Properties

Label 162.8.c.a.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,8,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,-64,-210] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.a.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-105.000 - 181.865i) q^{5} +(-508.000 + 879.882i) q^{7} +512.000 q^{8} +1680.00 q^{10} +(546.000 - 945.700i) q^{11} +(-691.000 - 1196.85i) q^{13} +(-4064.00 - 7039.05i) q^{14} +(-2048.00 + 3547.24i) q^{16} -14706.0 q^{17} -39940.0 q^{19} +(-6720.00 + 11639.4i) q^{20} +(4368.00 + 7565.60i) q^{22} +(34356.0 + 59506.3i) q^{23} +(17012.5 - 29466.5i) q^{25} +11056.0 q^{26} +65024.0 q^{28} +(-51285.0 + 88828.2i) q^{29} +(-113776. - 197066. i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(58824.0 - 101886. i) q^{34} +213360. q^{35} +160526. q^{37} +(159760. - 276712. i) q^{38} +(-53760.0 - 93115.1i) q^{40} +(5421.00 + 9389.45i) q^{41} +(315374. - 546244. i) q^{43} -69888.0 q^{44} -549696. q^{46} +(236328. - 409332. i) q^{47} +(-104357. - 180751. i) q^{49} +(136100. + 235732. i) q^{50} +(-44224.0 + 76598.2i) q^{52} +1.49402e6 q^{53} -229320. q^{55} +(-260096. + 450499. i) q^{56} +(-410280. - 710626. i) q^{58} +(1.32033e6 + 2.28688e6i) q^{59} +(-413851. + 716811. i) q^{61} +1.82042e6 q^{62} +262144. q^{64} +(-145110. + 251338. i) q^{65} +(63002.0 + 109123. i) q^{67} +(470592. + 815089. i) q^{68} +(-853440. + 1.47820e6i) q^{70} +1.41473e6 q^{71} +980282. q^{73} +(-642104. + 1.11216e6i) q^{74} +(1.27808e6 + 2.21370e6i) q^{76} +(554736. + 960831. i) q^{77} +(1.78340e6 - 3.08894e6i) q^{79} +860160. q^{80} -86736.0 q^{82} +(2.83645e6 - 4.91287e6i) q^{83} +(1.54413e6 + 2.67451e6i) q^{85} +(2.52299e6 + 4.36995e6i) q^{86} +(279552. - 484198. i) q^{88} +1.19512e7 q^{89} +1.40411e6 q^{91} +(2.19878e6 - 3.80841e6i) q^{92} +(1.89062e6 + 3.27466e6i) q^{94} +(4.19370e6 + 7.26370e6i) q^{95} +(-4.34107e6 + 7.51896e6i) q^{97} +1.66970e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} - 210 q^{5} - 1016 q^{7} + 1024 q^{8} + 3360 q^{10} + 1092 q^{11} - 1382 q^{13} - 8128 q^{14} - 4096 q^{16} - 29412 q^{17} - 79880 q^{19} - 13440 q^{20} + 8736 q^{22} + 68712 q^{23}+ \cdots + 3339408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −105.000 181.865i −0.375659 0.650661i 0.614766 0.788709i \(-0.289250\pi\)
−0.990425 + 0.138048i \(0.955917\pi\)
\(6\) 0 0
\(7\) −508.000 + 879.882i −0.559784 + 0.969575i 0.437730 + 0.899107i \(0.355783\pi\)
−0.997514 + 0.0704680i \(0.977551\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 1680.00 0.531263
\(11\) 546.000 945.700i 0.123685 0.214229i −0.797533 0.603275i \(-0.793862\pi\)
0.921218 + 0.389046i \(0.127195\pi\)
\(12\) 0 0
\(13\) −691.000 1196.85i −0.0872321 0.151090i 0.819108 0.573639i \(-0.194469\pi\)
−0.906340 + 0.422549i \(0.861136\pi\)
\(14\) −4064.00 7039.05i −0.395827 0.685593i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −14706.0 −0.725978 −0.362989 0.931793i \(-0.618244\pi\)
−0.362989 + 0.931793i \(0.618244\pi\)
\(18\) 0 0
\(19\) −39940.0 −1.33589 −0.667945 0.744211i \(-0.732826\pi\)
−0.667945 + 0.744211i \(0.732826\pi\)
\(20\) −6720.00 + 11639.4i −0.187830 + 0.325331i
\(21\) 0 0
\(22\) 4368.00 + 7565.60i 0.0874587 + 0.151483i
\(23\) 34356.0 + 59506.3i 0.588783 + 1.01980i 0.994392 + 0.105755i \(0.0337260\pi\)
−0.405609 + 0.914047i \(0.632941\pi\)
\(24\) 0 0
\(25\) 17012.5 29466.5i 0.217760 0.377171i
\(26\) 11056.0 0.123365
\(27\) 0 0
\(28\) 65024.0 0.559784
\(29\) −51285.0 + 88828.2i −0.390479 + 0.676329i −0.992513 0.122141i \(-0.961024\pi\)
0.602034 + 0.798470i \(0.294357\pi\)
\(30\) 0 0
\(31\) −113776. 197066.i −0.685938 1.18808i −0.973141 0.230209i \(-0.926059\pi\)
0.287203 0.957870i \(-0.407274\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 58824.0 101886.i 0.256672 0.444569i
\(35\) 213360. 0.841153
\(36\) 0 0
\(37\) 160526. 0.521002 0.260501 0.965474i \(-0.416112\pi\)
0.260501 + 0.965474i \(0.416112\pi\)
\(38\) 159760. 276712.i 0.472308 0.818062i
\(39\) 0 0
\(40\) −53760.0 93115.1i −0.132816 0.230043i
\(41\) 5421.00 + 9389.45i 0.0122839 + 0.0212763i 0.872102 0.489324i \(-0.162756\pi\)
−0.859818 + 0.510600i \(0.829423\pi\)
\(42\) 0 0
\(43\) 315374. 546244.i 0.604904 1.04772i −0.387163 0.922011i \(-0.626545\pi\)
0.992067 0.125713i \(-0.0401218\pi\)
\(44\) −69888.0 −0.123685
\(45\) 0 0
\(46\) −549696. −0.832665
\(47\) 236328. 409332.i 0.332026 0.575087i −0.650883 0.759178i \(-0.725601\pi\)
0.982909 + 0.184092i \(0.0589343\pi\)
\(48\) 0 0
\(49\) −104357. 180751.i −0.126717 0.219479i
\(50\) 136100. + 235732.i 0.153980 + 0.266700i
\(51\) 0 0
\(52\) −44224.0 + 76598.2i −0.0436160 + 0.0755452i
\(53\) 1.49402e6 1.37845 0.689224 0.724548i \(-0.257952\pi\)
0.689224 + 0.724548i \(0.257952\pi\)
\(54\) 0 0
\(55\) −229320. −0.185854
\(56\) −260096. + 450499.i −0.197914 + 0.342796i
\(57\) 0 0
\(58\) −410280. 710626.i −0.276110 0.478237i
\(59\) 1.32033e6 + 2.28688e6i 0.836952 + 1.44964i 0.892431 + 0.451183i \(0.148998\pi\)
−0.0554795 + 0.998460i \(0.517669\pi\)
\(60\) 0 0
\(61\) −413851. + 716811.i −0.233448 + 0.404343i −0.958820 0.284013i \(-0.908334\pi\)
0.725373 + 0.688356i \(0.241667\pi\)
\(62\) 1.82042e6 0.970063
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −145110. + 251338.i −0.0655391 + 0.113517i
\(66\) 0 0
\(67\) 63002.0 + 109123.i 0.0255913 + 0.0443255i 0.878537 0.477674i \(-0.158520\pi\)
−0.852946 + 0.521999i \(0.825186\pi\)
\(68\) 470592. + 815089.i 0.181494 + 0.314358i
\(69\) 0 0
\(70\) −853440. + 1.47820e6i −0.297392 + 0.515099i
\(71\) 1.41473e6 0.469104 0.234552 0.972104i \(-0.424638\pi\)
0.234552 + 0.972104i \(0.424638\pi\)
\(72\) 0 0
\(73\) 980282. 0.294931 0.147466 0.989067i \(-0.452888\pi\)
0.147466 + 0.989067i \(0.452888\pi\)
\(74\) −642104. + 1.11216e6i −0.184202 + 0.319047i
\(75\) 0 0
\(76\) 1.27808e6 + 2.21370e6i 0.333972 + 0.578457i
\(77\) 554736. + 960831.i 0.138474 + 0.239844i
\(78\) 0 0
\(79\) 1.78340e6 3.08894e6i 0.406962 0.704879i −0.587586 0.809162i \(-0.699921\pi\)
0.994548 + 0.104283i \(0.0332548\pi\)
\(80\) 860160. 0.187830
\(81\) 0 0
\(82\) −86736.0 −0.0173720
\(83\) 2.83645e6 4.91287e6i 0.544504 0.943109i −0.454134 0.890934i \(-0.650051\pi\)
0.998638 0.0521754i \(-0.0166155\pi\)
\(84\) 0 0
