Properties

Label 162.8.a.g.1.4
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.43103376.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 383x^{2} + 384x + 18612 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(18.5928\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} +280.425 q^{5} -164.323 q^{7} -512.000 q^{8} -2243.40 q^{10} +2037.94 q^{11} -1678.33 q^{13} +1314.59 q^{14} +4096.00 q^{16} -31685.7 q^{17} -12641.8 q^{19} +17947.2 q^{20} -16303.5 q^{22} -49466.9 q^{23} +513.276 q^{25} +13426.7 q^{26} -10516.7 q^{28} +7552.79 q^{29} +156035. q^{31} -32768.0 q^{32} +253485. q^{34} -46080.4 q^{35} +541440. q^{37} +101134. q^{38} -143578. q^{40} -537583. q^{41} +200498. q^{43} +130428. q^{44} +395735. q^{46} +410871. q^{47} -796541. q^{49} -4106.21 q^{50} -107413. q^{52} -1.36778e6 q^{53} +571489. q^{55} +84133.6 q^{56} -60422.3 q^{58} -798889. q^{59} +569439. q^{61} -1.24828e6 q^{62} +262144. q^{64} -470647. q^{65} -4.80453e6 q^{67} -2.02788e6 q^{68} +368643. q^{70} -2.45714e6 q^{71} +1.60344e6 q^{73} -4.33152e6 q^{74} -809075. q^{76} -334881. q^{77} +5.58998e6 q^{79} +1.14862e6 q^{80} +4.30067e6 q^{82} -9.82905e6 q^{83} -8.88546e6 q^{85} -1.60398e6 q^{86} -1.04342e6 q^{88} +117249. q^{89} +275789. q^{91} -3.16588e6 q^{92} -3.28697e6 q^{94} -3.54508e6 q^{95} -7.79245e6 q^{97} +6.37233e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 528 q^{5} + 560 q^{7} - 2048 q^{8} + 4224 q^{10} - 2160 q^{11} + 13460 q^{13} - 4480 q^{14} + 16384 q^{16} - 22560 q^{17} + 36704 q^{19} - 33792 q^{20} + 17280 q^{22} - 62640 q^{23}+ \cdots - 11595168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 280.425 1.00328 0.501640 0.865077i \(-0.332730\pi\)
0.501640 + 0.865077i \(0.332730\pi\)
\(6\) 0 0
\(7\) −164.323 −0.181074 −0.0905370 0.995893i \(-0.528858\pi\)
−0.0905370 + 0.995893i \(0.528858\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −2243.40 −0.709426
\(11\) 2037.94 0.461654 0.230827 0.972995i \(-0.425857\pi\)
0.230827 + 0.972995i \(0.425857\pi\)
\(12\) 0 0
\(13\) −1678.33 −0.211873 −0.105937 0.994373i \(-0.533784\pi\)
−0.105937 + 0.994373i \(0.533784\pi\)
\(14\) 1314.59 0.128039
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −31685.7 −1.56420 −0.782099 0.623154i \(-0.785851\pi\)
−0.782099 + 0.623154i \(0.785851\pi\)
\(18\) 0 0
\(19\) −12641.8 −0.422835 −0.211418 0.977396i \(-0.567808\pi\)
−0.211418 + 0.977396i \(0.567808\pi\)
\(20\) 17947.2 0.501640
\(21\) 0 0
\(22\) −16303.5 −0.326439
\(23\) −49466.9 −0.847749 −0.423874 0.905721i \(-0.639330\pi\)
−0.423874 + 0.905721i \(0.639330\pi\)
\(24\) 0 0
\(25\) 513.276 0.00656993
\(26\) 13426.7 0.149817
\(27\) 0 0
\(28\) −10516.7 −0.0905370
\(29\) 7552.79 0.0575062 0.0287531 0.999587i \(-0.490846\pi\)
0.0287531 + 0.999587i \(0.490846\pi\)
\(30\) 0 0
\(31\) 156035. 0.940712 0.470356 0.882477i \(-0.344125\pi\)
0.470356 + 0.882477i \(0.344125\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) 253485. 1.10606
