i \(0.821921\pi\)
\(84\) 0 0
\(85\) −730080. 1.26454e6i −0.128945 0.223339i
\(86\) 460192. + 797076.i 0.0780179 + 0.135131i
\(87\) 0 0
\(88\) −153600. + 266043.i −0.0240271 + 0.0416162i
\(89\) −1.28930e6 −0.193861 −0.0969305 0.995291i \(-0.530902\pi\)
−0.0969305 + 0.995291i \(0.530902\pi\)
\(90\) 0 0
\(91\) 2.02411e6 0.281572
\(92\) −3.40454e6 + 5.89684e6i −0.455829 + 0.789518i
\(93\) 0 0
\(94\) −2.24534e6 3.88905e6i −0.278827 0.482943i
\(95\) −972660. 1.68470e6i −0.116393 0.201599i
\(96\) 0 0
\(97\) −4.27794e6 + 7.40961e6i −0.475920 + 0.824317i −0.999619 0.0275856i \(-0.991218\pi\)
0.523700 + 0.851903i \(0.324551\pi\)
\(98\) −5.45131e6 −0.585073
\(99\) 0 0
\(100\) −4.07840e6 −0.407840
\(101\) −9.95030e6 + 1.72344e7i −0.960974 + 1.66446i −0.240910 + 0.970547i \(0.577446\pi\)
−0.720064 + 0.693908i \(0.755887\pi\)
\(102\) 0 0
\(103\) −3.49992e6 6.06204e6i −0.315594 0.546624i 0.663970 0.747759i \(-0.268870\pi\)
−0.979563 + 0.201135i \(0.935537\pi\)
\(104\) −1.37446e6 2.38064e6i −0.119817 0.207528i
\(105\) 0 0
\(106\) 7.15104e6 1.23860e7i 0.583175 1.01009i
\(107\) −4.48063e6 −0.353587 −0.176793 0.984248i \(-0.556572\pi\)
−0.176793 + 0.984248i \(0.556572\pi\)
\(108\) 0 0
\(109\) −1.47074e6 −0.108779 −0.0543893 0.998520i \(-0.517321\pi\)
−0.0543893 + 0.998520i \(0.517321\pi\)
\(110\) −288000. + 498831.i −0.0206309 + 0.0357338i
\(111\) 0 0
\(112\) −772096. 1.33731e6i −0.0519288 0.0899433i
\(113\) −1.73893e6 3.01192e6i −0.113373 0.196367i 0.803755 0.594960i \(-0.202832\pi\)
−0.917128 + 0.398593i \(0.869499\pi\)
\(114\) 0 0
\(115\) −6.38352e6 + 1.10566e7i −0.391397 + 0.677920i
\(116\) 1.13418e7 0.674652
\(117\) 0 0
\(118\) −1.42908e7 −0.800697
\(119\) −2.29367e6 + 3.97275e6i −0.124772 + 0.216111i
\(120\) 0 0
\(121\) 9.56359e6 + 1.65646e7i 0.490763 + 0.850027i
\(122\) 5.22735e6 + 9.05403e6i 0.260629 + 0.451422i
\(123\) 0 0
\(124\) 8.57792e6 1.48574e7i 0.404023 0.699788i
\(125\) −1.70220e7 −0.779517
\(126\) 0 0
\(127\) 2.10378e7 0.911353 0.455677 0.890145i \(-0.349397\pi\)
0.455677 + 0.890145i \(0.349397\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −2.57712e6 4.46370e6i −0.102880 0.178194i
\(131\) 1.03453e7 + 1.79186e7i 0.402062 + 0.696392i 0.993975 0.109610i \(-0.0349602\pi\)
−0.591912 + 0.806002i \(0.701627\pi\)
\(132\) 0 0
\(133\) −3.05577e6 + 5.29275e6i −0.112626 + 0.195075i
\(134\) −1.61105e7 −0.578420
\(135\) 0 0
\(136\) 6.23002e6 0.212375
\(137\) 2.65761e7 4.60311e7i 0.883016 1.52943i 0.0350447 0.999386i \(-0.488843\pi\)
0.847971 0.530043i \(-0.177824\pi\)
\(138\) 0 0
\(139\) 9.75045e6 + 1.68883e7i 0.307945 + 0.533376i 0.977913 0.209014i \(-0.0670254\pi\)
−0.669968 + 0.742390i \(0.733692\pi\)
\(140\) −1.44768e6 2.50746e6i −0.0445887 0.0772298i
\(141\) 0 0
\(142\) 1.62438e7 2.81350e7i 0.476078 0.824591i
\(143\) 3.22140e6 0.0921231
\(144\) 0 0
\(145\) 2.12659e7 0.579290
\(146\) 1.54026e7 2.66780e7i 0.409598 0.709445i
\(147\) 0 0
\(148\) −3.67869e6 6.37167e6i −0.0932775 0.161561i
\(149\) −4.25782e6 7.37475e6i −0.105447 0.182640i 0.808474 0.588532i \(-0.200294\pi\)
−0.913921 + 0.405893i \(0.866961\pi\)
\(150\) 0 0
\(151\) −3.18510e7 + 5.51675e7i −0.752841 + 1.30396i 0.193599 + 0.981081i \(0.437984\pi\)
−0.946440 + 0.322879i \(0.895349\pi\)
\(152\) 8.30003e6 0.191702
\(153\) 0 0
\(154\) 1.80960e6 0.0399264
\(155\) 1.60836e7 2.78576e7i 0.346914 0.600873i
\(156\) 0 0
\(157\) 3.18171e7 + 5.51089e7i 0.656163 + 1.13651i 0.981601 + 0.190945i \(0.0611552\pi\)
−0.325437 + 0.945564i \(0.605512\pi\)
\(158\) −4.14892e6 7.18615e6i −0.0836827 0.144943i
\(159\) 0 0
\(160\) −1.96608e6 + 3.40535e6i −0.0379473 + 0.0657267i
\(161\) 4.01098e7 0.757460
\(162\) 0 0
\(163\) 6.87301e7 1.24305 0.621527 0.783392i \(-0.286512\pi\)
0.621527 + 0.783392i \(0.286512\pi\)
\(164\) 3.58810e6 6.21476e6i 0.0635200 0.110020i
\(165\) 0 0
\(166\) −3.68143e7 6.37642e7i −0.624652 1.08193i
\(167\) −6.47171e6 1.12093e7i −0.107525 0.186240i 0.807242 0.590221i \(-0.200959\pi\)