\(85\) 1.54413e6 + 2.67451e6i 0.272720 + 0.472366i
\(86\) 2.52299e6 + 4.36995e6i 0.427732 + 0.740853i
\(87\) 0 0
\(88\) 279552. 484198.i 0.0437294 0.0757415i
\(89\) 1.19512e7 1.79699 0.898496 0.438982i \(-0.144661\pi\)
0.898496 + 0.438982i \(0.144661\pi\)
\(90\) 0 0
\(91\) 1.40411e6 0.195325
\(92\) 2.19878e6 3.80841e6i 0.294391 0.509901i
\(93\) 0 0
\(94\) 1.89062e6 + 3.27466e6i 0.234778 + 0.406648i
\(95\) 4.19370e6 + 7.26370e6i 0.501839 + 0.869211i
\(96\) 0 0
\(97\) −4.34107e6 + 7.51896e6i −0.482943 + 0.836482i −0.999808 0.0195848i \(-0.993766\pi\)
0.516865 + 0.856067i \(0.327099\pi\)
\(98\) 1.66970e6 0.179204
\(99\) 0 0
\(100\) −2.17760e6 −0.217760
\(101\) −5.03977e6 + 8.72914e6i −0.486727 + 0.843037i −0.999884 0.0152586i \(-0.995143\pi\)
0.513156 + 0.858295i \(0.328476\pi\)
\(102\) 0 0
\(103\) −1.87400e6 3.24586e6i −0.168981 0.292684i 0.769081 0.639152i \(-0.220714\pi\)
−0.938062 + 0.346468i \(0.887381\pi\)
\(104\) −353792. 612786.i −0.0308412 0.0534185i
\(105\) 0 0
\(106\) −5.97607e6 + 1.03509e7i −0.487355 + 0.844123i
\(107\) 1.79856e7 1.41932 0.709661 0.704543i \(-0.248848\pi\)
0.709661 + 0.704543i \(0.248848\pi\)
\(108\) 0 0
\(109\) 1.22570e7 0.906552 0.453276 0.891370i \(-0.350255\pi\)
0.453276 + 0.891370i \(0.350255\pi\)
\(110\) 917280. 1.58878e6i 0.0657094 0.113812i
\(111\) 0 0
\(112\) −2.08077e6 3.60400e6i −0.139946 0.242394i
\(113\) 8.29748e6 + 1.43717e7i 0.540968 + 0.936984i 0.998849 + 0.0479706i \(0.0152754\pi\)
−0.457881 + 0.889014i \(0.651391\pi\)
\(114\) 0 0
\(115\) 7.21476e6 1.24963e7i 0.442364 0.766196i
\(116\) 6.56448e6 0.390479
\(117\) 0 0
\(118\) −2.11253e7 −1.18363
\(119\) 7.47065e6 1.29395e7i 0.406391 0.703890i
\(120\) 0 0
\(121\) 9.14735e6 + 1.58437e7i 0.469404 + 0.813031i
\(122\) −3.31081e6 5.73449e6i −0.165072 0.285914i
\(123\) 0 0
\(124\) −7.28166e6 + 1.26122e7i −0.342969 + 0.594040i
\(125\) −2.35515e7 −1.07853
\(126\) 0 0
\(127\) 1.16826e6 0.0506087 0.0253043 0.999680i \(-0.491945\pi\)
0.0253043 + 0.999680i \(0.491945\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.16088e6 2.01070e6i −0.0463432 0.0802687i
\(131\) −3.96191e6 6.86224e6i −0.153977 0.266696i 0.778709 0.627385i \(-0.215875\pi\)
−0.932686 + 0.360689i \(0.882541\pi\)
\(132\) 0 0
\(133\) 2.02895e7 3.51425e7i 0.747810 1.29524i
\(134\) −1.00803e6 −0.0361916
\(135\) 0 0
\(136\) −7.52947e6 −0.256672
\(137\) −157827. + 273364.i −0.00524396 + 0.00908280i −0.868635 0.495452i \(-0.835003\pi\)
0.863392 + 0.504535i \(0.168336\pi\)
\(138\) 0 0
\(139\) −1.96019e7 3.39515e7i −0.619079 1.07228i −0.989654 0.143474i \(-0.954173\pi\)
0.370575 0.928803i \(-0.379161\pi\)
\(140\) −6.82752e6 1.18256e7i −0.210288 0.364230i
\(141\) 0 0
\(142\) −5.65891e6 + 9.80152e6i −0.165853 + 0.287266i
\(143\) −1.50914e6 −0.0431573
\(144\) 0 0
\(145\) 2.15397e7 0.586748
\(146\) −3.92113e6 + 6.79159e6i −0.104274 + 0.180608i
\(147\) 0 0
\(148\) −5.13683e6 8.89725e6i −0.130250 0.225600i
\(149\) −1.09430e7 1.89539e7i −0.271010 0.469403i 0.698111 0.715990i \(-0.254024\pi\)
−0.969121 + 0.246587i \(0.920691\pi\)
\(150\) 0 0
\(151\) 1.47077e7 2.54745e7i 0.347637 0.602125i −0.638192 0.769877i \(-0.720317\pi\)
0.985829 + 0.167752i \(0.0536508\pi\)
\(152\) −2.04493e7 −0.472308
\(153\) 0 0
\(154\) −8.87578e6 −0.195832
\(155\) −2.38930e7 + 4.13838e7i −0.515358 + 0.892626i
\(156\) 0 0
\(157\) −3.02775e7 5.24421e7i −0.624412 1.08151i −0.988654 0.150209i \(-0.952005\pi\)
0.364243 0.931304i \(-0.381328\pi\)
\(158\) 1.42672e7 + 2.47115e7i 0.287766 + 0.498425i
\(159\) 0 0
\(160\) −3.44064e6 + 5.95936e6i −0.0664078 + 0.115022i
\(161\) −6.98114e7 −1.31837
\(162\) 0 0
\(163\) 5.70853e7 1.03245 0.516223 0.856454i \(-0.327337\pi\)
0.516223 + 0.856454i \(0.327337\pi\)
\(164\) 346944. 600925.i 0.00614194 0.0106382i
\(165\) 0 0
\(166\) 2.26916e7 + 3.93029e7i 0.385023 + 0.666879i
\(167\) −4.38633e7 7.59734e7i −0.728775 1.26227i −0.957401 0.288760i \(-0.906757\pi\)
0.228627 0.973514i \(-0.426576\pi\)
\(168\) 0 0
\(169\) 3.04193e7 5.26878e7i 0.484781 0.839666i
\(170\) −2.47061e7 −0.385685
\(171\) 0 0
\(172\) −4.03679e7 −0.604904
\(173\) 4.28477e6 7.42144e6i 0.0629167 0.108975i −0.832851 0.553497i \(-0.813293\pi\)
0.895768 + 0.444522i \(0.146626\pi\)
\(174\) 0 0
\(175\) 1.72847e7 + 2.99380e7i 0.243797 + 0.422269i
\(176\) 2.23642e6 + 3.87359e6i 0.0309213 + 0.0535573i
\(177\) 0 0
\(178\) −4.78048e7 + 8.28003e7i −0.635333 + 1.10043i
\(179\) −1.88041e7 −0.245056 −0.122528 0.992465i \(-0.539100\pi\)
−0.122528 + 0.992465i \(0.539100\pi\)
\(180\) 0 0
\(181\) −5.99625e7 −0.751631 −0.375816 0.926694i \(-0.622637\pi\)
−0.375816 + 0.926694i \(0.622637\pi\)
\(182\) −5.61645e6 + 9.72797e6i −0.0690577 + 0.119611i
\(183\) 0 0
\(184\) 1.75903e7 + 3.04672e7i 0.208166 + 0.360554i
\(185\) −1.68552e7 2.91941e7i −0.195719 0.338996i
\(186\) 0 0
\(187\) −8.02948e6 + 1.39075e7i −0.0897928 + 0.155526i
\(188\) −3.02500e7 −0.332026
\(189\) 0 0
\(190\) −6.70992e7 −0.709708
\(191\) 4.69931e7 8.13944e7i 0.487997 0.845235i −0.511908 0.859040i \(-0.671061\pi\)
0.999905 + 0.0138052i \(0.00439446\pi\)
\(192\) 0 0
\(193\) 1.75973e7 + 3.04794e7i 0.176196 + 0.305180i 0.940574 0.339588i \(-0.110288\pi\)
−0.764379 + 0.644767i \(0.776954\pi\)
\(194\) −3.47286e7 6.01517e7i −0.341492 0.591482i
\(195\) 0 0
\(196\) −6.67882e6 + 1.15680e7i −0.0633583 + 0.109740i
\(197\) −1.02985e8 −0.959718 −0.479859 0.877346i \(-0.659312\pi\)
−0.479859 + 0.877346i \(0.659312\pi\)
\(198\) 0 0
\(199\) 8.36376e7 0.752342 0.376171 0.926550i \(-0.377240\pi\)
0.376171 + 0.926550i \(0.377240\pi\)
\(200\) 8.71040e6 1.50869e7i 0.0769898 0.133350i
\(201\) 0 0
\(202\) −4.03182e7 6.98331e7i −0.344168 0.596117i
\(203\) −5.21056e7 9.02495e7i −0.437168 0.757196i
\(204\) 0 0
\(205\) 1.13841e6 1.97178e6i 0.00922912 0.0159853i
\(206\) 2.99839e7 0.238975
\(207\) 0 0
\(208\) 5.66067e6 0.0436160
\(209\) −2.18072e7 + 3.77712e7i −0.165230 + 0.286187i
\(210\) 0 0
\(211\) 4.87005e7 + 8.43518e7i 0.356899 + 0.618167i 0.987441 0.157988i \(-0.0505008\pi\)
−0.630542 + 0.776155i \(0.717167\pi\)
\(212\) −4.78086e7 8.28069e7i −0.344612 0.596885i
\(213\) 0 0
\(214\) −7.19423e7 + 1.24608e8i −0.501806 + 0.869153i
\(215\) −1.32457e8 −0.908951
\(216\) 0 0
\(217\) 2.31193e8 1.53591
\(218\) −4.90281e7 + 8.49192e7i −0.320514 + 0.555147i