\(35\) −46080.4 −0.181668
\(36\) 0 0
\(37\) 541440. 1.75729 0.878647 0.477472i \(-0.158447\pi\)
0.878647 + 0.477472i \(0.158447\pi\)
\(38\) 101134. 0.298990
\(39\) 0 0
\(40\) −143578. −0.354713
\(41\) −537583. −1.21815 −0.609077 0.793111i \(-0.708460\pi\)
−0.609077 + 0.793111i \(0.708460\pi\)
\(42\) 0 0
\(43\) 200498. 0.384565 0.192282 0.981340i \(-0.438411\pi\)
0.192282 + 0.981340i \(0.438411\pi\)
\(44\) 130428. 0.230827
\(45\) 0 0
\(46\) 395735. 0.599449
\(47\) 410871. 0.577249 0.288624 0.957442i \(-0.406802\pi\)
0.288624 + 0.957442i \(0.406802\pi\)
\(48\) 0 0
\(49\) −796541. −0.967212
\(50\) −4106.21 −0.00464564
\(51\) 0 0
\(52\) −107413. −0.105937
\(53\) −1.36778e6 −1.26198 −0.630988 0.775792i \(-0.717350\pi\)
−0.630988 + 0.775792i \(0.717350\pi\)
\(54\) 0 0
\(55\) 571489. 0.463168
\(56\) 84133.6 0.0640193
\(57\) 0 0
\(58\) −60422.3 −0.0406630
\(59\) −798889. −0.506412 −0.253206 0.967412i \(-0.581485\pi\)
−0.253206 + 0.967412i \(0.581485\pi\)
\(60\) 0 0
\(61\) 569439. 0.321213 0.160606 0.987019i \(-0.448655\pi\)
0.160606 + 0.987019i \(0.448655\pi\)
\(62\) −1.24828e6 −0.665184
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −470647. −0.212568
\(66\) 0 0
\(67\) −4.80453e6 −1.95159 −0.975795 0.218686i \(-0.929823\pi\)
−0.975795 + 0.218686i \(0.929823\pi\)
\(68\) −2.02788e6 −0.782099
\(69\) 0 0
\(70\) 368643. 0.128459
\(71\) −2.45714e6 −0.814751 −0.407376 0.913261i \(-0.633556\pi\)
−0.407376 + 0.913261i \(0.633556\pi\)
\(72\) 0 0
\(73\) 1.60344e6 0.482418 0.241209 0.970473i \(-0.422456\pi\)
0.241209 + 0.970473i \(0.422456\pi\)
\(74\) −4.33152e6 −1.24259
\(75\) 0 0
\(76\) −809075. −0.211418
\(77\) −334881. −0.0835936
\(78\) 0 0
\(79\) 5.58998e6 1.27560 0.637801 0.770201i \(-0.279844\pi\)
0.637801 + 0.770201i \(0.279844\pi\)
\(80\) 1.14862e6 0.250820
\(81\) 0 0
\(82\) 4.30067e6 0.861365
\(83\) −9.82905e6 −1.88685 −0.943427 0.331580i \(-0.892418\pi\)
−0.943427 + 0.331580i \(0.892418\pi\)
\(84\) 0 0
\(85\) −8.88546e6 −1.56933
\(86\) −1.60398e6 −0.271928
\(87\) 0 0
\(88\) −1.04342e6 −0.163219
\(89\) 117249. 0.0176296 0.00881480 0.999961i \(-0.497194\pi\)
0.00881480 + 0.999961i \(0.497194\pi\)
\(90\) 0 0
\(91\) 275789. 0.0383648
\(92\) −3.16588e6 −0.423874
\(93\) 0 0
\(94\) −3.28697e6 −0.408177
\(95\) −3.54508e6 −0.424222
\(96\) 0 0
\(97\) −7.79245e6 −0.866908 −0.433454 0.901176i \(-0.642705\pi\)
−0.433454 + 0.901176i \(0.642705\pi\)
\(98\) 6.37233e6 0.683922
\(99\) 0 0
\(100\) 32849.7 0.00328497
\(101\) −1.15485e6 −0.111532 −0.0557661 0.998444i \(-0.517760\pi\)
−0.0557661 + 0.998444i \(0.517760\pi\)
\(102\) 0 0
\(103\) −1.69867e7 −1.53171 −0.765857 0.643011i \(-0.777685\pi\)
−0.765857 + 0.643011i \(0.777685\pi\)
\(104\) 859307. 0.0749086
\(105\) 0 0
\(106\) 1.09423e7 0.892352
\(107\) −2.24189e7 −1.76918 −0.884589 0.466372i \(-0.845561\pi\)
−0.884589 + 0.466372i \(0.845561\pi\)
\(108\) 0 0
\(109\) 1.75728e7 1.29971 0.649857 0.760056i \(-0.274829\pi\)
0.649857 + 0.760056i \(0.274829\pi\)