−0.914767 + 0.403981i \(0.867626\pi\)
\(168\) 0 0
\(169\) 1.69612e7 2.93776e7i 0.270304 0.468180i
\(170\) 1.16813e7 0.182356
\(171\) 0 0
\(172\) −7.36307e6 −0.110334
\(173\) 2.11062e7 3.65570e7i 0.309919 0.536795i −0.668425 0.743779i \(-0.733031\pi\)
0.978344 + 0.206984i \(0.0663647\pi\)
\(174\) 0 0
\(175\) 1.20122e7 + 2.08057e7i 0.169429 + 0.293460i
\(176\) −1.22880e6 2.12834e6i −0.0169897 0.0294271i
\(177\) 0 0
\(178\) 5.15722e6 8.93256e6i 0.0685402 0.118715i
\(179\) 1.13640e8 1.48096 0.740482 0.672076i \(-0.234597\pi\)
0.740482 + 0.672076i \(0.234597\pi\)
\(180\) 0 0
\(181\) −1.27922e8 −1.60350 −0.801752 0.597658i \(-0.796098\pi\)
−0.801752 + 0.597658i \(0.796098\pi\)
\(182\) −8.09645e6 + 1.40235e7i −0.0995508 + 0.172427i
\(183\) 0 0
\(184\) −2.72364e7 4.71747e7i −0.322319 0.558274i
\(185\) −6.89754e6 1.19469e7i −0.0800927 0.138725i
\(186\) 0 0
\(187\) −3.65040e6 + 6.32268e6i −0.0408221 + 0.0707059i
\(188\) 3.59255e7 0.394321
\(189\) 0 0
\(190\) 1.55626e7 0.164605
\(191\) 1.05420e7 1.82593e7i 0.109473 0.189613i −0.806084 0.591801i \(-0.798417\pi\)
0.915557 + 0.402189i \(0.131750\pi\)
\(192\) 0 0
\(193\) 6.99105e7 + 1.21089e8i 0.699990 + 1.21242i 0.968469 + 0.249133i \(0.0801458\pi\)
−0.268479 + 0.963286i \(0.586521\pi\)
\(194\) −3.42235e7 5.92769e7i −0.336526 0.582880i
\(195\) 0 0
\(196\) 2.18052e7 3.77678e7i 0.206854 0.358282i
\(197\) 1.45966e8 1.36025 0.680127 0.733094i \(-0.261924\pi\)
0.680127 + 0.733094i \(0.261924\pi\)
\(198\) 0 0
\(199\) −5.11146e7 −0.459790 −0.229895 0.973215i \(-0.573838\pi\)
−0.229895 + 0.973215i \(0.573838\pi\)
\(200\) 1.63136e7 2.82560e7i 0.144193 0.249750i
\(201\) 0 0
\(202\) −7.96024e7 1.37875e8i −0.679511 1.17695i
\(203\) −3.34052e7 5.78595e7i −0.280271 0.485444i
\(204\) 0 0
\(205\) 6.72768e6 1.16527e7i 0.0545415 0.0944686i
\(206\) 5.59988e7 0.446317
\(207\) 0 0
\(208\) 2.19914e7 0.169446
\(209\) −4.86330e6 + 8.42348e6i −0.0368484 + 0.0638234i
\(210\) 0 0
\(211\) −4.90269e7 8.49170e7i −0.359290 0.622309i 0.628552 0.777768i \(-0.283648\pi\)
−0.987842 + 0.155458i \(0.950315\pi\)
\(212\) 5.72083e7 + 9.90877e7i 0.412367 + 0.714240i
\(213\) 0 0
\(214\) 1.79225e7 3.10427e7i 0.125012 0.216527i
\(215\) −1.38058e7 −0.0947383
\(216\) 0 0
\(217\) −1.01059e8 −0.671374
\(218\) 5.88297e6 1.01896e7i 0.0384591 0.0666131i
\(219\) 0 0
\(220\) −2.30400e6 3.99065e6i −0.0145882 0.0252676i
\(221\) −3.26650e7 5.65774e7i −0.203568 0.352590i
\(222\) 0 0
\(223\) −1.08379e8 + 1.87718e8i −0.654453 + 1.13355i 0.327578 + 0.944824i \(0.393768\pi\)
−0.982031 + 0.188722i \(0.939566\pi\)
\(224\) 1.23535e7 0.0734384
\(225\) 0 0
\(226\) 2.78229e7 0.160333
\(227\) 6.99323e7 1.21126e8i 0.396814 0.687303i −0.596516 0.802601i \(-0.703449\pi\)
0.993331 + 0.115298i \(0.0367823\pi\)
\(228\) 0 0
\(229\) 4.74784e7 + 8.22351e7i 0.261260 + 0.452515i 0.966577 0.256377i \(-0.0825288\pi\)
−0.705317 + 0.708892i \(0.749195\pi\)
\(230\) −5.10682e7 8.84526e7i −0.276760 0.479362i
\(231\) 0 0
\(232\) −4.53673e7 + 7.85785e7i −0.238526 + 0.413138i
\(233\) −2.10948e8 −1.09252 −0.546261 0.837615i \(-0.683949\pi\)
−0.546261 + 0.837615i \(0.683949\pi\)
\(234\) 0 0
\(235\) 6.73603e7 0.338584
\(236\) 5.71630e7 9.90092e7i 0.283089 0.490325i
\(237\) 0 0
\(238\) −1.83493e7 3.17820e7i −0.0882269 0.152814i
\(239\) 6.45759e7 + 1.11849e8i 0.305969 + 0.529954i 0.977477 0.211043i \(-0.0676862\pi\)
−0.671507 + 0.740998i \(0.734353\pi\)
\(240\) 0 0
\(241\) 2.00934e7 3.48028e7i 0.0924685 0.160160i −0.816081 0.577938i \(-0.803858\pi\)
0.908549 + 0.417778i \(0.137191\pi\)
\(242\) −1.53017e8 −0.694044
\(243\) 0 0
\(244\) −8.36376e7 −0.368584
\(245\) 4.08848e7 7.08146e7i 0.177616 0.307639i
\(246\) 0 0
\(247\) −4.35184e7 7.53761e7i −0.183753 0.318269i
\(248\) 6.86234e7 + 1.18859e8i 0.285687 + 0.494825i
\(249\) 0 0
\(250\) 6.80880e7 1.17932e8i 0.275601 0.477355i
\(251\) −2.68201e8 −1.07054 −0.535270 0.844681i \(-0.679790\pi\)
−0.535270 + 0.844681i \(0.679790\pi\)
\(252\) 0 0