\(219\) 0 0
\(220\) 7.33824e6 + 1.27102e7i 0.0464636 + 0.0804773i
\(221\) 1.01618e7 + 1.76008e7i 0.0633286 + 0.109688i
\(222\) 0 0
\(223\) 7.32286e6 1.26836e7i 0.0442195 0.0765904i −0.843069 0.537806i \(-0.819253\pi\)
0.887288 + 0.461216i \(0.152587\pi\)
\(224\) 3.32923e7 0.197914
\(225\) 0 0
\(226\) −1.32760e8 −0.765045
\(227\) −9.22704e7 + 1.59817e8i −0.523567 + 0.906844i 0.476057 + 0.879414i \(0.342066\pi\)
−0.999624 + 0.0274298i \(0.991268\pi\)
\(228\) 0 0
\(229\) 4.37730e6 + 7.58171e6i 0.0240870 + 0.0417199i 0.877818 0.478995i \(-0.158999\pi\)
−0.853731 + 0.520715i \(0.825665\pi\)
\(230\) 5.77181e7 + 9.99706e7i 0.312798 + 0.541783i
\(231\) 0 0
\(232\) −2.62579e7 + 4.54801e7i −0.138055 + 0.239118i
\(233\) 1.19556e8 0.619193 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(234\) 0 0
\(235\) −9.92578e7 −0.498915
\(236\) 8.45011e7 1.46360e8i 0.418476 0.724822i
\(237\) 0 0
\(238\) 5.97652e7 + 1.03516e8i 0.287362 + 0.497725i
\(239\) 1.98105e8 + 3.43127e8i 0.938646 + 1.62578i 0.768000 + 0.640450i \(0.221252\pi\)
0.170646 + 0.985332i \(0.445415\pi\)
\(240\) 0 0
\(241\) 1.28303e8 2.22228e8i 0.590443 1.02268i −0.403730 0.914878i \(-0.632287\pi\)
0.994173 0.107799i \(-0.0343801\pi\)
\(242\) −1.46358e8 −0.663837
\(243\) 0 0
\(244\) 5.29729e7 0.233448
\(245\) −2.19149e7 + 3.79577e7i −0.0952045 + 0.164899i
\(246\) 0 0
\(247\) 2.75985e7 + 4.78021e7i 0.116532 + 0.201840i
\(248\) −5.82533e7 1.00898e8i −0.242516 0.420049i
\(249\) 0 0
\(250\) 9.42060e7 1.63170e8i 0.381319 0.660464i
\(251\) 7.34775e7 0.293290 0.146645 0.989189i \(-0.453153\pi\)
0.146645 + 0.989189i \(0.453153\pi\)
\(252\) 0 0
\(253\) 7.50335e7 0.291295
\(254\) −4.67302e6 + 8.09391e6i −0.0178929 + 0.0309914i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −1.01351e8 1.75544e8i −0.372443 0.645091i 0.617498 0.786573i \(-0.288147\pi\)
−0.989941 + 0.141482i \(0.954813\pi\)
\(258\) 0 0
\(259\) −8.15472e7 + 1.41244e8i −0.291649 + 0.505150i
\(260\) 1.85741e7 0.0655391
\(261\) 0 0
\(262\) 6.33906e7 0.217756
\(263\) 7.71270e7 1.33588e8i 0.261434 0.452816i −0.705189 0.709019i \(-0.749138\pi\)
0.966623 + 0.256203i \(0.0824714\pi\)
\(264\) 0 0
\(265\) −1.56872e8 2.71710e8i −0.517827 0.896902i
\(266\) 1.62316e8 + 2.81140e8i 0.528781 + 0.915876i
\(267\) 0 0
\(268\) 4.03213e6 6.98385e6i 0.0127957 0.0221627i
\(269\) 6.24018e8 1.95463 0.977315 0.211793i \(-0.0679302\pi\)
0.977315 + 0.211793i \(0.0679302\pi\)
\(270\) 0 0
\(271\) −3.87983e8 −1.18419 −0.592094 0.805869i \(-0.701698\pi\)
−0.592094 + 0.805869i \(0.701698\pi\)
\(272\) 3.01179e7 5.21657e7i 0.0907472 0.157179i
\(273\) 0 0
\(274\) −1.26262e6 2.18692e6i −0.00370804 0.00642251i
\(275\) −1.85776e7 3.21774e7i −0.0538674 0.0933011i
\(276\) 0 0
\(277\) −2.26976e8 + 3.93134e8i −0.641654 + 1.11138i 0.343409 + 0.939186i \(0.388418\pi\)
−0.985063 + 0.172192i \(0.944915\pi\)
\(278\) 3.13630e8 0.875510
\(279\) 0 0
\(280\) 1.09240e8 0.297392
\(281\) 1.66885e8 2.89053e8i 0.448689 0.777152i −0.549612 0.835420i \(-0.685225\pi\)
0.998301 + 0.0582682i \(0.0185579\pi\)
\(282\) 0 0
\(283\) −2.68847e8 4.65657e8i −0.705104 1.22128i −0.966654 0.256086i \(-0.917567\pi\)
0.261550 0.965190i \(-0.415766\pi\)
\(284\) −4.52713e7 7.84122e7i −0.117276 0.203128i
\(285\) 0 0
\(286\) 6.03658e6 1.04557e7i 0.0152584 0.0264284i
\(287\) −1.10155e7 −0.0275053
\(288\) 0 0
\(289\) −1.94072e8 −0.472956
\(290\) −8.61588e7 + 1.49231e8i −0.207447 + 0.359308i
\(291\) 0 0
\(292\) −3.13690e7 5.43327e7i −0.0737329 0.127709i
\(293\) 1.67800e8 + 2.90638e8i 0.389722 + 0.675019i 0.992412 0.122957i \(-0.0392376\pi\)
−0.602690 + 0.797976i \(0.705904\pi\)
\(294\) 0 0
\(295\) 2.77269e8 4.80245e8i 0.628818 1.08914i
\(296\) 8.21893e7 0.184202
\(297\) 0 0
\(298\) 1.75088e8 0.383266
\(299\) 4.74800e7 8.22378e7i 0.102722 0.177919i
\(300\) 0 0
\(301\) 3.20420e8 + 5.54984e8i 0.677231 + 1.17300i
\(302\) 1.17662e8 + 2.03796e8i 0.245817 + 0.425767i
\(303\) 0 0
\(304\) 8.17971e7 1.41677e8i 0.166986 0.289229i
\(305\) 1.73817e8 0.350787
\(306\) 0 0
\(307\) 2.15029e8 0.424143 0.212072 0.977254i \(-0.431979\pi\)
0.212072 + 0.977254i \(0.431979\pi\)
\(308\) 3.55031e7 6.14932e7i 0.0692371 0.119922i
\(309\) 0 0
\(310\) −1.91144e8 3.31071e8i −0.364413 0.631182i
\(311\) 3.96031e8 + 6.85945e8i 0.746565 + 1.29309i 0.949460 + 0.313888i \(0.101632\pi\)
−0.202895 + 0.979200i \(0.565035\pi\)
\(312\) 0 0
\(313\) 5.92287e7 1.02587e8i 0.109176 0.189098i −0.806261 0.591560i \(-0.798512\pi\)
0.915437 + 0.402462i \(0.131845\pi\)
\(314\) 4.84440e8 0.883051
\(315\) 0 0
\(316\) −2.28275e8 −0.406962
\(317\) −2.53655e7 + 4.39343e7i −0.0447235 + 0.0774633i −0.887521 0.460768i \(-0.847574\pi\)
0.842797 + 0.538231i \(0.180907\pi\)
\(318\) 0 0
\(319\) 5.60032e7 + 9.70004e7i 0.0965930 + 0.167304i
\(320\) −2.75251e7 4.76749e7i −0.0469574 0.0813327i
\(321\) 0 0
\(322\) 2.79246e8 4.83668e8i 0.466112 0.807331i
\(323\) 5.87358e8 0.969826
\(324\) 0 0
\(325\) −4.70226e7 −0.0759826
\(326\) −2.28341e8 + 3.95499e8i −0.365025 + 0.632242i
\(327\) 0 0
\(328\) 2.77555e6 + 4.80740e6i 0.00434301 + 0.00752232i
\(329\) 2.40109e8 + 4.15881e8i 0.371726 + 0.643849i
\(330\) 0 0
\(331\) −1.36878e8 + 2.37080e8i −0.207461 + 0.359334i −0.950914 0.309455i \(-0.899853\pi\)
0.743453 + 0.668788i \(0.233187\pi\)
\(332\) −3.63065e8 −0.544504
\(333\) 0 0
\(334\) 7.01812e8 1.03064
\(335\) 1.32304e7 2.29158e7i 0.0192272 0.0333025i
\(336\) 0 0
\(337\) 4.59256e7 + 7.95455e7i 0.0653658 + 0.113217i 0.896856 0.442322i \(-0.145845\pi\)
−0.831490 + 0.555539i \(0.812512\pi\)
\(338\) 2.43354e8 + 4.21502e8i 0.342792 + 0.593733i
\(339\) 0 0
\(340\) 9.88243e7 1.71169e8i 0.136360 0.236183i
\(341\) −2.48487e8 −0.339362
\(342\) 0 0
\(343\) −6.24667e8 −0.835833
\(344\) 1.61471e8 2.79677e8i 0.213866 0.370426i
\(345\) 0 0
\(346\) 3.42782e7 + 5.93715e7i 0.0444889 + 0.0770570i
\(347\) −6.83502e8 1.18386e9i −0.878187 1.52106i −0.853329 0.521373i \(-0.825420\pi\)
−0.0248578 0.999691i \(-0.507913\pi\)
\(348\) 0 0
\(349\) −5.65716e8 + 9.79849e8i −0.712377 + 1.23387i 0.251586 + 0.967835i \(0.419048\pi\)
−0.963963 + 0.266038i \(0.914285\pi\)
\(350\) −2.76555e8 −0.344781
\(351\) 0 0
\(352\) −3.57827e7 −0.0437294
\(353\) −2.24198e7 + 3.88322e7i −0.0271281 + 0.0469873i −0.879271 0.476322i \(-0.841970\pi\)