\(110\) −4.57191e6 −0.327509
\(111\) 0 0
\(112\) −673069. −0.0452685
\(113\) 6.95639e6 0.453533 0.226767 0.973949i \(-0.427184\pi\)
0.226767 + 0.973949i \(0.427184\pi\)
\(114\) 0 0
\(115\) −1.38718e7 −0.850529
\(116\) 483379. 0.0287531
\(117\) 0 0
\(118\) 6.39111e6 0.358088
\(119\) 5.20670e6 0.283236
\(120\) 0 0
\(121\) −1.53340e7 −0.786875
\(122\) −4.55551e6 −0.227132
\(123\) 0 0
\(124\) 9.98626e6 0.470356
\(125\) −2.17643e7 −0.996688
\(126\) 0 0
\(127\) −3.25050e7 −1.40811 −0.704057 0.710144i \(-0.748630\pi\)
−0.704057 + 0.710144i \(0.748630\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) 3.76517e6 0.150308
\(131\) −1.63139e7 −0.634029 −0.317015 0.948421i \(-0.602680\pi\)
−0.317015 + 0.948421i \(0.602680\pi\)
\(132\) 0 0
\(133\) 2.07734e6 0.0765645
\(134\) 3.84362e7 1.37998
\(135\) 0 0
\(136\) 1.62231e7 0.553028
\(137\) 3.61594e7 1.20143 0.600716 0.799462i \(-0.294882\pi\)
0.600716 + 0.799462i \(0.294882\pi\)
\(138\) 0 0
\(139\) 5.35183e7 1.69025 0.845125 0.534569i \(-0.179526\pi\)
0.845125 + 0.534569i \(0.179526\pi\)
\(140\) −2.94915e6 −0.0908339
\(141\) 0 0
\(142\) 1.96571e7 0.576116
\(143\) −3.42034e6 −0.0978122
\(144\) 0 0
\(145\) 2.11799e6 0.0576948
\(146\) −1.28276e7 −0.341121
\(147\) 0 0
\(148\) 3.46522e7 0.878647
\(149\) 5.44218e6 0.134779 0.0673893 0.997727i \(-0.478533\pi\)
0.0673893 + 0.997727i \(0.478533\pi\)
\(150\) 0 0
\(151\) 2.19361e7 0.518490 0.259245 0.965812i \(-0.416526\pi\)
0.259245 + 0.965812i \(0.416526\pi\)
\(152\) 6.47260e6 0.149495
\(153\) 0 0
\(154\) 2.67905e6 0.0591096
\(155\) 4.37562e7 0.943798
\(156\) 0 0
\(157\) 4.99067e6 0.102922 0.0514612 0.998675i \(-0.483612\pi\)
0.0514612 + 0.998675i \(0.483612\pi\)
\(158\) −4.47198e7 −0.901987
\(159\) 0 0
\(160\) −9.18897e6 −0.177356
\(161\) 8.12857e6 0.153505
\(162\) 0 0
\(163\) −4.47642e7 −0.809606 −0.404803 0.914404i \(-0.632660\pi\)
−0.404803 + 0.914404i \(0.632660\pi\)
\(164\) −3.44053e7 −0.609077
\(165\) 0 0
\(166\) 7.86324e7 1.33421
\(167\) 6.14781e7 1.02144 0.510720 0.859747i \(-0.329379\pi\)
0.510720 + 0.859747i \(0.329379\pi\)
\(168\) 0 0
\(169\) −5.99317e7 −0.955110
\(170\) 7.10837e7 1.10968
\(171\) 0 0
\(172\) 1.28318e7 0.192282
\(173\) 1.02491e8 1.50496 0.752479 0.658616i \(-0.228858\pi\)
0.752479 + 0.658616i \(0.228858\pi\)
\(174\) 0 0
\(175\) −84343.2 −0.00118964
\(176\) 8.34740e6 0.115414
\(177\) 0 0
\(178\) −937988. −0.0124660
\(179\) −6.08971e7 −0.793617 −0.396809 0.917901i \(-0.629882\pi\)
−0.396809 + 0.917901i \(0.629882\pi\)
\(180\) 0 0
\(181\) −9.62195e7 −1.20611 −0.603057 0.797698i \(-0.706051\pi\)
−0.603057 + 0.797698i \(0.706051\pi\)
\(182\) −2.20631e6 −0.0271280
\(183\) 0 0
\(184\) 2.53271e7 0.299725
\(185\) 1.51833e8 1.76306
\(186\) 0 0
\(187\) −6.45735e7 −0.722119
\(188\) 2.62957e7 0.288624
\(189\) 0 0
\(190\) 2.83606e7 0.299970
\(191\) 7.39207e7 0.767626 0.383813 0.923411i \(-0.374611\pi\)
0.383813 + 0.923411i \(0.374611\pi\)
\(192\) 0 0