\(253\) 6.38352e7 0.247821
\(254\) −8.41511e7 + 1.45754e8i −0.322212 + 0.558088i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 8.59320e7 + 1.48839e8i 0.315783 + 0.546952i 0.979604 0.200940i \(-0.0643995\pi\)
−0.663821 + 0.747892i \(0.731066\pi\)
\(258\) 0 0
\(259\) −2.16698e7 + 3.75331e7i −0.0775006 + 0.134235i
\(260\) 4.12339e7 0.145495
\(261\) 0 0
\(262\) −1.65525e8 −0.568602
\(263\) −1.01017e8 + 1.74966e8i −0.342411 + 0.593073i −0.984880 0.173239i \(-0.944577\pi\)
0.642469 + 0.766312i \(0.277910\pi\)
\(264\) 0 0
\(265\) 1.07266e8 + 1.85789e8i 0.354079 + 0.613282i
\(266\) −2.44462e7 4.23420e7i −0.0796389 0.137939i
\(267\) 0 0
\(268\) 6.44421e7 1.11617e8i 0.204502 0.354208i
\(269\) −9.73917e7 −0.305063 −0.152531 0.988299i \(-0.548743\pi\)
−0.152531 + 0.988299i \(0.548743\pi\)
\(270\) 0 0
\(271\) 4.51945e8 1.37941 0.689705 0.724091i \(-0.257740\pi\)
0.689705 + 0.724091i \(0.257740\pi\)
\(272\) −2.49201e7 + 4.31628e7i −0.0750858 + 0.130052i
\(273\) 0 0
\(274\) 2.12608e8 + 3.68249e8i 0.624386 + 1.08147i
\(275\) 1.91175e7 + 3.31125e7i 0.0554328 + 0.0960124i
\(276\) 0 0
\(277\) 1.04851e8 1.81608e8i 0.296411 0.513399i −0.678901 0.734230i \(-0.737543\pi\)
0.975312 + 0.220831i \(0.0708768\pi\)
\(278\) −1.56007e8 −0.435500
\(279\) 0 0
\(280\) 2.31629e7 0.0630579
\(281\) −2.66102e8 + 4.60902e8i −0.715444 + 1.23919i 0.247344 + 0.968928i \(0.420442\pi\)
−0.962788 + 0.270258i \(0.912891\pi\)
\(282\) 0 0
\(283\) −2.37381e8 4.11155e8i −0.622576 1.07833i −0.989004 0.147887i \(-0.952753\pi\)
0.366428 0.930446i \(-0.380581\pi\)
\(284\) 1.29950e8 + 2.25080e8i 0.336638 + 0.583074i
\(285\) 0 0
\(286\) −1.28856e7 + 2.23185e7i −0.0325704 + 0.0564136i
\(287\) −4.22723e7 −0.105553
\(288\) 0 0
\(289\) −2.62278e8 −0.639176
\(290\) −8.50637e7 + 1.47335e8i −0.204810 + 0.354741i
\(291\) 0 0
\(292\) 1.23220e8 + 2.13424e8i 0.289630 + 0.501653i
\(293\) 1.16059e8 + 2.01020e8i 0.269552 + 0.466878i 0.968746 0.248054i \(-0.0797910\pi\)
−0.699194 + 0.714932i \(0.746458\pi\)
\(294\) 0 0
\(295\) 1.07181e8 1.85642e8i 0.243074 0.421017i
\(296\) 5.88590e7 0.131914
\(297\) 0 0
\(298\) 6.81251e7 0.149125
\(299\) −2.85609e8 + 4.94690e8i −0.617907 + 1.07025i
\(300\) 0 0
\(301\) 2.16865e7 + 3.75622e7i 0.0458361 + 0.0793905i
\(302\) −2.54808e8 4.41340e8i −0.532339 0.922039i
\(303\) 0 0
\(304\) −3.32001e7 + 5.75043e7i −0.0677770 + 0.117393i
\(305\) −1.56820e8 −0.316485
\(306\) 0 0
\(307\) 7.53314e8 1.48591 0.742953 0.669343i \(-0.233424\pi\)
0.742953 + 0.669343i \(0.233424\pi\)
\(308\) −7.23840e6 + 1.25373e7i −0.0141161 + 0.0244498i
\(309\) 0 0
\(310\) 1.28669e8 + 2.22861e8i 0.245306 + 0.424882i
\(311\) −2.39889e8 4.15500e8i −0.452219 0.783267i 0.546304 0.837587i \(-0.316034\pi\)
−0.998524 + 0.0543198i \(0.982701\pi\)
\(312\) 0 0
\(313\) −3.27762e8 + 5.67701e8i −0.604163 + 1.04644i 0.388020 + 0.921651i \(0.373159\pi\)
−0.992183 + 0.124790i \(0.960174\pi\)
\(314\) −5.09074e8 −0.927955
\(315\) 0 0
\(316\) 6.63828e7 0.118345
\(317\) −3.46681e8 + 6.00469e8i −0.611255 + 1.05872i 0.379775 + 0.925079i \(0.376002\pi\)
−0.991029 + 0.133645i \(0.957332\pi\)
\(318\) 0 0
\(319\) −5.31648e7 9.20841e7i −0.0916974 0.158824i
\(320\) −1.57286e7 2.72428e7i −0.0268328 0.0464758i
\(321\) 0 0
\(322\) −1.60439e8 + 2.77889e8i −0.267803 + 0.463848i
\(323\) 1.97255e8 0.325702
\(324\) 0 0
\(325\) −3.42140e8 −0.552855
\(326\) −2.74920e8 + 4.76176e8i −0.439486 + 0.761212i
\(327\) 0 0
\(328\) 2.87048e7 + 4.97181e7i 0.0449154 + 0.0777958i
\(329\) −1.05812e8 1.83271e8i −0.163813 0.283733i
\(330\) 0 0
\(331\) 9.23266e7 1.59914e8i 0.139936 0.242376i −0.787536 0.616268i \(-0.788644\pi\)
0.927472 + 0.373892i \(0.121977\pi\)
\(332\) 5.89028e8 0.883391
\(333\) 0 0
\(334\) 1.03547e8 0.152064
\(335\) 1.20829e8 2.09282e8i 0.175596 0.304141i
\(336\) 0 0
\(337\) −4.21941e8 7.30824e8i −0.600548 1.04018i −0.992738 0.120295i \(-0.961616\pi\)
0.392191 0.919884i \(-0.371717\pi\)
\(338\) 1.35689e8 + 2.35021e8i 0.191134 + 0.331053i