0.852143 + 0.523310i \(0.175303\pi\)
\(354\) 0 0
\(355\) −1.48546e8 2.57290e8i −0.176223 0.305227i
\(356\) −3.82438e8 6.62402e8i −0.449248 0.778120i
\(357\) 0 0
\(358\) 7.52162e7 1.30278e8i 0.0866405 0.150066i
\(359\) −3.98281e8 −0.454317 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(360\) 0 0
\(361\) 7.01332e8 0.784600
\(362\) 2.39850e8 4.15432e8i 0.265742 0.460278i
\(363\) 0 0
\(364\) −4.49316e7 7.78238e7i −0.0488311 0.0845780i
\(365\) −1.02930e8 1.78279e8i −0.110794 0.191900i
\(366\) 0 0
\(367\) −8.17359e8 + 1.41571e9i −0.863140 + 1.49500i 0.00574132 + 0.999984i \(0.498172\pi\)
−0.868882 + 0.495020i \(0.835161\pi\)
\(368\) −2.81444e8 −0.294391
\(369\) 0 0
\(370\) 2.69684e8 0.276789
\(371\) −7.58961e8 + 1.31456e9i −0.771633 + 1.33651i
\(372\) 0 0
\(373\) 7.73166e8 + 1.33916e9i 0.771421 + 1.33614i 0.936784 + 0.349908i \(0.113787\pi\)
−0.165363 + 0.986233i \(0.552879\pi\)
\(374\) −6.42358e7 1.11260e8i −0.0634931 0.109973i
\(375\) 0 0
\(376\) 1.21000e8 2.09578e8i 0.117389 0.203324i
\(377\) 1.41752e8 0.136249
\(378\) 0 0
\(379\) −1.05688e9 −0.997216 −0.498608 0.866828i \(-0.666155\pi\)
−0.498608 + 0.866828i \(0.666155\pi\)
\(380\) 2.68397e8 4.64877e8i 0.250920 0.434606i
\(381\) 0 0
\(382\) 3.75944e8 + 6.51155e8i 0.345066 + 0.597671i
\(383\) 1.12455e8 + 1.94778e8i 0.102278 + 0.177151i 0.912623 0.408802i \(-0.134053\pi\)
−0.810345 + 0.585953i \(0.800720\pi\)
\(384\) 0 0
\(385\) 1.16495e8 2.01774e8i 0.104038 0.180200i
\(386\) −2.81556e8 −0.249178
\(387\) 0 0
\(388\) 5.55657e8 0.482943
\(389\) 5.08941e8 8.81512e8i 0.438373 0.759284i −0.559191 0.829039i \(-0.688888\pi\)
0.997564 + 0.0697544i \(0.0222215\pi\)
\(390\) 0 0
\(391\) −5.05239e8 8.75100e8i −0.427443 0.740353i
\(392\) −5.34305e7 9.25444e7i −0.0448011 0.0775977i
\(393\) 0 0
\(394\) 4.11941e8 7.13503e8i 0.339311 0.587705i
\(395\) −7.49028e8 −0.611517
\(396\) 0 0
\(397\) −1.47565e9 −1.18363 −0.591817 0.806072i \(-0.701589\pi\)
−0.591817 + 0.806072i \(0.701589\pi\)
\(398\) −3.34550e8 + 5.79458e8i −0.265993 + 0.460714i
\(399\) 0 0
\(400\) 6.96832e7 + 1.20695e8i 0.0544400 + 0.0942928i
\(401\) 1.37456e8 + 2.38081e8i 0.106453 + 0.184382i 0.914331 0.404968i \(-0.132717\pi\)
−0.807878 + 0.589350i \(0.799384\pi\)
\(402\) 0 0
\(403\) −1.57238e8 + 2.72345e8i −0.119672 + 0.207277i
\(404\) 6.45090e8 0.486727
\(405\) 0 0
\(406\) 8.33689e8 0.618248
\(407\) 8.76472e7 1.51809e8i 0.0644403 0.111614i
\(408\) 0 0
\(409\) 8.17136e8 + 1.41532e9i 0.590558 + 1.02288i 0.994157 + 0.107941i \(0.0344258\pi\)
−0.403599 + 0.914936i \(0.632241\pi\)
\(410\) 9.10728e6 + 1.57743e7i 0.00652597 + 0.0113033i
\(411\) 0 0
\(412\) −1.19936e8 + 2.07735e8i −0.0844906 + 0.146342i
\(413\) −2.68291e9 −1.87405
\(414\) 0 0
\(415\) −1.19131e9 −0.818192
\(416\) −2.26427e7 + 3.92183e7i −0.0154206 + 0.0267093i
\(417\) 0 0
\(418\) −1.74458e8 3.02170e8i −0.116835 0.202365i
\(419\) −5.56399e8 9.63711e8i −0.369519 0.640026i 0.619971 0.784625i \(-0.287144\pi\)
−0.989490 + 0.144598i \(0.953811\pi\)
\(420\) 0 0
\(421\) −4.61264e8 + 7.98933e8i −0.301274 + 0.521823i −0.976425 0.215857i \(-0.930745\pi\)
0.675150 + 0.737680i \(0.264079\pi\)
\(422\) −7.79208e8 −0.504731
\(423\) 0 0
\(424\) 7.64937e8 0.487355
\(425\) −2.50186e8 + 4.33335e8i −0.158089 + 0.273818i
\(426\) 0 0
\(427\) −4.20473e8 7.28280e8i −0.261361 0.452690i
\(428\) −5.75538e8 9.96861e8i −0.354830 0.614584i
\(429\) 0 0
\(430\) 5.29828e8 9.17690e8i 0.321363 0.556617i
\(431\) 9.81508e8 0.590505 0.295252 0.955419i \(-0.404596\pi\)
0.295252 + 0.955419i \(0.404596\pi\)
\(432\) 0 0
\(433\) 2.84998e9 1.68707 0.843537 0.537071i \(-0.180469\pi\)
0.843537 + 0.537071i \(0.180469\pi\)
\(434\) −9.24771e8 + 1.60175e9i −0.543026 + 0.940548i
\(435\) 0 0
\(436\) −3.92225e8 6.79354e8i −0.226638 0.392548i
\(437\) −1.37218e9 2.37668e9i −0.786549 1.36234i
\(438\) 0 0
\(439\) 5.28109e8 9.14712e8i 0.297919 0.516011i −0.677741 0.735301i \(-0.737041\pi\)
0.975660 + 0.219290i \(0.0703742\pi\)
\(440\) −1.17412e8 −0.0657094
\(441\) 0 0
\(442\) −1.62590e8 −0.0895601
\(443\) 9.11627e8 1.57899e9i 0.498201 0.862909i −0.501797 0.864985i \(-0.667328\pi\)
0.999998 + 0.00207637i \(0.000660931\pi\)
\(444\) 0 0
\(445\) −1.25487e9 2.17351e9i −0.675057 1.16923i
\(446\) 5.85829e7 + 1.01469e8i 0.0312679 + 0.0541576i
\(447\) 0 0
\(448\) −1.33169e8 + 2.30656e8i −0.0699730 + 0.121197i
\(449\) −1.84846e9 −0.963713 −0.481856 0.876250i \(-0.660037\pi\)
−0.481856 + 0.876250i \(0.660037\pi\)
\(450\) 0 0
\(451\) 1.18395e7 0.00607735
\(452\) 5.31039e8 9.19786e8i 0.270484 0.468492i
\(453\) 0 0
\(454\) −7.38164e8 1.27854e9i −0.370218 0.641236i
\(455\) −1.47432e8 2.55359e8i −0.0733755 0.127090i
\(456\) 0 0
\(457\) 1.49033e9 2.58133e9i 0.730425 1.26513i −0.226276 0.974063i \(-0.572655\pi\)
0.956702 0.291071i \(-0.0940114\pi\)
\(458\) −7.00369e7 −0.0340642
\(459\) 0 0
\(460\) −9.23489e8 −0.442364
\(461\) −1.26390e9 + 2.18915e9i −0.600843 + 1.04069i 0.391851 + 0.920029i \(0.371835\pi\)
−0.992694 + 0.120661i \(0.961498\pi\)
\(462\) 0 0
\(463\) 4.45145e8 + 7.71014e8i 0.208434 + 0.361018i 0.951221 0.308509i \(-0.0998300\pi\)
−0.742787 + 0.669527i \(0.766497\pi\)
\(464\) −2.10063e8 3.63840e8i −0.0976197 0.169082i
\(465\) 0 0
\(466\) −4.78225e8 + 8.28310e8i −0.218918 + 0.379177i
\(467\) −2.65667e9 −1.20706 −0.603529 0.797341i \(-0.706239\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(468\) 0 0
\(469\) −1.28020e8 −0.0573024
\(470\) 3.97031e8 6.87678e8i 0.176393 0.305522i
\(471\) 0 0
\(472\) 6.76009e8 + 1.17088e9i 0.295907 + 0.512526i
\(473\) −3.44388e8 5.96498e8i −0.149635 0.259176i
\(474\) 0 0
\(475\) −6.79479e8 + 1.17689e9i −0.290903 + 0.503859i
\(476\) −9.56243e8 −0.406391
\(477\) 0 0
\(478\) −3.16967e9 −1.32745
\(479\) 6.50467e8 1.12664e9i 0.270428 0.468394i −0.698544 0.715567i \(-0.746168\pi\)
0.968971 + 0.247173i \(0.0795016\pi\)
\(480\) 0 0
\(481\) −1.10923e8 1.92125e8i −0.0454481 0.0787184i
\(482\) 1.02643e9 + 1.77782e9i 0.417506 + 0.723142i
\(483\) 0 0
\(484\) 5.85431e8 1.01400e9i 0.234702 0.406516i
\(485\) 1.82325e9 0.725689
\(486\) 0 0
\(487\) −1.07447e9 −0.421542 −0.210771 0.977535i \(-0.567598\pi\)
−0.210771 + 0.977535i \(0.567598\pi\)
\(488\) −2.11892e8 + 3.67007e8i −0.0825362 + 0.142957i
\(489\) 0 0
\(490\) −1.75319e8 3.03661e8i −0.0673198 0.116601i
