Properties

Label 162.8.a.i
Level $162$
Weight $8$
Character orbit 162.a
Self dual yes
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 728x^{2} - 525x + 107446 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + (\beta_1 + 14) q^{5} + (\beta_{3} + 2 \beta_1 + 12) q^{7} + 512 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{2} + 64 q^{4} + (\beta_1 + 14) q^{5} + (\beta_{3} + 2 \beta_1 + 12) q^{7} + 512 q^{8} + (8 \beta_1 + 112) q^{10} + ( - 3 \beta_{3} + \beta_{2} + \cdots + 546) q^{11}+ \cdots + (4592 \beta_{3} - 2464 \beta_{2} + \cdots + 2544760) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 256 q^{4} + 54 q^{5} + 44 q^{7} + 2048 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 32 q^{2} + 256 q^{4} + 54 q^{5} + 44 q^{7} + 2048 q^{8} + 432 q^{10} + 2172 q^{11} + 6398 q^{13} + 352 q^{14} + 16384 q^{16} + 25986 q^{17} + 45356 q^{19} + 3456 q^{20} + 17376 q^{22} - 2028 q^{23} + 173446 q^{25} + 51184 q^{26} + 2816 q^{28} + 283098 q^{29} + 812 q^{31} + 131072 q^{32} + 207888 q^{34} + 746496 q^{35} + 220844 q^{37} + 362848 q^{38} + 27648 q^{40} + 610704 q^{41} + 84380 q^{43} + 139008 q^{44} - 16224 q^{46} + 855708 q^{47} + 1273038 q^{49} + 1387568 q^{50} + 409472 q^{52} + 921300 q^{53} + 3508380 q^{55} + 22528 q^{56} + 2264784 q^{58} + 380796 q^{59} + 3151130 q^{61} + 6496 q^{62} + 1048576 q^{64} - 326538 q^{65} + 9961580 q^{67} + 1663104 q^{68} + 5971968 q^{70} - 4485192 q^{71} + 14617466 q^{73} + 1766752 q^{74} + 2902784 q^{76} - 5954826 q^{77} + 17309396 q^{79} + 221184 q^{80} + 4885632 q^{82} - 11520192 q^{83} + 14675148 q^{85} + 675040 q^{86} + 1112064 q^{88} - 13033032 q^{89} + 13115968 q^{91} - 129792 q^{92} + 6845664 q^{94} - 31016952 q^{95} + 22003112 q^{97} + 10184304 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 728x^{2} - 525x + 107446 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 11\nu^{2} + 923\nu - 3224 ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{3} + 59\nu^{2} + 179\nu - 23051 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 27\nu^{2} - 135\nu - 9828 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + 2\beta _1 + 1 ) / 162 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 25\beta_{3} + 5\beta_{2} + 10\beta _1 + 58973 ) / 162 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -108\beta_{3} + 163\beta_{2} - 79\beta _1 + 21223 ) / 54 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−15.2811
23.6116
−21.9175
13.5869
8.00000 0 64.0000 −494.214 0 −1296.48 512.000 0 −3953.72
1.2 8.00000 0 64.0000 −94.3532 0 202.733 512.000 0 −754.826
1.3 8.00000 0 64.0000 206.504 0 1617.21 512.000 0 1652.03
1.4 8.00000 0 64.0000 436.064 0 −479.459 512.000 0 3488.51
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.8.a.i 4
3.b odd 2 1 162.8.a.h 4
9.c even 3 2 54.8.c.b 8
9.d odd 6 2 18.8.c.b 8
36.f odd 6 2 432.8.i.b 8
36.h even 6 2 144.8.i.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.8.c.b 8 9.d odd 6 2
54.8.c.b 8 9.c even 3 2
144.8.i.b 8 36.h even 6 2
162.8.a.h 4 3.b odd 2 1
162.8.a.i 4 1.a even 1 1 trivial
432.8.i.b 8 36.f odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 54T_{5}^{3} - 241515T_{5}^{2} + 23036400T_{5} + 4199040000 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 4199040000 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 203801922484 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 350509866172425 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 5285891390452 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 21\!\cdots\!28 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 57\!\cdots\!48 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 19\!\cdots\!60 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 13\!\cdots\!76 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 10\!\cdots\!20 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 14\!\cdots\!48 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 78\!\cdots\!19 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 38\!\cdots\!59 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 32\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 27\!\cdots\!53 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 63\!\cdots\!68 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 27\!\cdots\!85 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 10\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 17\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 25\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 26\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 25\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 54\!\cdots\!75 \) Copy content Toggle raw display
show more
show less