\(339\) 0 0
\(340\) −4.67251e7 + 8.09303e7i −0.0644725 + 0.111670i
\(341\) −1.60836e8 −0.219656
\(342\) 0 0
\(343\) −5.67369e8 −0.759165
\(344\) 2.94523e7 5.10129e7i 0.0390090 0.0675655i
\(345\) 0 0
\(346\) 1.68849e8 + 2.92456e8i 0.219146 + 0.379572i
\(347\) −6.11249e7 1.05871e8i −0.0785353 0.136027i 0.824083 0.566469i \(-0.191691\pi\)
−0.902618 + 0.430442i \(0.858358\pi\)
\(348\) 0 0
\(349\) 5.26481e8 9.11891e8i 0.662969 1.14830i −0.316862 0.948472i \(-0.602629\pi\)
0.979832 0.199825i \(-0.0640374\pi\)
\(350\) −1.92195e8 −0.239609
\(351\) 0 0
\(352\) 1.96608e7 0.0240271
\(353\) 3.12292e8 5.40906e8i 0.377876 0.654501i −0.612877 0.790178i \(-0.709988\pi\)
0.990753 + 0.135678i \(0.0433212\pi\)
\(354\) 0 0
\(355\) 2.43657e8 + 4.22026e8i 0.289054 + 0.500656i
\(356\) 4.12577e7 + 7.14605e7i 0.0484652 + 0.0839442i
\(357\) 0 0
\(358\) −4.54559e8 + 7.87319e8i −0.523600 + 0.906902i
\(359\) −7.95194e8 −0.907074 −0.453537 0.891237i \(-0.649838\pi\)
−0.453537 + 0.891237i \(0.649838\pi\)
\(360\) 0 0
\(361\) −6.31075e8 −0.706002
\(362\) 5.11687e8 8.86269e8i 0.566924 0.981941i
\(363\) 0 0
\(364\) −6.47716e7 1.12188e8i −0.0703931 0.121924i
\(365\) 2.31038e8 + 4.00170e8i 0.248690 + 0.430744i
\(366\) 0 0
\(367\) 5.47225e8 9.47821e8i 0.577876 1.00091i −0.417847 0.908518i \(-0.637215\pi\)
0.995723 0.0923929i \(-0.0294516\pi\)
\(368\) 4.35782e8 0.455829
\(369\) 0 0
\(370\) 1.10361e8 0.113268
\(371\) 3.36993e8 5.83689e8i 0.342619 0.593434i
\(372\) 0 0
\(373\) −4.41022e8 7.63872e8i −0.440027 0.762149i 0.557664 0.830067i \(-0.311698\pi\)
−0.997691 + 0.0679177i \(0.978364\pi\)
\(374\) −2.92032e7 5.05814e7i −0.0288655 0.0499966i
\(375\) 0 0
\(376\) −1.43702e8 + 2.48899e8i −0.139414 + 0.241472i
\(377\) 9.51473e8 0.914538
\(378\) 0 0
\(379\) −1.04251e9 −0.983651 −0.491826 0.870694i \(-0.663670\pi\)
−0.491826 + 0.870694i \(0.663670\pi\)
\(380\) −6.22502e7 + 1.07821e8i −0.0581967 + 0.100800i
\(381\) 0 0
\(382\) 8.43361e7 + 1.46074e8i 0.0774090 + 0.134076i
\(383\) 4.18424e8 + 7.24731e8i 0.380558 + 0.659145i 0.991142 0.132806i \(-0.0423987\pi\)
−0.610584 + 0.791951i \(0.709065\pi\)
\(384\) 0 0
\(385\) −1.35720e7 + 2.35074e7i −0.0121208 + 0.0209938i
\(386\) −1.11857e9 −0.989936
\(387\) 0 0
\(388\) 5.47577e8 0.475920
\(389\) 7.35299e8 1.27358e9i 0.633345 1.09699i −0.353518 0.935428i \(-0.615015\pi\)
0.986863 0.161558i \(-0.0516519\pi\)
\(390\) 0 0
\(391\) −6.47289e8 1.12114e9i −0.547620 0.948506i
\(392\) 1.74442e8 + 3.02142e8i 0.146268 + 0.253344i
\(393\) 0 0
\(394\) −5.83864e8 + 1.01128e9i −0.480923 + 0.832982i
\(395\) 1.24468e8 0.101617
\(396\) 0 0
\(397\) −1.26746e9 −1.01664 −0.508322 0.861167i \(-0.669734\pi\)
−0.508322 + 0.861167i \(0.669734\pi\)
\(398\) 2.04459e8 3.54133e8i 0.162560 0.281563i
\(399\) 0 0
\(400\) 1.30509e8 + 2.26048e8i 0.101960 + 0.176600i
\(401\) −2.63929e8 4.57139e8i −0.204401 0.354032i 0.745541 0.666460i \(-0.232191\pi\)
−0.949942 + 0.312428i \(0.898858\pi\)
\(402\) 0 0
\(403\) 7.19607e8 1.24640e9i 0.547681 0.948612i
\(404\) 1.27364e9 0.960974
\(405\) 0 0
\(406\) 5.34483e8 0.396363
\(407\) −3.44877e7 + 5.97344e7i −0.0253562 + 0.0439182i
\(408\) 0 0
\(409\) 1.11395e8 + 1.92942e8i 0.0805073 + 0.139443i 0.903468 0.428656i \(-0.141013\pi\)
−0.822961 + 0.568098i \(0.807679\pi\)
\(410\) 5.38214e7 + 9.32215e7i 0.0385666 + 0.0667994i
\(411\) 0 0
\(412\) −2.23995e8 + 3.87971e8i −0.157797 + 0.273312i
\(413\) −6.73452e8 −0.470415
\(414\) 0 0
\(415\) 1.10443e9 0.758524
\(416\) −8.79657e7 + 1.52361e8i −0.0599083 + 0.103764i
\(417\) 0 0
\(418\) −3.89064e7 6.73879e7i −0.0260558 0.0451299i
\(419\) 2.20291e8 + 3.81554e8i 0.146301 + 0.253400i 0.929858 0.367920i \(-0.119930\pi\)
−0.783557 + 0.621320i \(0.786597\pi\)
\(420\) 0 0
\(421\) −1.09467e9 + 1.89603e9i −0.714984 + 1.23839i 0.247981 + 0.968765i \(0.420233\pi\)
−0.962966 + 0.269625i \(0.913100\pi\)
\(422\) 7.84430e8 0.508113
\(423\) 0 0
\(424\) −9.15333e8 −0.583175
\(425\) 3.87703e8 6.71521e8i 0.244984 0.424325i