\(491\) −3.91672e8 6.78396e8i −0.149327 0.258641i 0.781652 0.623715i \(-0.214377\pi\)
−0.930979 + 0.365073i \(0.881044\pi\)
\(492\) 0 0
\(493\) 7.54197e8 1.30631e9i 0.283479 0.491000i
\(494\) −4.41577e8 −0.164802
\(495\) 0 0
\(496\) 9.32053e8 0.342969
\(497\) −7.18682e8 + 1.24479e9i −0.262597 + 0.454831i
\(498\) 0 0
\(499\) 3.11594e8 + 5.39697e8i 0.112263 + 0.194445i 0.916682 0.399617i \(-0.130857\pi\)
−0.804419 + 0.594062i \(0.797523\pi\)
\(500\) 7.53648e8 + 1.30536e9i 0.269633 + 0.467019i
\(501\) 0 0
\(502\) −2.93910e8 + 5.09067e8i −0.103694 + 0.179602i
\(503\) 2.70927e9 0.949215 0.474607 0.880198i \(-0.342590\pi\)
0.474607 + 0.880198i \(0.342590\pi\)
\(504\) 0 0
\(505\) 2.11670e9 0.731375
\(506\) −3.00134e8 + 5.19847e8i −0.102988 + 0.178381i
\(507\) 0 0
\(508\) −3.73842e7 6.47513e7i −0.0126522 0.0219142i
\(509\) 1.74972e9 + 3.03060e9i 0.588106 + 1.01863i 0.994480 + 0.104923i \(0.0334596\pi\)
−0.406374 + 0.913707i \(0.633207\pi\)
\(510\) 0 0
\(511\) −4.97983e8 + 8.62532e8i −0.165098 + 0.285958i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 1.62161e9 0.526714
\(515\) −3.93539e8 + 6.81630e8i −0.126959 + 0.219899i
\(516\) 0 0
\(517\) −2.58070e8 4.46991e8i −0.0821336 0.142260i
\(518\) −6.52378e8 1.12995e9i −0.206227 0.357195i
\(519\) 0 0
\(520\) −7.42963e7 + 1.28685e8i −0.0231716 + 0.0401343i
\(521\) 1.37683e9 0.426530 0.213265 0.976994i \(-0.431590\pi\)
0.213265 + 0.976994i \(0.431590\pi\)
\(522\) 0 0
\(523\) −2.86154e9 −0.874669 −0.437334 0.899299i \(-0.644077\pi\)
−0.437334 + 0.899299i \(0.644077\pi\)
\(524\) −2.53562e8 + 4.39183e8i −0.0769884 + 0.133348i
\(525\) 0 0
\(526\) 6.17016e8 + 1.06870e9i 0.184862 + 0.320190i
\(527\) 1.67319e9 + 2.89805e9i 0.497976 + 0.862519i
\(528\) 0 0
\(529\) −6.58257e8 + 1.14013e9i −0.193331 + 0.334858i
\(530\) 2.50995e9 0.732318
\(531\) 0 0
\(532\) −2.59706e9 −0.747810
\(533\) 7.49182e6 1.29762e7i 0.00214310 0.00371196i
\(534\) 0 0
\(535\) −1.88848e9 3.27095e9i −0.533182 0.923498i
\(536\) 3.22570e7 + 5.58708e7i 0.00904789 + 0.0156714i
\(537\) 0 0
\(538\) −2.49607e9 + 4.32333e9i −0.691066 + 1.19696i
\(539\) −2.27915e8 −0.0626919
\(540\) 0 0
\(541\) 5.34467e9 1.45121 0.725605 0.688111i \(-0.241560\pi\)
0.725605 + 0.688111i \(0.241560\pi\)
\(542\) 1.55193e9 2.68803e9i 0.418673 0.725164i
\(543\) 0 0
\(544\) 2.40943e8 + 4.17326e8i 0.0641680 + 0.111142i
\(545\) −1.28699e9 2.22913e9i −0.340555 0.589858i
\(546\) 0 0
\(547\) 1.68567e9 2.91967e9i 0.440370 0.762743i −0.557347 0.830280i \(-0.688181\pi\)
0.997717 + 0.0675365i \(0.0215139\pi\)
\(548\) 2.02019e7 0.00524396
\(549\) 0 0
\(550\) 2.97242e8 0.0761801
\(551\) 2.04832e9 3.54780e9i 0.521636 0.903501i
\(552\) 0 0
\(553\) 1.81193e9 + 3.13836e9i 0.455622 + 0.789160i
\(554\) −1.81581e9 3.14507e9i −0.453718 0.785863i
\(555\) 0 0
\(556\) −1.25452e9 + 2.17289e9i −0.309540 + 0.536138i
\(557\) 5.61106e9 1.37579 0.687894 0.725811i \(-0.258535\pi\)
0.687894 + 0.725811i \(0.258535\pi\)
\(558\) 0 0
\(559\) −8.71694e8 −0.211068
\(560\) −4.36961e8 + 7.56839e8i −0.105144 + 0.182115i
\(561\) 0 0
\(562\) 1.33508e9 + 2.31243e9i 0.317271 + 0.549529i
\(563\) 3.34845e9 + 5.79968e9i 0.790795 + 1.36970i 0.925475 + 0.378809i \(0.123666\pi\)
−0.134680 + 0.990889i \(0.543001\pi\)
\(564\) 0 0
\(565\) 1.74247e9 3.01805e9i 0.406440 0.703974i
\(566\) 4.30156e9 0.997168
\(567\) 0 0
\(568\) 7.24341e8 0.165853
\(569\) 9.84251e8 1.70477e9i 0.223982 0.387948i −0.732032 0.681271i \(-0.761428\pi\)
0.956013 + 0.293323i \(0.0947610\pi\)
\(570\) 0 0
\(571\) −5.14629e8 8.91363e8i −0.115682 0.200368i 0.802370 0.596827i \(-0.203572\pi\)
−0.918052 + 0.396459i \(0.870239\pi\)
\(572\) 4.82926e7 + 8.36453e7i 0.0107893 + 0.0186877i
\(573\) 0 0
\(574\) 4.40619e7 7.63174e7i 0.00972459 0.0168435i
\(575\) 2.33793e9 0.512853
\(576\) 0 0
\(577\) 3.31179e9 0.717708 0.358854 0.933394i \(-0.383168\pi\)
0.358854 + 0.933394i \(0.383168\pi\)
\(578\) 7.76289e8 1.34457e9i 0.167215 0.289625i
\(579\) 0 0
\(580\) −6.89270e8 1.19385e9i −0.146687 0.254069i
\(581\) 2.88183e9 + 4.99147e9i 0.609610 + 1.05587i
\(582\) 0 0
\(583\) 8.15734e8 1.41289e9i 0.170494 0.295304i
\(584\) 5.01904e8 0.104274
\(585\) 0 0
\(586\) −2.68480e9 −0.551151
\(587\) −2.79705e8 + 4.84464e8i −0.0570778 + 0.0988617i −0.893152 0.449754i \(-0.851512\pi\)
0.836075 + 0.548616i \(0.184845\pi\)
\(588\) 0 0
\(589\) 4.54421e9 + 7.87081e9i 0.916337 + 1.58714i
\(590\) 2.21815e9 + 3.84196e9i 0.444641 + 0.770141i
\(591\) 0 0
\(592\) −3.28757e8 + 5.69424e8i −0.0651252 + 0.112800i
\(593\) 3.02459e9 0.595628 0.297814 0.954624i \(-0.403742\pi\)
0.297814 + 0.954624i \(0.403742\pi\)
\(594\) 0 0
\(595\) −3.13767e9 −0.610658
\(596\) −7.00354e8 + 1.21305e9i −0.135505 + 0.234702i
\(597\) 0 0
\(598\) 3.79840e8 + 6.57902e8i 0.0726351 + 0.125808i
\(599\) −2.81623e9 4.87785e9i −0.535395 0.927331i −0.999144 0.0413648i \(-0.986829\pi\)
0.463749 0.885967i \(-0.346504\pi\)
\(600\) 0 0
\(601\) −1.70396e8 + 2.95134e8i −0.0320183 + 0.0554573i −0.881591 0.472015i \(-0.843527\pi\)
0.849572 + 0.527472i \(0.176860\pi\)
\(602\) −5.12672e9 −0.957749
\(603\) 0 0
\(604\) −1.88259e9 −0.347637
\(605\) 1.92094e9 3.32717e9i 0.352672 0.610846i
\(606\) 0 0
\(607\) −1.92710e9 3.33783e9i −0.349739 0.605765i 0.636464 0.771306i \(-0.280396\pi\)
−0.986203 + 0.165541i \(0.947063\pi\)
\(608\) 6.54377e8 + 1.13341e9i 0.118077 + 0.204515i
\(609\) 0 0
\(610\) −6.95270e8 + 1.20424e9i −0.124022 + 0.214812i
\(611\) −6.53211e8 −0.115853
\(612\) 0 0
\(613\) 9.22245e9 1.61709 0.808545 0.588434i \(-0.200255\pi\)
0.808545 + 0.588434i \(0.200255\pi\)
\(614\) −8.60116e8 + 1.48976e9i −0.149957 + 0.259734i
\(615\) 0 0
\(616\) 2.84025e8 + 4.91945e8i 0.0489580 + 0.0847978i
\(617\) 3.26806e9 + 5.66044e9i 0.560133 + 0.970179i 0.997484 + 0.0708885i \(0.0225835\pi\)
−0.437351 + 0.899291i \(0.644083\pi\)
\(618\) 0 0
\(619\) −6.82793e8 + 1.18263e9i −0.115710 + 0.200416i −0.918063 0.396434i \(-0.870248\pi\)
0.802353 + 0.596849i \(0.203581\pi\)
\(620\) 3.05830e9 0.515358
\(621\) 0 0
\(622\) −6.33649e9 −1.05580
\(623\) −6.07120e9 + 1.05156e10i −1.00593 + 1.74232i
\(624\) 0 0
\(625\) 1.14381e9 + 1.98113e9i 0.187401 + 0.324588i
\(626\) 4.73830e8 + 8.20697e8i 0.0771991 + 0.133713i
\(627\) 0 0