\(193\) 8.14695e7 0.815726 0.407863 0.913043i \(-0.366274\pi\)
0.407863 + 0.913043i \(0.366274\pi\)
\(194\) 6.23396e7 0.612997
\(195\) 0 0
\(196\) −5.09786e7 −0.483606
\(197\) 2.44033e7 0.227414 0.113707 0.993514i \(-0.463728\pi\)
0.113707 + 0.993514i \(0.463728\pi\)
\(198\) 0 0
\(199\) −1.52134e8 −1.36848 −0.684241 0.729256i \(-0.739867\pi\)
−0.684241 + 0.729256i \(0.739867\pi\)
\(200\) −262797. −0.00232282
\(201\) 0 0
\(202\) 9.23879e6 0.0788652
\(203\) −1.24110e6 −0.0104129
\(204\) 0 0
\(205\) −1.50752e8 −1.22215
\(206\) 1.35893e8 1.08309
\(207\) 0 0
\(208\) −6.87445e6 −0.0529684
\(209\) −2.57632e7 −0.195204
\(210\) 0 0
\(211\) −5.87824e7 −0.430783 −0.215392 0.976528i \(-0.569103\pi\)
−0.215392 + 0.976528i \(0.569103\pi\)
\(212\) −8.75380e7 −0.630988
\(213\) 0 0
\(214\) 1.79351e8 1.25100
\(215\) 5.62246e7 0.385826
\(216\) 0 0
\(217\) −2.56402e7 −0.170339
\(218\) −1.40582e8 −0.919037
\(219\) 0 0
\(220\) 3.65753e7 0.231584
\(221\) 5.31791e7 0.331412
\(222\) 0 0
\(223\) −3.31815e7 −0.200368 −0.100184 0.994969i \(-0.531943\pi\)
−0.100184 + 0.994969i \(0.531943\pi\)
\(224\) 5.38455e6 0.0320097
\(225\) 0 0
\(226\) −5.56511e7 −0.320697
\(227\) −1.38592e8 −0.786407 −0.393203 0.919452i \(-0.628633\pi\)
−0.393203 + 0.919452i \(0.628633\pi\)
\(228\) 0 0
\(229\) 6.70368e7 0.368884 0.184442 0.982843i \(-0.440952\pi\)
0.184442 + 0.982843i \(0.440952\pi\)
\(230\) 1.10974e8 0.601415
\(231\) 0 0
\(232\) −3.86703e6 −0.0203315
\(233\) −1.30899e8 −0.677940 −0.338970 0.940797i \(-0.610078\pi\)
−0.338970 + 0.940797i \(0.610078\pi\)
\(234\) 0 0
\(235\) 1.15219e8 0.579142
\(236\) −5.11289e7 −0.253206
\(237\) 0 0
\(238\) −4.16536e7 −0.200278
\(239\) −1.92741e7 −0.0913234 −0.0456617 0.998957i \(-0.514540\pi\)
−0.0456617 + 0.998957i \(0.514540\pi\)
\(240\) 0 0
\(241\) 6.84990e7 0.315228 0.157614 0.987501i \(-0.449620\pi\)
0.157614 + 0.987501i \(0.449620\pi\)
\(242\) 1.22672e8 0.556405
\(243\) 0 0
\(244\) 3.64441e7 0.160606
\(245\) −2.23370e8 −0.970384
\(246\) 0 0
\(247\) 2.12171e7 0.0895875
\(248\) −7.98901e7 −0.332592
\(249\) 0 0
\(250\) 1.74114e8 0.704765
\(251\) −2.45365e7 −0.0979387 −0.0489693 0.998800i \(-0.515594\pi\)
−0.0489693 + 0.998800i \(0.515594\pi\)
\(252\) 0 0
\(253\) −1.00811e8 −0.391367
\(254\) 2.60040e8 0.995687
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −3.32725e8 −1.22270 −0.611349 0.791361i \(-0.709373\pi\)
−0.611349 + 0.791361i \(0.709373\pi\)
\(258\) 0 0
\(259\) −8.89713e7 −0.318200
\(260\) −3.01214e7 −0.106284
\(261\) 0 0
\(262\) 1.30512e8 0.448326
\(263\) 3.70551e8 1.25604 0.628019 0.778198i \(-0.283866\pi\)
0.628019 + 0.778198i \(0.283866\pi\)
\(264\) 0 0
\(265\) −3.83560e8 −1.26612
\(266\) −1.66187e7 −0.0541393
\(267\) 0 0
\(268\) −3.07490e8 −0.975795
\(269\) −4.30980e8 −1.34997 −0.674985 0.737831i \(-0.735850\pi\)
−0.674985 + 0.737831i \(0.735850\pi\)
\(270\) 0 0
\(271\) 3.41000e8 1.04079 0.520394 0.853927i \(-0.325785\pi\)
0.520394 + 0.853927i \(0.325785\pi\)
\(272\) −1.29785e8 −0.391050