\(426\) 0 0
\(427\) 2.46339e8 + 4.26671e8i 0.153121 + 0.265214i
\(428\) 1.43380e8 + 2.48342e8i 0.0883967 + 0.153108i
\(429\) 0 0
\(430\) 5.52230e7 9.56491e7i 0.0334951 0.0580151i
\(431\) 3.03634e9 1.82675 0.913377 0.407114i \(-0.133465\pi\)
0.913377 + 0.407114i \(0.133465\pi\)
\(432\) 0 0
\(433\) 2.21735e9 1.31258 0.656290 0.754509i \(-0.272125\pi\)
0.656290 + 0.754509i \(0.272125\pi\)
\(434\) 4.04234e8 7.00155e8i 0.237366 0.411131i
\(435\) 0 0
\(436\) 4.70637e7 + 8.15168e7i 0.0271947 + 0.0471025i
\(437\) −8.62360e8 1.49365e9i −0.494315 0.856179i
\(438\) 0 0
\(439\) 1.25047e9 2.16588e9i 0.705419 1.22182i −0.261121 0.965306i \(-0.584092\pi\)
0.966540 0.256515i \(-0.0825744\pi\)
\(440\) 3.68640e7 0.0206309
\(441\) 0 0
\(442\) 5.22640e8 0.287889
\(443\) 1.20193e9 2.08181e9i 0.656852 1.13770i −0.324573 0.945860i \(-0.605221\pi\)
0.981426 0.191841i \(-0.0614459\pi\)
\(444\) 0 0
\(445\) 7.73582e7 + 1.33988e8i 0.0416147 + 0.0720787i
\(446\) −8.67033e8 1.50174e9i −0.462768 0.801538i
\(447\) 0 0
\(448\) −4.94141e7 + 8.55878e7i −0.0259644 + 0.0449717i
\(449\) 2.14935e9 1.12059 0.560294 0.828294i \(-0.310688\pi\)
0.560294 + 0.828294i \(0.310688\pi\)
\(450\) 0 0
\(451\) −6.72768e7 −0.0345340
\(452\) −1.11292e8 + 1.92763e8i −0.0566863 + 0.0981835i
\(453\) 0 0
\(454\) 5.59459e8 + 9.69011e8i 0.280590 + 0.485996i
\(455\) −1.21447e8 2.10352e8i −0.0604430 0.104690i
\(456\) 0 0
\(457\) −1.15079e9 + 1.99323e9i −0.564015 + 0.976902i 0.433126 + 0.901334i \(0.357411\pi\)
−0.997141 + 0.0755689i \(0.975923\pi\)
\(458\) −7.59655e8 −0.369477
\(459\) 0 0
\(460\) 8.17091e8 0.391397
\(461\) −6.89638e8 + 1.19449e9i −0.327844 + 0.567843i −0.982084 0.188444i \(-0.939656\pi\)
0.654239 + 0.756287i \(0.272989\pi\)
\(462\) 0 0
\(463\) 8.60268e8 + 1.49003e9i 0.402810 + 0.697688i 0.994064 0.108798i \(-0.0347001\pi\)
−0.591254 + 0.806486i \(0.701367\pi\)
\(464\) −3.62938e8 6.28628e8i −0.168663 0.292133i
\(465\) 0 0
\(466\) 8.43793e8 1.46149e9i 0.386265 0.669030i
\(467\) 1.58750e9 0.721280 0.360640 0.932705i \(-0.382558\pi\)
0.360640 + 0.932705i \(0.382558\pi\)
\(468\) 0 0
\(469\) −7.59209e8 −0.339826
\(470\) −2.69441e8 + 4.66686e8i −0.119708 + 0.207340i
\(471\) 0 0
\(472\) 4.57304e8 + 7.92074e8i 0.200174 + 0.346712i
\(473\) 3.45144e7 + 5.97807e7i 0.0149964 + 0.0259745i
\(474\) 0 0
\(475\) 5.16523e8 8.94644e8i 0.221137 0.383021i
\(476\) 2.93590e8 0.124772
\(477\) 0 0
\(478\) −1.03321e9 −0.432706
\(479\) −8.78348e8 + 1.52134e9i −0.365168 + 0.632489i −0.988803 0.149226i \(-0.952322\pi\)
0.623635 + 0.781715i \(0.285655\pi\)
\(480\) 0 0
\(481\) −3.08607e8 5.34524e8i −0.126444 0.219008i
\(482\) 1.60747e8 + 2.78422e8i 0.0653851 + 0.113250i
\(483\) 0 0
\(484\) 6.12069e8 1.06014e9i 0.245382 0.425013i
\(485\) 1.02671e9 0.408649
\(486\) 0 0
\(487\) 1.52004e9 0.596353 0.298177 0.954511i \(-0.403622\pi\)
0.298177 + 0.954511i \(0.403622\pi\)
\(488\) 3.34550e8 5.79458e8i 0.130314 0.225711i
\(489\) 0 0
\(490\) 3.27079e8 + 5.66517e8i 0.125593 + 0.217534i
\(491\) −1.82412e9 3.15946e9i −0.695453 1.20456i −0.970028 0.242994i \(-0.921870\pi\)
0.274575 0.961566i \(-0.411463\pi\)
\(492\) 0 0
\(493\) −1.07818e9 + 1.86747e9i −0.405255 + 0.701921i
\(494\) 6.96295e8 0.259866
\(495\) 0 0
\(496\) −1.09797e9 −0.404023
\(497\) 7.65488e8 1.32586e9i 0.279699 0.484453i
\(498\) 0 0
\(499\) −2.41752e8 4.18726e8i −0.0870998 0.150861i 0.819184 0.573530i \(-0.194427\pi\)
−0.906284 + 0.422669i \(0.861093\pi\)
\(500\) 5.44704e8 + 9.43455e8i 0.194879 + 0.337541i
\(501\) 0 0
\(502\) 1.07281e9 1.85815e9i 0.378493 0.655569i
\(503\) −4.20389e9 −1.47287 −0.736434 0.676510i \(-0.763492\pi\)
−0.736434 + 0.676510i \(0.763492\pi\)
\(504\) 0 0
\(505\) 2.38807e9 0.825140
\(506\) −2.55341e8 + 4.42263e8i −0.0876180 + 0.151759i
\(507\) 0 0
\(508\) −6.73209e8 1.16603e9i −0.227838 0.394628i
\(509\) 1.33886e9 + 2.31897e9i 0.450009 + 0.779439i 0.998386 0.0567925i \(-0.0180874\pi\)
−0.548377 + 0.836231i \(0.684754\pi\)
\(510\) 0 0