\(628\) −1.93776e9 + 3.35630e9i −0.312206 + 0.540756i
\(629\) −2.36070e9 −0.378236
\(630\) 0 0
\(631\) 1.54079e9 0.244141 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(632\) 9.13101e8 1.58154e9i 0.143883 0.249212i
\(633\) 0 0
\(634\) −2.02924e8 3.51474e8i −0.0316243 0.0547749i
\(635\) −1.22667e8 2.12465e8i −0.0190116 0.0329291i
\(636\) 0 0
\(637\) −1.44221e8 + 2.49798e8i −0.0221075 + 0.0382913i
\(638\) −8.96052e8 −0.136603
\(639\) 0 0
\(640\) 4.40402e8 0.0664078
\(641\) −2.27009e9 + 3.93191e9i −0.340440 + 0.589659i −0.984514 0.175304i \(-0.943909\pi\)
0.644075 + 0.764963i \(0.277243\pi\)
\(642\) 0 0
\(643\) −5.70269e9 9.87735e9i −0.845944 1.46522i −0.884799 0.465973i \(-0.845705\pi\)
0.0388554 0.999245i \(-0.487629\pi\)
\(644\) 2.23396e9 + 3.86934e9i 0.329591 + 0.570869i
\(645\) 0 0
\(646\) −2.34943e9 + 4.06933e9i −0.342885 + 0.593895i
\(647\) 1.26393e10 1.83468 0.917338 0.398109i \(-0.130334\pi\)
0.917338 + 0.398109i \(0.130334\pi\)
\(648\) 0 0
\(649\) 2.88360e9 0.414075
\(650\) 1.88090e8 3.25782e8i 0.0268639 0.0465297i
\(651\) 0 0
\(652\) −1.82673e9 3.16399e9i −0.258112 0.447063i
\(653\) −5.25022e9 9.09365e9i −0.737873 1.27803i −0.953451 0.301547i \(-0.902497\pi\)
0.215579 0.976486i \(-0.430836\pi\)
\(654\) 0 0
\(655\) −8.32002e8 + 1.44107e9i −0.115686 + 0.200374i
\(656\) −4.44088e7 −0.00614194
\(657\) 0 0
\(658\) −3.84175e9 −0.525700
\(659\) 4.82409e9 8.35557e9i 0.656624 1.13731i −0.324861 0.945762i \(-0.605317\pi\)
0.981484 0.191543i \(-0.0613493\pi\)
\(660\) 0 0
\(661\) 3.29149e9 + 5.70103e9i 0.443290 + 0.767801i 0.997931 0.0642888i \(-0.0204779\pi\)
−0.554641 + 0.832089i \(0.687145\pi\)
\(662\) −1.09503e9 1.89664e9i −0.146697 0.254087i
\(663\) 0 0
\(664\) 1.45226e9 2.51539e9i 0.192511 0.333439i
\(665\) −8.52160e9 −1.12369
\(666\) 0 0
\(667\) −7.04779e9 −0.919629
\(668\) −2.80725e9 + 4.86230e9i −0.364387 + 0.631137i
\(669\) 0 0
\(670\) 1.05843e8 + 1.83326e8i 0.0135957 + 0.0235485i
\(671\) 4.51925e8 + 7.82758e8i 0.0577481 + 0.100023i
\(672\) 0 0
\(673\) 4.27324e9 7.40148e9i 0.540387 0.935978i −0.458494 0.888697i \(-0.651611\pi\)
0.998882 0.0472808i \(-0.0150556\pi\)
\(674\) −7.34810e8 −0.0924411
\(675\) 0 0
\(676\) −3.89367e9 −0.484781
\(677\) 4.35652e9 7.54572e9i 0.539610 0.934631i −0.459315 0.888273i \(-0.651905\pi\)
0.998925 0.0463581i \(-0.0147615\pi\)
\(678\) 0 0
\(679\) −4.41053e9 7.63926e9i −0.540688 0.936499i
\(680\) 7.90595e8 + 1.36935e9i 0.0964212 + 0.167006i
\(681\) 0 0
\(682\) 9.93947e8 1.72157e9i 0.119983 0.207816i
\(683\) −1.46109e10 −1.75470 −0.877351 0.479849i \(-0.840692\pi\)
−0.877351 + 0.479849i \(0.840692\pi\)
\(684\) 0 0
\(685\) 6.62873e7 0.00787977
\(686\) 2.49867e9 4.32782e9i 0.295511 0.511841i
\(687\) 0 0
\(688\) 1.29177e9 + 2.23741e9i 0.151226 + 0.261931i
\(689\) −1.03237e9 1.78811e9i −0.120245 0.208270i
\(690\) 0 0
\(691\) 7.36738e9 1.27607e10i 0.849454 1.47130i −0.0322413 0.999480i \(-0.510265\pi\)
0.881696 0.471818i \(-0.156402\pi\)
\(692\) −5.48451e8 −0.0629167
\(693\) 0 0
\(694\) 1.09360e10 1.24194
\(695\) −4.11640e9 + 7.12981e9i −0.465126 + 0.805622i
\(696\) 0 0
\(697\) −7.97212e7 1.38081e8i −0.00891783 0.0154461i
\(698\) −4.52573e9 7.83879e9i −0.503726 0.872480i
\(699\) 0 0
\(700\) 1.10622e9 1.91603e9i 0.121899 0.211135i
\(701\) −1.31502e9 −0.144185 −0.0720923 0.997398i \(-0.522968\pi\)
−0.0720923 + 0.997398i \(0.522968\pi\)
\(702\) 0 0
\(703\) −6.41141e9 −0.696001
\(704\) 1.43131e8 2.47910e8i 0.0154607 0.0267787i
\(705\) 0 0
\(706\) −1.79358e8 3.10657e8i −0.0191825 0.0332250i
\(707\) −5.12041e9 8.86880e9i −0.544925 0.943837i
\(708\) 0 0
\(709\) −3.32014e8 + 5.75065e8i −0.0349860 + 0.0605976i −0.882988 0.469395i \(-0.844472\pi\)
0.848002 + 0.529993i \(0.177805\pi\)
\(710\) 2.37674e9 0.249217
\(711\) 0 0
\(712\) 6.11901e9 0.635333
\(713\) 7.81778e9 1.35408e10i 0.807737 1.39904i
\(714\) 0 0
\(715\) 1.58460e8 + 2.74461e8i 0.0162125 + 0.0280808i
\(716\) 6.01730e8 + 1.04223e9i 0.0612641 + 0.106113i
\(717\) 0 0
\(718\) 1.59312e9 2.75937e9i 0.160625 0.278211i
\(719\) −4.95034e9 −0.496689 −0.248344 0.968672i \(-0.579886\pi\)
−0.248344 + 0.968672i \(0.579886\pi\)
\(720\) 0 0
\(721\) 3.80796e9 0.378372
\(722\) −2.80533e9 + 4.85897e9i −0.277398 + 0.480467i
\(723\) 0 0
\(724\) 1.91880e9 + 3.32346e9i 0.187908 + 0.325466i
\(725\) 1.74497e9 + 3.02238e9i 0.170061 + 0.294555i
\(726\) 0 0
\(727\) −4.40550e9 + 7.63056e9i −0.425231 + 0.736522i −0.996442 0.0842813i \(-0.973141\pi\)
0.571211 + 0.820803i \(0.306474\pi\)
\(728\) 7.18905e8 0.0690577
\(729\) 0 0
\(730\) 1.64687e9 0.156686
\(731\) −4.63789e9 + 8.03306e9i −0.439147 + 0.760624i
\(732\) 0 0
\(733\) 7.47069e7 + 1.29396e8i 0.00700643 + 0.0121355i 0.869507 0.493920i \(-0.164436\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(734\) −6.53887e9 1.13257e10i −0.610332 1.05713i
\(735\) 0 0
\(736\) 1.12578e9 1.94990e9i 0.104083 0.180277i
\(737\) 1.37596e8 0.0126611
\(738\) 0 0
\(739\) −4.70806e9 −0.429127 −0.214564 0.976710i \(-0.568833\pi\)
−0.214564 + 0.976710i \(0.568833\pi\)
\(740\) −1.07873e9 + 1.86842e9i −0.0978596 + 0.169498i
\(741\) 0 0
\(742\) −6.07169e9 1.05165e10i −0.545627 0.945054i
\(743\) 8.48381e8 + 1.46944e9i 0.0758805 + 0.131429i 0.901469 0.432844i \(-0.142490\pi\)
−0.825588 + 0.564273i \(0.809157\pi\)
\(744\) 0 0
\(745\) −2.29804e9 + 3.98031e9i −0.203615 + 0.352671i
\(746\) −1.23707e10 −1.09095
\(747\) 0 0
\(748\) 1.02777e9 0.0897928
\(749\) −9.13667e9 + 1.58252e10i −0.794514 + 1.37614i
\(750\) 0 0
\(751\) −5.33250e9 9.23616e9i −0.459400 0.795704i 0.539529 0.841967i \(-0.318602\pi\)
−0.998929 + 0.0462626i \(0.985269\pi\)
\(752\) 9.67999e8 + 1.67662e9i 0.0830066 + 0.143772i
\(753\) 0 0
\(754\) −5.67007e8 + 9.82085e8i −0.0481713 + 0.0834352i
\(755\) −6.17724e9 −0.522373
\(756\) 0 0
\(757\) 6.22876e9 0.521874 0.260937 0.965356i \(-0.415968\pi\)
0.260937 + 0.965356i \(0.415968\pi\)
\(758\) 4.22753e9 7.32229e9i 0.352569 0.610668i
\(759\) 0 0
\(760\) 2.14717e9 + 3.71902e9i 0.177427 + 0.307313i
\(761\) −4.19167e9 7.26019e9i −0.344779 0.597175i 0.640535 0.767929i \(-0.278713\pi\)
−0.985314 + 0.170755i \(0.945379\pi\)
\(762\) 0 0
\(763\) −6.22657e9 + 1.07847e10i −0.507473 + 0.878969i
\(764\) −6.01511e9 −0.487997
\(765\) 0 0
\(766\) −1.79928e9 −0.144643
\(767\) 1.82470e9 3.16047e9i 0.146018 0.252911i