\(273\) 0 0
\(274\) −2.89275e8 −0.849541
\(275\) 1.04602e6 0.00303304
\(276\) 0 0
\(277\) 6.82082e8 1.92822 0.964112 0.265496i \(-0.0855356\pi\)
0.964112 + 0.265496i \(0.0855356\pi\)
\(278\) −4.28147e8 −1.19519
\(279\) 0 0
\(280\) 2.35932e7 0.0642293
\(281\) −6.74238e7 −0.181276 −0.0906382 0.995884i \(-0.528891\pi\)
−0.0906382 + 0.995884i \(0.528891\pi\)
\(282\) 0 0
\(283\) −5.15722e8 −1.35258 −0.676290 0.736636i \(-0.736413\pi\)
−0.676290 + 0.736636i \(0.736413\pi\)
\(284\) −1.57257e8 −0.407376
\(285\) 0 0
\(286\) 2.73627e7 0.0691637
\(287\) 8.83375e7 0.220576
\(288\) 0 0
\(289\) 5.93644e8 1.44672
\(290\) −1.69439e7 −0.0407964
\(291\) 0 0
\(292\) 1.02620e8 0.241209
\(293\) −8.06018e7 −0.187201 −0.0936005 0.995610i \(-0.529838\pi\)
−0.0936005 + 0.995610i \(0.529838\pi\)
\(294\) 0 0
\(295\) −2.24029e8 −0.508073
\(296\) −2.77217e8 −0.621297
\(297\) 0 0
\(298\) −4.35374e7 −0.0953029
\(299\) 8.30219e7 0.179615
\(300\) 0 0
\(301\) −3.29464e7 −0.0696347
\(302\) −1.75489e8 −0.366628
\(303\) 0 0
\(304\) −5.17808e7 −0.105709
\(305\) 1.59685e8 0.322266
\(306\) 0 0
\(307\) 3.87201e8 0.763752 0.381876 0.924214i \(-0.375278\pi\)
0.381876 + 0.924214i \(0.375278\pi\)
\(308\) −2.14324e7 −0.0417968
\(309\) 0 0
\(310\) −3.50050e8 −0.667366
\(311\) −6.30776e8 −1.18909 −0.594543 0.804064i \(-0.702667\pi\)
−0.594543 + 0.804064i \(0.702667\pi\)
\(312\) 0 0
\(313\) 4.74951e8 0.875475 0.437737 0.899103i \(-0.355780\pi\)
0.437737 + 0.899103i \(0.355780\pi\)
\(314\) −3.99254e7 −0.0727772
\(315\) 0 0
\(316\) 3.57759e8 0.637801
\(317\) −2.90309e8 −0.511863 −0.255931 0.966695i \(-0.582382\pi\)
−0.255931 + 0.966695i \(0.582382\pi\)
\(318\) 0 0
\(319\) 1.53921e7 0.0265480
\(320\) 7.35118e7 0.125410
\(321\) 0 0
\(322\) −6.50285e7 −0.108545
\(323\) 4.00564e8 0.661398
\(324\) 0 0
\(325\) −861448. −0.00139199
\(326\) 3.58113e8 0.572478
\(327\) 0 0
\(328\) 2.75243e8 0.430683
\(329\) −6.75157e7 −0.104525
\(330\) 0 0
\(331\) 1.04983e9 1.59118 0.795589 0.605836i \(-0.207161\pi\)
0.795589 + 0.605836i \(0.207161\pi\)
\(332\) −6.29059e8 −0.943427
\(333\) 0 0
\(334\) −4.91825e8 −0.722267
\(335\) −1.34731e9 −1.95799
\(336\) 0 0
\(337\) 5.09260e8 0.724827 0.362414 0.932017i \(-0.381953\pi\)
0.362414 + 0.932017i \(0.381953\pi\)
\(338\) 4.79454e8 0.675365
\(339\) 0 0
\(340\) −5.68670e8 −0.784664
\(341\) 3.17990e8 0.434284
\(342\) 0 0
\(343\) 2.66218e8 0.356211
\(344\) −1.02655e8 −0.135964
\(345\) 0 0
\(346\) −8.19928e8 −1.06417
\(347\) −4.69074e8 −0.602682 −0.301341 0.953516i \(-0.597434\pi\)
−0.301341 + 0.953516i \(0.597434\pi\)
\(348\) 0 0
\(349\) −2.18782e8 −0.275500 −0.137750 0.990467i \(-0.543987\pi\)
−0.137750 + 0.990467i \(0.543987\pi\)
\(350\) 674746. 0.000841205 0
\(351\) 0 0
\(352\) −6.67792e7 −0.0816097
\(353\) −4.43032e8 −0.536072 −0.268036 0.963409i \(-0.586375\pi\)
−0.268036 + 0.963409i \(0.586375\pi\)
\(354\) 0 0
\(355\) −6.89043e8 −0.817423
\(356\) 7.50391e6 0.00881480
\(357\) 0 0