\(511\) 7.25845e8 1.25720e9i 0.240642 0.416804i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −1.37491e9 −0.446585
\(515\) −4.19991e8 + 7.27445e8i −0.135492 + 0.234679i
\(516\) 0 0
\(517\) −1.68401e8 2.91679e8i −0.0535954 0.0928299i
\(518\) −1.73358e8 3.00265e8i −0.0548012 0.0949185i
\(519\) 0 0
\(520\) −1.64936e8 + 2.85677e8i −0.0514402 + 0.0890971i
\(521\) −4.83951e9 −1.49923 −0.749616 0.661873i \(-0.769762\pi\)
−0.749616 + 0.661873i \(0.769762\pi\)
\(522\) 0 0
\(523\) 6.47019e8 0.197770 0.0988851 0.995099i \(-0.468472\pi\)
0.0988851 + 0.995099i \(0.468472\pi\)
\(524\) 6.62099e8 1.14679e9i 0.201031 0.348196i
\(525\) 0 0
\(526\) −8.08132e8 1.39973e9i −0.242121 0.419366i
\(527\) 1.63088e9 + 2.82476e9i 0.485382 + 0.840707i
\(528\) 0 0
\(529\) −3.95722e9 + 6.85410e9i −1.16224 + 2.01305i
\(530\) −1.71625e9 −0.500743
\(531\) 0 0
\(532\) 3.91139e8 0.112626
\(533\) 3.01008e8 5.21360e8i 0.0861058 0.149140i
\(534\) 0 0
\(535\) 2.68838e8 + 4.65641e8i 0.0759018 + 0.131466i
\(536\) 5.15537e8 + 8.92937e8i 0.144605 + 0.250463i
\(537\) 0 0
\(538\) 3.89567e8 6.74750e8i 0.107856 0.186812i
\(539\) −4.08848e8 −0.112461
\(540\) 0 0
\(541\) −3.47237e8 −0.0942835 −0.0471418 0.998888i \(-0.515011\pi\)
−0.0471418 + 0.998888i \(0.515011\pi\)
\(542\) −1.80778e9 + 3.13117e9i −0.487695 + 0.844712i
\(543\) 0 0
\(544\) −1.99361e8 3.45303e8i −0.0530937 0.0919610i
\(545\) 8.82445e7 + 1.52844e8i 0.0233507 + 0.0404446i
\(546\) 0 0
\(547\) 1.44314e9 2.49959e9i 0.377010 0.653001i −0.613615 0.789605i \(-0.710285\pi\)
0.990626 + 0.136604i \(0.0436188\pi\)
\(548\) −3.40173e9 −0.883016
\(549\) 0 0
\(550\) −3.05880e8 −0.0783938
\(551\) −1.43642e9 + 2.48796e9i −0.365807 + 0.633597i
\(552\) 0 0
\(553\) −1.95518e8 3.38647e8i −0.0491642 0.0851549i
\(554\) 8.38811e8 + 1.45286e9i 0.209594 + 0.363028i
\(555\) 0 0
\(556\) 6.24029e8 1.08085e9i 0.153972 0.266688i
\(557\) −8.74890e8 −0.214516 −0.107258 0.994231i \(-0.534207\pi\)
−0.107258 + 0.994231i \(0.534207\pi\)
\(558\) 0 0
\(559\) −6.17693e8 −0.149565
\(560\) −9.26515e7 + 1.60477e8i −0.0222943 + 0.0386149i
\(561\) 0 0
\(562\) −2.12881e9 3.68722e9i −0.505895 0.876237i
\(563\) 4.03722e9 + 6.99267e9i 0.953462 + 1.65144i 0.737850 + 0.674965i \(0.235841\pi\)
0.215611 + 0.976479i \(0.430826\pi\)
\(564\) 0 0
\(565\) −2.08672e8 + 3.61430e8i −0.0486737 + 0.0843053i
\(566\) 3.79809e9 0.880456
\(567\) 0 0
\(568\) −2.07920e9 −0.476078
\(569\) −2.75417e9 + 4.77036e9i −0.626755 + 1.08557i 0.361444 + 0.932394i \(0.382284\pi\)
−0.988199 + 0.153178i \(0.951049\pi\)
\(570\) 0 0
\(571\) 1.40731e9 + 2.43753e9i 0.316347 + 0.547928i 0.979723 0.200358i \(-0.0642104\pi\)
−0.663376 + 0.748286i \(0.730877\pi\)
\(572\) −1.03085e8 1.78548e8i −0.0230308 0.0398905i
\(573\) 0 0
\(574\) 1.69089e8 2.92871e8i 0.0373185 0.0646375i
\(575\) −6.77983e9 −1.48724
\(576\) 0 0
\(577\) −4.74376e9 −1.02803 −0.514017 0.857780i \(-0.671843\pi\)
−0.514017 + 0.857780i \(0.671843\pi\)
\(578\) 1.04911e9 1.81712e9i 0.225983 0.391413i
\(579\) 0 0
\(580\) −6.80509e8 1.17868e9i −0.144823 0.250840i
\(581\) −1.73487e9 3.00489e9i −0.366987 0.635641i
\(582\) 0 0
\(583\) 5.36328e8 9.28947e8i 0.112096 0.194156i
\(584\) −1.97153e9 −0.409598
\(585\) 0 0
\(586\) −1.85695e9 −0.381204
\(587\) −2.46020e9 + 4.26118e9i −0.502038 + 0.869555i 0.497960 + 0.867200i \(0.334083\pi\)
−0.999997 + 0.00235443i \(0.999251\pi\)
\(588\) 0 0
\(589\) 2.17276e9 + 3.76333e9i 0.438135 + 0.758873i
\(590\) 8.57445e8 + 1.48514e9i 0.171880 + 0.297704i
\(591\) 0 0
\(592\) −2.35436e8 + 4.07787e8i −0.0466388 + 0.0807807i
\(593\) −1.96899e9 −0.387750 −0.193875 0.981026i \(-0.562106\pi\)
−0.193875 + 0.981026i \(0.562106\pi\)
\(594\) 0 0
\(595\) 5.50480e8 0.107135
\(596\) −2.72500e8 + 4.71984e8i −0.0527236 + 0.0913199i
\(597\) 0 0
\(598\) −2.28487e9 3.95752e9i −0.436926 0.756779i
\(599\) −4.14421e9 7.17799e9i −0.787858 1.36461i −0.927277 0.374377i \(-0.877857\pi\)
0.139418 0.990234i \(-0.455477\pi\)
\(600\) 0 0