\(768\) 0 0
\(769\) 5.93244e9 + 1.02753e10i 0.470426 + 0.814802i 0.999428 0.0338188i \(-0.0107669\pi\)
−0.529002 + 0.848621i \(0.677434\pi\)
\(770\) 9.31956e8 + 1.61420e9i 0.0735662 + 0.127420i
\(771\) 0 0
\(772\) 1.12623e9 1.95068e9i 0.0880978 0.152590i
\(773\) −5.56680e9 −0.433488 −0.216744 0.976228i \(-0.569544\pi\)
−0.216744 + 0.976228i \(0.569544\pi\)
\(774\) 0 0
\(775\) −7.74246e9 −0.597479
\(776\) −2.22263e9 + 3.84971e9i −0.170746 + 0.295741i
\(777\) 0 0
\(778\) 4.07153e9 + 7.05209e9i 0.309977 + 0.536895i
\(779\) −2.16515e8 3.75015e8i −0.0164099 0.0284228i
\(780\) 0 0
\(781\) 7.72441e8 1.33791e9i 0.0580212 0.100496i
\(782\) 8.08383e9 0.604496
\(783\) 0 0
\(784\) 8.54888e8 0.0633583
\(785\) −6.35827e9 + 1.10128e10i −0.469132 + 0.812561i
\(786\) 0 0
\(787\) −6.73056e7 1.16577e8i −0.00492198 0.00852512i 0.863554 0.504257i \(-0.168233\pi\)
−0.868476 + 0.495731i \(0.834900\pi\)
\(788\) 3.29553e9 + 5.70803e9i 0.239929 + 0.415570i
\(789\) 0 0
\(790\) 2.99611e9 5.18942e9i 0.216204 0.374476i
\(791\) −1.68605e10 −1.21130
\(792\) 0 0
\(793\) 1.14388e9 0.0814565
\(794\) 5.90261e9 1.02236e10i 0.418478 0.724825i
\(795\) 0 0
\(796\) −2.67640e9 4.63566e9i −0.188086 0.325774i
\(797\) −3.70774e9 6.42199e9i −0.259421 0.449330i 0.706666 0.707547i \(-0.250198\pi\)
−0.966087 + 0.258217i \(0.916865\pi\)
\(798\) 0 0
\(799\) −3.47544e9 + 6.01964e9i −0.241044 + 0.417500i
\(800\) −1.11493e9 −0.0769898
\(801\) 0 0
\(802\) −2.19930e9 −0.150548
\(803\) 5.35234e8 9.27052e8i 0.0364787 0.0631829i
\(804\) 0 0
\(805\) 7.33020e9 + 1.26963e10i 0.495256 + 0.857809i
\(806\) −1.25791e9 2.17876e9i −0.0846206 0.146567i
\(807\) 0 0
\(808\) −2.58036e9 + 4.46932e9i −0.172084 + 0.298058i
\(809\) 1.41542e10 0.939863 0.469932 0.882703i \(-0.344279\pi\)
0.469932 + 0.882703i \(0.344279\pi\)
\(810\) 0 0
\(811\) −2.63708e10 −1.73600 −0.868001 0.496563i \(-0.834595\pi\)
−0.868001 + 0.496563i \(0.834595\pi\)
\(812\) −3.33476e9 + 5.77597e9i −0.218584 + 0.378598i
\(813\) 0 0
\(814\) 7.01178e8 + 1.21448e9i 0.0455662 + 0.0789229i
\(815\) −5.99396e9 1.03818e10i −0.387848 0.671773i
\(816\) 0 0
\(817\) −1.25960e10 + 2.18170e10i −0.808084 + 1.39964i
\(818\) −1.30742e10 −0.835176
\(819\) 0 0
\(820\) −1.45716e8 −0.00922912
\(821\) 4.03132e9 6.98245e9i 0.254241 0.440359i −0.710448 0.703750i \(-0.751508\pi\)
0.964689 + 0.263391i \(0.0848409\pi\)
\(822\) 0 0
\(823\) 1.17101e10 + 2.02825e10i 0.732253 + 1.26830i 0.955918 + 0.293633i \(0.0948643\pi\)
−0.223666 + 0.974666i \(0.571802\pi\)
\(824\) −9.59486e8 1.66188e9i −0.0597439 0.103479i
\(825\) 0 0
\(826\) 1.07316e10 1.85877e10i 0.662576 1.14762i
\(827\) −5.55722e9 −0.341655 −0.170828 0.985301i \(-0.554644\pi\)
−0.170828 + 0.985301i \(0.554644\pi\)
\(828\) 0 0
\(829\) 2.84256e10 1.73288 0.866440 0.499281i \(-0.166403\pi\)
0.866440 + 0.499281i \(0.166403\pi\)
\(830\) 4.76523e9 8.25362e9i 0.289275 0.501039i
\(831\) 0 0
\(832\) −1.81142e8 3.13746e8i −0.0109040 0.0188863i
\(833\) 1.53467e9 + 2.65812e9i 0.0919934 + 0.159337i
\(834\) 0 0
\(835\) −9.21128e9 + 1.59544e10i −0.547542 + 0.948371i
\(836\) 2.79133e9 0.165230
\(837\) 0 0
\(838\) 8.90238e9 0.522579
\(839\) 5.20178e9 9.00975e9i 0.304078 0.526679i −0.672977 0.739663i \(-0.734985\pi\)
0.977056 + 0.212984i \(0.0683182\pi\)
\(840\) 0 0
\(841\) 3.36464e9 + 5.82772e9i 0.195053 + 0.337841i
\(842\) −3.69011e9 6.39146e9i −0.213033 0.368984i
\(843\) 0 0
\(844\) 3.11683e9 5.39851e9i 0.178449 0.309083i
\(845\) −1.27761e10 −0.728450
\(846\) 0 0
\(847\) −1.85874e10 −1.05106
\(848\) −3.05975e9 + 5.29964e9i −0.172306 + 0.298443i
\(849\) 0 0
\(850\) −2.00149e9 3.46668e9i −0.111786 0.193619i
\(851\) 5.51503e9 + 9.55231e9i 0.306757 + 0.531319i
\(852\) 0 0
\(853\) 9.02901e9 1.56387e10i 0.498102 0.862739i −0.501895 0.864928i \(-0.667364\pi\)
0.999998 + 0.00218977i \(0.000697026\pi\)
\(854\) 6.72756e9 0.369620
\(855\) 0 0
\(856\) 9.20861e9 0.501806
\(857\) −3.17017e9 + 5.49090e9i −0.172048 + 0.297996i −0.939136 0.343546i \(-0.888372\pi\)
0.767088 + 0.641542i \(0.221705\pi\)
\(858\) 0 0
\(859\) −6.07444e9 1.05212e10i −0.326987 0.566358i 0.654926 0.755693i \(-0.272700\pi\)
−0.981912 + 0.189336i \(0.939367\pi\)
\(860\) 4.23863e9 + 7.34152e9i 0.227238 + 0.393587i
\(861\) 0 0
\(862\) −3.92603e9 + 6.80009e9i −0.208775 + 0.361609i
\(863\) 2.87111e10 1.52059 0.760295 0.649578i \(-0.225054\pi\)
0.760295 + 0.649578i \(0.225054\pi\)
\(864\) 0 0
\(865\) −1.79960e9 −0.0945411
\(866\) −1.13999e10 + 1.97452e10i −0.596471 + 1.03312i
\(867\) 0 0
\(868\) −7.39817e9 1.28140e10i −0.383977 0.665068i
\(869\) −1.94747e9 3.37312e9i −0.100670 0.174366i
\(870\) 0 0
\(871\) 8.70688e7 1.50808e8i 0.00446477 0.00773320i
\(872\) 6.27560e9 0.320514
\(873\) 0 0
\(874\) 2.19549e10 1.11235
\(875\) 1.19642e10 2.07225e10i 0.603746 1.04572i
\(876\) 0 0
\(877\) −1.23011e10 2.13061e10i −0.615806 1.06661i −0.990243 0.139355i \(-0.955497\pi\)
0.374437 0.927253i \(-0.377836\pi\)
\(878\) 4.22487e9 + 7.31770e9i 0.210660 + 0.364875i
\(879\) 0 0
\(880\) 4.69647e8 8.13453e8i 0.0232318 0.0402386i
\(881\) 1.25378e10 0.617738 0.308869 0.951105i \(-0.400049\pi\)
0.308869 + 0.951105i \(0.400049\pi\)
\(882\) 0 0
\(883\) 1.93097e10 0.943873 0.471937 0.881633i \(-0.343555\pi\)
0.471937 + 0.881633i \(0.343555\pi\)
\(884\) 6.50358e8 1.12645e9i 0.0316643 0.0548441i
\(885\) 0 0
\(886\) 7.29302e9 + 1.26319e10i 0.352281 + 0.610169i
\(887\) 1.60134e10 + 2.77360e10i 0.770462 + 1.33448i 0.937310 + 0.348496i \(0.113308\pi\)
−0.166848 + 0.985983i \(0.553359\pi\)
\(888\) 0 0
\(889\) −5.93474e8 + 1.02793e9i −0.0283299 + 0.0490689i
\(890\) 2.00780e10 0.954675
\(891\) 0 0
\(892\) −9.37327e8 −0.0442195
\(893\) −9.43894e9 + 1.63487e10i −0.443551 + 0.768252i
\(894\) 0 0
\(895\) 1.97443e9 + 3.41981e9i 0.0920577 + 0.159449i
\(896\) −1.06535e9 1.84525e9i −0.0494784 0.0856991i
\(897\) 0 0
\(898\) 7.39384e9 1.28065e10i 0.340724 0.590151i
\(899\) 2.33400e10 1.07138
\(900\) 0 0
\(901\) −2.19710e10 −1.00072
\(902\) −4.73579e7 + 8.20262e7i −0.00214867 + 0.00372160i
\(903\) 0 0
\(904\) 4.24831e9 + 7.35829e9i 0.191261 + 0.331274i
\(905\) 6.29606e9 + 1.09051e10i 0.282357 + 0.489057i
\(906\) 0 0
\(907\) −1.16852e9 + 2.02393e9i −0.0520008 + 0.0900679i −0.890854 0.454290i \(-0.849893\pi\)