\(358\) 4.87177e8 0.561172
\(359\) 4.34672e8 0.495828 0.247914 0.968782i \(-0.420255\pi\)
0.247914 + 0.968782i \(0.420255\pi\)
\(360\) 0 0
\(361\) −7.34057e8 −0.821210
\(362\) 7.69756e8 0.852851
\(363\) 0 0
\(364\) 1.76505e7 0.0191824
\(365\) 4.49646e8 0.484001
\(366\) 0 0
\(367\) −1.64735e9 −1.73962 −0.869809 0.493389i \(-0.835758\pi\)
−0.869809 + 0.493389i \(0.835758\pi\)
\(368\) −2.02616e8 −0.211937
\(369\) 0 0
\(370\) −1.21467e9 −1.24667
\(371\) 2.24758e8 0.228511
\(372\) 0 0
\(373\) 5.70827e8 0.569539 0.284770 0.958596i \(-0.408083\pi\)
0.284770 + 0.958596i \(0.408083\pi\)
\(374\) 5.16588e8 0.510615
\(375\) 0 0
\(376\) −2.10366e8 −0.204088
\(377\) −1.26761e7 −0.0121840
\(378\) 0 0
\(379\) −1.71431e8 −0.161753 −0.0808763 0.996724i \(-0.525772\pi\)
−0.0808763 + 0.996724i \(0.525772\pi\)
\(380\) −2.26885e8 −0.212111
\(381\) 0 0
\(382\) −5.91366e8 −0.542793
\(383\) 6.66865e8 0.606515 0.303258 0.952909i \(-0.401926\pi\)
0.303258 + 0.952909i \(0.401926\pi\)
\(384\) 0 0
\(385\) −9.39090e7 −0.0838677
\(386\) −6.51756e8 −0.576806
\(387\) 0 0
\(388\) −4.98717e8 −0.433454
\(389\) −5.08814e8 −0.438263 −0.219132 0.975695i \(-0.570322\pi\)
−0.219132 + 0.975695i \(0.570322\pi\)
\(390\) 0 0
\(391\) 1.56739e9 1.32605
\(392\) 4.07829e8 0.341961
\(393\) 0 0
\(394\) −1.95227e8 −0.160806
\(395\) 1.56757e9 1.27979
\(396\) 0 0
\(397\) 9.18742e8 0.736931 0.368466 0.929641i \(-0.379883\pi\)
0.368466 + 0.929641i \(0.379883\pi\)
\(398\) 1.21707e9 0.967663
\(399\) 0 0
\(400\) 2.10238e6 0.00164248
\(401\) 1.97725e9 1.53129 0.765643 0.643266i \(-0.222421\pi\)
0.765643 + 0.643266i \(0.222421\pi\)
\(402\) 0 0
\(403\) −2.61879e8 −0.199312
\(404\) −7.39103e7 −0.0557661
\(405\) 0 0
\(406\) 9.92880e6 0.00736301
\(407\) 1.10342e9 0.811262
\(408\) 0 0
\(409\) 2.48921e9 1.79899 0.899497 0.436927i \(-0.143933\pi\)
0.899497 + 0.436927i \(0.143933\pi\)
\(410\) 1.20602e9 0.864190
\(411\) 0 0
\(412\) −1.08715e9 −0.765857
\(413\) 1.31276e8 0.0916981
\(414\) 0 0
\(415\) −2.75631e9 −1.89304
\(416\) 5.49956e7 0.0374543
\(417\) 0 0
\(418\) 2.06106e8 0.138030
\(419\) −1.79159e9 −1.18984 −0.594921 0.803784i \(-0.702817\pi\)
−0.594921 + 0.803784i \(0.702817\pi\)
\(420\) 0 0
\(421\) −1.39662e7 −0.00912199 −0.00456099 0.999990i \(-0.501452\pi\)
−0.00456099 + 0.999990i \(0.501452\pi\)
\(422\) 4.70259e8 0.304610
\(423\) 0 0
\(424\) 7.00304e8 0.446176
\(425\) −1.62635e7 −0.0102767
\(426\) 0 0
\(427\) −9.35722e7 −0.0581633
\(428\) −1.43481e9 −0.884589
\(429\) 0 0
\(430\) −4.49796e8 −0.272820
\(431\) 2.57849e9 1.55129 0.775647 0.631166i \(-0.217423\pi\)
0.775647 + 0.631166i \(0.217423\pi\)
\(432\) 0 0
\(433\) 1.82232e9 1.07874 0.539372 0.842068i \(-0.318662\pi\)
0.539372 + 0.842068i \(0.318662\pi\)
\(434\) 2.05122e8 0.120448
\(435\) 0 0
\(436\) 1.12466e9 0.649857
\(437\) 6.25350e8 0.358458
\(438\) 0 0
\(439\) 1.33131e9 0.751023 0.375512 0.926818i \(-0.377467\pi\)
0.375512 + 0.926818i \(0.377467\pi\)
\(440\) −2.92603e8 −0.163755
\(441\) 0 0