\(601\) −3.59672e9 + 6.22971e9i −0.675844 + 1.17060i 0.300377 + 0.953820i \(0.402887\pi\)
−0.976221 + 0.216776i \(0.930446\pi\)
\(602\) −3.46985e8 −0.0648220
\(603\) 0 0
\(604\) 4.07693e9 0.752841
\(605\) 1.14763e9 1.98775e9i 0.210697 0.364938i
\(606\) 0 0
\(607\) 2.67828e9 + 4.63891e9i 0.486066 + 0.841891i 0.999872 0.0160155i \(-0.00509813\pi\)
−0.513806 + 0.857907i \(0.671765\pi\)
\(608\) −2.65601e8 4.60034e8i −0.0479256 0.0830095i
\(609\) 0 0
\(610\) 6.27282e8 1.08648e9i 0.111894 0.193807i
\(611\) 3.01381e9 0.534530
\(612\) 0 0
\(613\) −1.01444e10 −1.77874 −0.889371 0.457187i \(-0.848857\pi\)
−0.889371 + 0.457187i \(0.848857\pi\)
\(614\) −3.01326e9 + 5.21911e9i −0.525347 + 0.909928i
\(615\) 0 0
\(616\) −5.79072e7 1.00298e8i −0.00998160 0.0172886i
\(617\) 1.20214e9 + 2.08217e9i 0.206043 + 0.356876i 0.950464 0.310833i \(-0.100608\pi\)
−0.744422 + 0.667710i \(0.767275\pi\)
\(618\) 0 0
\(619\) 1.37810e9 2.38693e9i 0.233541 0.404504i −0.725307 0.688426i \(-0.758302\pi\)
0.958848 + 0.283921i \(0.0916355\pi\)
\(620\) −2.05870e9 −0.346914
\(621\) 0 0
\(622\) 3.83823e9 0.639535
\(623\) 2.43034e8 4.20947e8i 0.0402679 0.0697460i
\(624\) 0 0
\(625\) −1.46794e9 2.54254e9i −0.240507 0.416570i
\(626\) −2.62210e9 4.54161e9i −0.427208 0.739945i
\(627\) 0 0
\(628\) 2.03630e9 3.52697e9i 0.328082 0.568254i
\(629\) 1.39882e9 0.224122
\(630\) 0 0
\(631\) 3.92975e9 0.622676 0.311338 0.950299i \(-0.399223\pi\)
0.311338 + 0.950299i \(0.399223\pi\)
\(632\) −2.65531e8 + 4.59913e8i −0.0418413 + 0.0724713i
\(633\) 0 0
\(634\) −2.77345e9 4.80375e9i −0.432222 0.748631i
\(635\) −1.26227e9 2.18631e9i −0.195633 0.338847i
\(636\) 0 0
\(637\) 1.82926e9 3.16836e9i 0.280405 0.485676i
\(638\) 8.50637e8 0.129680
\(639\) 0 0
\(640\) 2.51658e8 0.0379473
\(641\) −6.09930e9 + 1.05643e10i −0.914696 + 1.58430i −0.107349 + 0.994221i \(0.534236\pi\)
−0.807346 + 0.590078i \(0.799097\pi\)
\(642\) 0 0
\(643\) −2.32291e8 4.02340e8i −0.0344583 0.0596835i 0.848282 0.529545i \(-0.177637\pi\)
−0.882740 + 0.469861i \(0.844304\pi\)
\(644\) −1.28351e9 2.22311e9i −0.189365 0.327990i
\(645\) 0 0
\(646\) −7.89022e8 + 1.36663e9i −0.115153 + 0.199451i
\(647\) 6.98889e9 1.01448 0.507239 0.861805i \(-0.330666\pi\)
0.507239 + 0.861805i \(0.330666\pi\)
\(648\) 0 0
\(649\) −1.07181e9 −0.153908
\(650\) 1.36856e9 2.37041e9i 0.195464 0.338553i
\(651\) 0 0
\(652\) −2.19936e9 3.80941e9i −0.310764 0.538258i
\(653\) −1.72494e9 2.98768e9i −0.242425 0.419892i 0.718980 0.695031i \(-0.244609\pi\)
−0.961404 + 0.275139i \(0.911276\pi\)
\(654\) 0 0
\(655\) 1.24144e9 2.15023e9i 0.172615 0.298979i
\(656\) −4.59276e8 −0.0635200
\(657\) 0 0
\(658\) 1.69299e9 0.231667
\(659\) 4.93727e9 8.55160e9i 0.672029 1.16399i −0.305299 0.952256i \(-0.598757\pi\)
0.977328 0.211731i \(-0.0679101\pi\)
\(660\) 0 0
\(661\) 6.14124e9 + 1.06369e10i 0.827087 + 1.43256i 0.900314 + 0.435241i \(0.143337\pi\)
−0.0732275 + 0.997315i \(0.523330\pi\)
\(662\) 7.38613e8 + 1.27932e9i 0.0989496 + 0.171386i
\(663\) 0 0
\(664\) −2.35611e9 + 4.08091e9i −0.312326 + 0.540964i
\(665\) 7.33386e8 0.0967067
\(666\) 0 0
\(667\) 1.88544e10 2.46021
\(668\) −4.14189e8 + 7.17397e8i −0.0537627 + 0.0931198i
\(669\) 0 0
\(670\) 9.66632e8 + 1.67426e9i 0.124165 + 0.215060i
\(671\) 3.92051e8 + 6.79052e8i 0.0500972 + 0.0867710i
\(672\) 0 0
\(673\) −4.60616e9 + 7.97811e9i −0.582488 + 1.00890i 0.412696 + 0.910869i \(0.364587\pi\)
−0.995184 + 0.0980294i \(0.968746\pi\)
\(674\) 6.75106e9 0.849303
\(675\) 0 0
\(676\) −2.17103e9 −0.270304
\(677\) −1.87113e9 + 3.24089e9i −0.231763 + 0.401425i −0.958327 0.285674i \(-0.907783\pi\)
0.726564 + 0.687099i \(0.241116\pi\)
\(678\) 0 0
\(679\) −1.61278e9 2.79342e9i −0.197712 0.342446i
\(680\) −3.73801e8 6.47442e8i −0.0455889 0.0789623i
\(681\) 0 0
\(682\) 6.43344e8 1.11430e9i 0.0776601 0.134511i
\(683\) −4.17620e9 −0.501544 −0.250772 0.968046i \(-0.580684\pi\)
−0.250772 + 0.968046i \(0.580684\pi\)
\(684\) 0 0
\(685\) −6.37825e9 −0.758202