0.838853 + 0.544357i \(0.183226\pi\)
\(908\) 1.18106e10 0.523567
\(909\) 0 0
\(910\) 2.35891e9 0.103769
\(911\) 1.10172e10 1.90823e10i 0.482786 0.836211i −0.517018 0.855974i \(-0.672958\pi\)
0.999805 + 0.0197638i \(0.00629142\pi\)
\(912\) 0 0
\(913\) −3.09740e9 5.36485e9i −0.134694 0.233297i
\(914\) 1.19226e10 + 2.06506e10i 0.516489 + 0.894585i
\(915\) 0 0
\(916\) 2.80148e8 4.85230e8i 0.0120435 0.0208599i
\(917\) 8.05061e9 0.344775
\(918\) 0 0
\(919\) −1.43277e10 −0.608938 −0.304469 0.952522i \(-0.598479\pi\)
−0.304469 + 0.952522i \(0.598479\pi\)
\(920\) 3.69396e9 6.39812e9i 0.156399 0.270891i
\(921\) 0 0
\(922\) −1.01112e10 1.75132e10i −0.424860 0.735879i
\(923\) −9.77577e8 1.69321e9i −0.0409209 0.0708771i
\(924\) 0 0
\(925\) 2.73095e9 4.73014e9i 0.113453 0.196507i
\(926\) −7.12233e9 −0.294770
\(927\) 0 0
\(928\) 3.36101e9 0.138055
\(929\) 6.56399e9 1.13692e10i 0.268604 0.465236i −0.699898 0.714243i \(-0.746771\pi\)
0.968502 + 0.249007i \(0.0801043\pi\)
\(930\) 0 0
\(931\) 4.16800e9 + 7.21919e9i 0.169279 + 0.293200i
\(932\) −3.82580e9 6.62648e9i −0.154798 0.268119i
\(933\) 0 0
\(934\) 1.06267e10 1.84059e10i 0.426759 0.739169i
\(935\) 3.37238e9 0.134926
\(936\) 0 0
\(937\) −3.87626e10 −1.53930 −0.769652 0.638463i \(-0.779571\pi\)
−0.769652 + 0.638463i \(0.779571\pi\)
\(938\) 5.12080e8 8.86949e8i 0.0202595 0.0350904i
\(939\) 0 0
\(940\) 3.17625e9 + 5.50142e9i 0.124729 + 0.216037i
\(941\) 1.03140e10 + 1.78643e10i 0.403517 + 0.698912i 0.994148 0.108030i \(-0.0344542\pi\)
−0.590630 + 0.806942i \(0.701121\pi\)
\(942\) 0 0
\(943\) −3.72488e8 + 6.45168e8i −0.0144651 + 0.0250543i
\(944\) −1.08161e10 −0.418476
\(945\) 0 0
\(946\) 5.51021e9 0.211617
\(947\) −1.05853e10 + 1.83342e10i −0.405020 + 0.701516i −0.994324 0.106396i \(-0.966069\pi\)
0.589304 + 0.807912i \(0.299402\pi\)
\(948\) 0 0
\(949\) −6.77375e8 1.17325e9i −0.0257275 0.0445613i
\(950\) −5.43583e9 9.41514e9i −0.205700 0.356282i
\(951\) 0 0
\(952\) 3.82497e9 6.62505e9i 0.143681 0.248863i
\(953\) −2.14876e10 −0.804196 −0.402098 0.915597i \(-0.631719\pi\)
−0.402098 + 0.915597i \(0.631719\pi\)
\(954\) 0 0
\(955\) −1.97371e10 −0.733282
\(956\) 1.26787e10 2.19601e10i 0.469323 0.812891i
\(957\) 0 0
\(958\) 5.20374e9 + 9.01313e9i 0.191221 + 0.331205i
\(959\) −1.60352e8 2.77738e8i −0.00587097 0.0101688i
\(960\) 0 0
\(961\) −1.21336e10 + 2.10161e10i −0.441021 + 0.763871i
\(962\) 1.77478e9 0.0642733
\(963\) 0 0
\(964\) −1.64228e10 −0.590443
\(965\) 3.69543e9 6.40067e9i 0.132379 0.229287i
\(966\) 0 0
\(967\) −1.96313e10 3.40023e10i −0.698161 1.20925i −0.969103 0.246655i \(-0.920669\pi\)
0.270943 0.962596i \(-0.412665\pi\)
\(968\) 4.68344e9 + 8.11196e9i 0.165959 + 0.287450i
\(969\) 0 0
\(970\) −7.29300e9 + 1.26319e10i −0.256570 + 0.444392i
\(971\) 5.62647e10 1.97228 0.986140 0.165917i \(-0.0530585\pi\)
0.986140 + 0.165917i \(0.0530585\pi\)
\(972\) 0 0
\(973\) 3.98310e10 1.38620
\(974\) 4.29786e9 7.44412e9i 0.149038 0.258141i
\(975\) 0 0
\(976\) −1.69513e9 2.93606e9i −0.0583619 0.101086i
\(977\) −4.21718e9 7.30438e9i −0.144674 0.250583i 0.784577 0.620031i \(-0.212880\pi\)
−0.929251 + 0.369448i \(0.879547\pi\)
\(978\) 0 0
\(979\) 6.52535e9 1.13022e10i 0.222262 0.384968i
\(980\) 2.80510e9 0.0952045
\(981\) 0 0
\(982\) 6.26675e9 0.211180
\(983\) −1.12115e10 + 1.94189e10i −0.376466 + 0.652058i −0.990545 0.137186i \(-0.956194\pi\)
0.614079 + 0.789244i \(0.289527\pi\)
\(984\) 0 0
\(985\) 1.08135e10 + 1.87295e10i 0.360527 + 0.624451i
\(986\) 6.03358e9 + 1.04505e10i 0.200450 + 0.347189i
\(987\) 0 0
\(988\) 1.76631e9 3.05933e9i 0.0582662 0.100920i
\(989\) 4.33400e10 1.42463
\(990\) 0 0
\(991\) 3.46728e10 1.13170 0.565849 0.824509i \(-0.308548\pi\)
0.565849 + 0.824509i \(0.308548\pi\)
\(992\) −3.72821e9 + 6.45745e9i −0.121258 + 0.210025i
\(993\) 0 0
\(994\) −5.74945e9 9.95835e9i −0.185684 0.321614i
\(995\) −8.78194e9 1.52108e10i −0.282625 0.489520i
\(996\) 0 0
\(997\) 1.48237e10 2.56754e10i 0.473722 0.820511i −0.525825 0.850593i \(-0.676243\pi\)
0.999547 + 0.0300818i \(0.00957679\pi\)
\(998\) −4.98550e9 −0.158764
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.a.55.1 2
3.2 odd 2 162.8.c.l.55.1 2
9.2 odd 6 2.8.a.a.1.1 1
9.4 even 3 inner 162.8.c.a.109.1 2
9.5 odd 6 162.8.c.l.109.1 2
9.7 even 3 18.8.a.b.1.1 1
36.7 odd 6 144.8.a.i.1.1 1
36.11 even 6 16.8.a.b.1.1 1
45.2 even 12 50.8.b.c.49.1 2
45.7 odd 12 450.8.c.g.199.2 2
45.29 odd 6 50.8.a.g.1.1 1
45.34 even 6 450.8.a.c.1.1 1
45.38 even 12 50.8.b.c.49.2 2
45.43 odd 12 450.8.c.g.199.1 2
63.2 odd 6 98.8.c.d.67.1 2
63.11 odd 6 98.8.c.d.79.1 2
63.20 even 6 98.8.a.a.1.1 1
63.38 even 6 98.8.c.e.79.1 2
63.47 even 6 98.8.c.e.67.1 2
72.11 even 6 64.8.a.e.1.1 1
72.29 odd 6 64.8.a.c.1.1 1
72.43 odd 6 576.8.a.f.1.1 1
72.61 even 6 576.8.a.g.1.1 1
99.65 even 6 242.8.a.e.1.1 1
117.38 odd 6 338.8.a.d.1.1 1
117.47 even 12 338.8.b.d.337.1 2
117.83 even 12 338.8.b.d.337.2 2
144.11 even 12 256.8.b.f.129.2 2
144.29 odd 12 256.8.b.b.129.2 2
144.83 even 12 256.8.b.f.129.1 2
144.101 odd 12 256.8.b.b.129.1 2
153.101 odd 6 578.8.a.b.1.1 1
180.47 odd 12 400.8.c.j.49.2 2
180.83 odd 12 400.8.c.j.49.1 2
180.119 even 6 400.8.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.8.a.a.1.1 1 9.2 odd 6
16.8.a.b.1.1 1 36.11 even 6
18.8.a.b.1.1 1 9.7 even 3
50.8.a.g.1.1 1 45.29 odd 6
50.8.b.c.49.1 2 45.2 even 12
50.8.b.c.49.2 2 45.38 even 12
64.8.a.c.1.1 1 72.29 odd 6
64.8.a.e.1.1 1 72.11 even 6
98.8.a.a.1.1 1 63.20 even 6
98.8.c.d.67.1 2 63.2 odd 6
98.8.c.d.79.1 2 63.11 odd 6
98.8.c.e.67.1 2 63.47 even 6
98.8.c.e.79.1 2 63.38 even 6
144.8.a.i.1.1 1 36.7 odd 6
162.8.c.a.55.1 2 1.1 even 1 trivial
162.8.c.a.109.1 2 9.4 even 3 inner
162.8.c.l.55.1 2 3.2 odd 2
162.8.c.l.109.1 2 9.5 odd 6
242.8.a.e.1.1 1 99.65 even 6
256.8.b.b.129.1 2 144.101 odd 12
256.8.b.b.129.2 2 144.29 odd 12
256.8.b.f.129.1 2 144.83 even 12
256.8.b.f.129.2 2 144.11 even 12
338.8.a.d.1.1 1 117.38 odd 6
338.8.b.d.337.1 2 117.47 even 12
338.8.b.d.337.2 2 117.83 even 12
400.8.a.l.1.1 1 180.119 even 6
400.8.c.j.49.1 2 180.83 odd 12
400.8.c.j.49.2 2 180.47 odd 12
450.8.a.c.1.1 1 45.34 even 6
450.8.c.g.199.1 2 45.43 odd 12
450.8.c.g.199.2 2 45.7 odd 12
576.8.a.f.1.1 1 72.43 odd 6
576.8.a.g.1.1 1 72.61 even 6
578.8.a.b.1.1 1 153.101 odd 6