\(442\) −4.25433e8 −0.234344
\(443\) 3.71360e7 0.0202947 0.0101473 0.999949i \(-0.496770\pi\)
0.0101473 + 0.999949i \(0.496770\pi\)
\(444\) 0 0
\(445\) 3.28794e7 0.0176874
\(446\) 2.65452e8 0.141682
\(447\) 0 0
\(448\) −4.30764e7 −0.0226343
\(449\) 1.95772e9 1.02068 0.510338 0.859974i \(-0.329520\pi\)
0.510338 + 0.859974i \(0.329520\pi\)
\(450\) 0 0
\(451\) −1.09556e9 −0.562366
\(452\) 4.45209e8 0.226767
\(453\) 0 0
\(454\) 1.10873e9 0.556073
\(455\) 7.73383e7 0.0384906
\(456\) 0 0
\(457\) 9.99179e8 0.489707 0.244854 0.969560i \(-0.421260\pi\)
0.244854 + 0.969560i \(0.421260\pi\)
\(458\) −5.36295e8 −0.260840
\(459\) 0 0
\(460\) −8.87793e8 −0.425265
\(461\) 1.64807e9 0.783468 0.391734 0.920079i \(-0.371875\pi\)
0.391734 + 0.920079i \(0.371875\pi\)
\(462\) 0 0
\(463\) 3.47062e9 1.62508 0.812538 0.582909i \(-0.198086\pi\)
0.812538 + 0.582909i \(0.198086\pi\)
\(464\) 3.09362e7 0.0143765
\(465\) 0 0
\(466\) 1.04719e9 0.479376
\(467\) −2.49926e9 −1.13554 −0.567769 0.823188i \(-0.692193\pi\)
−0.567769 + 0.823188i \(0.692193\pi\)
\(468\) 0 0
\(469\) 7.89496e8 0.353382
\(470\) −9.21749e8 −0.409515
\(471\) 0 0
\(472\) 4.09031e8 0.179044
\(473\) 4.08602e8 0.177536
\(474\) 0 0
\(475\) −6.48873e6 −0.00277800
\(476\) 3.33229e8 0.141618
\(477\) 0 0
\(478\) 1.54193e8 0.0645754
\(479\) 4.39611e9 1.82765 0.913827 0.406103i \(-0.133112\pi\)
0.913827 + 0.406103i \(0.133112\pi\)
\(480\) 0 0
\(481\) −9.08717e8 −0.372324
\(482\) −5.47992e8 −0.222900
\(483\) 0 0
\(484\) −9.81375e8 −0.393438
\(485\) −2.18520e9 −0.869752
\(486\) 0 0
\(487\) −2.82989e9 −1.11025 −0.555123 0.831769i \(-0.687329\pi\)
−0.555123 + 0.831769i \(0.687329\pi\)
\(488\) −2.91553e8 −0.113566
\(489\) 0 0
\(490\) 1.78696e9 0.686165
\(491\) −2.45842e9 −0.937283 −0.468641 0.883389i \(-0.655256\pi\)
−0.468641 + 0.883389i \(0.655256\pi\)
\(492\) 0 0
\(493\) −2.39315e8 −0.0899511
\(494\) −1.69737e8 −0.0633480
\(495\) 0 0
\(496\) 6.39121e8 0.235178
\(497\) 4.03765e8 0.147530
\(498\) 0 0
\(499\) −3.00604e9 −1.08304 −0.541518 0.840689i \(-0.682150\pi\)
−0.541518 + 0.840689i \(0.682150\pi\)
\(500\) −1.39291e9 −0.498344
\(501\) 0 0
\(502\) 1.96292e8 0.0692531
\(503\) 2.43279e8 0.0852348 0.0426174 0.999091i \(-0.486430\pi\)
0.0426174 + 0.999091i \(0.486430\pi\)
\(504\) 0 0
\(505\) −3.23849e8 −0.111898
\(506\) 8.06484e8 0.276738
\(507\) 0 0
\(508\) −2.08032e9 −0.704057
\(509\) 4.00432e9 1.34591 0.672956 0.739682i \(-0.265024\pi\)
0.672956 + 0.739682i \(0.265024\pi\)
\(510\) 0 0
\(511\) −2.63483e8 −0.0873535
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 2.66180e9 0.864578
\(515\) −4.76349e9 −1.53674
\(516\) 0 0
\(517\) 8.37330e8 0.266489
\(518\) 7.11770e8 0.225002
\(519\) 0 0
\(520\) 2.40971e8 0.0751542
\(521\) −5.72614e9 −1.77390 −0.886951 0.461864i \(-0.847181\pi\)
−0.886951 + 0.461864i \(0.847181\pi\)
\(522\) 0 0
\(523\) 1.53753e9 0.469966 0.234983 0.971999i \(-0.424497\pi\)
0.234983 + 0.971999i \(0.424497\pi\)
\(524\) −1.04409e9 −0.317015