\(686\) 2.26948e9 3.93085e9i 0.268405 0.464892i
\(687\) 0 0
\(688\) 2.35618e8 + 4.08103e8i 0.0275835 + 0.0477760i
\(689\) 4.79924e9 + 8.31253e9i 0.558992 + 0.968202i
\(690\) 0 0
\(691\) 3.47365e9 6.01654e9i 0.400510 0.693703i −0.593278 0.804998i \(-0.702166\pi\)
0.993787 + 0.111294i \(0.0354997\pi\)
\(692\) −2.70159e9 −0.309919
\(693\) 0 0
\(694\) 9.77998e8 0.111066
\(695\) 1.17005e9 2.02659e9i 0.132208 0.228992i
\(696\) 0 0
\(697\) 6.82187e8 + 1.18158e9i 0.0763112 + 0.132175i
\(698\) 4.21185e9 + 7.29513e9i 0.468790 + 0.811968i
\(699\) 0 0
\(700\) 7.68778e8 1.33156e9i 0.0847146 0.146730i
\(701\) 9.64715e9 1.05776 0.528879 0.848697i \(-0.322613\pi\)
0.528879 + 0.848697i \(0.322613\pi\)
\(702\) 0 0
\(703\) 1.86360e9 0.202306
\(704\) −7.86432e7 + 1.36214e8i −0.00849487 + 0.0147136i
\(705\) 0 0
\(706\) 2.49834e9 + 4.32725e9i 0.267199 + 0.462802i
\(707\) −3.75126e9 6.49738e9i −0.399218 0.691465i
\(708\) 0 0
\(709\) −3.86203e9 + 6.68924e9i −0.406962 + 0.704879i −0.994548 0.104283i \(-0.966745\pi\)
0.587585 + 0.809162i \(0.300079\pi\)
\(710\) −3.89851e9 −0.408784
\(711\) 0 0
\(712\) −6.60124e8 −0.0685402
\(713\) 1.42597e10 2.46986e10i 1.47332 2.55187i
\(714\) 0 0
\(715\) −1.93284e8 3.34778e8i −0.0197754 0.0342520i
\(716\) −3.63647e9 6.29855e9i −0.370241 0.641277i
\(717\) 0 0
\(718\) 3.18078e9 5.50927e9i 0.320699 0.555467i
\(719\) 1.11572e9 0.111945 0.0559725 0.998432i \(-0.482174\pi\)
0.0559725 + 0.998432i \(0.482174\pi\)
\(720\) 0 0
\(721\) 2.63894e9 0.262214
\(722\) 2.52430e9 4.37222e9i 0.249609 0.432336i
\(723\) 0 0
\(724\) 4.09350e9 + 7.09015e9i 0.400876 + 0.694337i
\(725\) 5.64654e9 + 9.78010e9i 0.550300 + 0.953148i
\(726\) 0 0
\(727\) 3.92513e9 6.79852e9i 0.378864 0.656212i −0.612033 0.790832i \(-0.709648\pi\)
0.990897 + 0.134620i \(0.0429814\pi\)
\(728\) 1.03635e9 0.0995508
\(729\) 0 0
\(730\) −3.69661e9 −0.351701
\(731\) 6.99952e8 1.21235e9i 0.0662762 0.114794i
\(732\) 0 0
\(733\) 7.18261e9 + 1.24406e10i 0.673625 + 1.16675i 0.976869 + 0.213840i \(0.0685971\pi\)
−0.303244 + 0.952913i \(0.598070\pi\)
\(734\) 4.37780e9 + 7.58257e9i 0.408620 + 0.707751i
\(735\) 0 0
\(736\) −1.74313e9 + 3.01918e9i −0.161160 + 0.279137i
\(737\) −1.20829e9 −0.111182
\(738\) 0 0
\(739\) 5.13869e9 0.468379 0.234189 0.972191i \(-0.424756\pi\)
0.234189 + 0.972191i \(0.424756\pi\)
\(740\) −4.41443e8 + 7.64601e8i −0.0400464 + 0.0693624i
\(741\) 0 0
\(742\) 2.69594e9 + 4.66951e9i 0.242268 + 0.419621i
\(743\) 5.60912e9 + 9.71528e9i 0.501688 + 0.868949i 0.999998 + 0.00195014i \(0.000620748\pi\)
−0.498310 + 0.866999i \(0.666046\pi\)
\(744\) 0 0
\(745\) −5.10938e8 + 8.84970e8i −0.0452711 + 0.0784119i
\(746\) 7.05635e9 0.622292
\(747\) 0 0
\(748\) 4.67251e8 0.0408221
\(749\) 8.44599e8 1.46289e9i 0.0734453 0.127211i
\(750\) 0 0
\(751\) −1.08170e10 1.87357e10i −0.931899 1.61410i −0.780072 0.625690i \(-0.784817\pi\)
−0.151828 0.988407i \(-0.548516\pi\)
\(752\) −1.14962e9 1.99119e9i −0.0985804 0.170746i
\(753\) 0 0
\(754\) −3.80589e9 + 6.59200e9i −0.323338 + 0.560038i
\(755\) 7.64424e9 0.646427
\(756\) 0 0
\(757\) −1.67963e10 −1.40727 −0.703635 0.710561i \(-0.748441\pi\)
−0.703635 + 0.710561i \(0.748441\pi\)
\(758\) 4.17002e9 7.22269e9i 0.347773 0.602361i
\(759\) 0 0
\(760\) −4.98002e8 8.62565e8i −0.0411513 0.0712761i
\(761\) −1.20607e10 2.08897e10i −0.992030 1.71825i −0.605136 0.796122i \(-0.706881\pi\)
−0.386894 0.922124i \(-0.626452\pi\)
\(762\) 0 0
\(763\) 2.77235e8 4.80185e8i 0.0225950 0.0391357i
\(764\) −1.34938e9 −0.109473
\(765\) 0 0
\(766\) −6.69478e9 −0.538190
\(767\) 4.79544e9 8.30595e9i 0.383747 0.664669i
\(768\) 0 0
\(769\) −8.33515e9 1.44369e10i −0.660954 1.14481i −0.980365 0.197190i \(-0.936818\pi\)
0.319411 0.947616i \(-0.396515\pi\)
\(770\) −1.08576e8 1.88059e8i −0.00857070 0.0148449i
\(771\) 0 0
\(772\) 4.47428e9 7.74967e9i 0.349995 0.606210i
\(773\) −1.34400e10 −1.04658 −0.523288 0.852156i \(-0.675295\pi\)
−0.523288 + 0.852156i \(0.675295\pi\)
\(774\) 0