\(525\) 0 0
\(526\) −2.96441e9 −0.888153
\(527\) −4.94409e9 −1.47146
\(528\) 0 0
\(529\) −9.57851e8 −0.281322
\(530\) 3.06848e9 0.895279
\(531\) 0 0
\(532\) 1.32950e8 0.0382822
\(533\) 9.02244e8 0.258095
\(534\) 0 0
\(535\) −6.28683e9 −1.77498
\(536\) 2.45992e9 0.689991
\(537\) 0 0
\(538\) 3.44784e9 0.954573
\(539\) −1.62330e9 −0.446518
\(540\) 0 0
\(541\) 3.90611e9 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(542\) −2.72800e9 −0.735948
\(543\) 0 0
\(544\) 1.03828e9 0.276514
\(545\) 4.92785e9 1.30398
\(546\) 0 0
\(547\) −5.00854e9 −1.30844 −0.654222 0.756303i \(-0.727004\pi\)
−0.654222 + 0.756303i \(0.727004\pi\)
\(548\) 2.31420e9 0.600716
\(549\) 0 0
\(550\) −8.36820e6 −0.00214468
\(551\) −9.54808e7 −0.0243156
\(552\) 0 0
\(553\) −9.18564e8 −0.230979
\(554\) −5.45666e9 −1.36346
\(555\) 0 0
\(556\) 3.42517e9 0.845125
\(557\) 1.45387e9 0.356479 0.178239 0.983987i \(-0.442960\pi\)
0.178239 + 0.983987i \(0.442960\pi\)
\(558\) 0 0
\(559\) −3.36502e8 −0.0814790
\(560\) −1.88745e8 −0.0454170
\(561\) 0 0
\(562\) 5.39390e8 0.128182
\(563\) −5.91199e9 −1.39622 −0.698111 0.715989i \(-0.745976\pi\)
−0.698111 + 0.715989i \(0.745976\pi\)
\(564\) 0 0
\(565\) 1.95075e9 0.455021
\(566\) 4.12577e9 0.956418
\(567\) 0 0
\(568\) 1.25805e9 0.288058
\(569\) −7.62555e9 −1.73531 −0.867657 0.497163i \(-0.834375\pi\)
−0.867657 + 0.497163i \(0.834375\pi\)
\(570\) 0 0
\(571\) −7.37293e9 −1.65735 −0.828675 0.559731i \(-0.810905\pi\)
−0.828675 + 0.559731i \(0.810905\pi\)
\(572\) −2.18902e8 −0.0489061
\(573\) 0 0
\(574\) −7.06700e8 −0.155971
\(575\) −2.53902e7 −0.00556965
\(576\) 0 0
\(577\) 1.95790e9 0.424302 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(578\) −4.74915e9 −1.02298
\(579\) 0 0
\(580\) 1.35552e8 0.0288474
\(581\) 1.61514e9 0.341660
\(582\) 0 0
\(583\) −2.78746e9 −0.582597
\(584\) −8.20964e8 −0.170561
\(585\) 0 0
\(586\) 6.44815e8 0.132371
\(587\) 2.19857e9 0.448649 0.224324 0.974515i \(-0.427983\pi\)
0.224324 + 0.974515i \(0.427983\pi\)
\(588\) 0 0
\(589\) −1.97257e9 −0.397766
\(590\) 1.79223e9 0.359262
\(591\) 0 0
\(592\) 2.21774e9 0.439323
\(593\) −6.54769e9 −1.28943 −0.644713 0.764425i \(-0.723023\pi\)
−0.644713 + 0.764425i \(0.723023\pi\)
\(594\) 0 0
\(595\) 1.46009e9 0.284165
\(596\) 3.48299e8 0.0673893
\(597\) 0 0
\(598\) −6.64176e8 −0.127007
\(599\) 5.27283e9 1.00242 0.501210 0.865326i \(-0.332888\pi\)
0.501210 + 0.865326i \(0.332888\pi\)
\(600\) 0 0
\(601\) 5.19270e9 0.975737 0.487869 0.872917i \(-0.337774\pi\)
0.487869 + 0.872917i \(0.337774\pi\)
\(602\) 2.63571e8 0.0492392
\(603\) 0 0
\(604\) 1.40391e9 0.259245
\(605\) −4.30003e9 −0.789456
\(606\) 0 0
\(607\) −2.43708e9 −0.442293 −0.221147 0.975241i \(-0.570980\pi\)
−0.221147 + 0.975241i \(0.570980\pi\)
\(608\) 4.14246e8 0.0747474
\(609\) 0 0
\(610\) −1.27748e9 −0.227877
\(611\) −6.89579e8 −0.122304
\(612\) 0 0
\(613\) −3.31215e9 −0.580763 −0.290382 0.956911i \(-0.593782\pi\)
−0.290382 + 0.956911i \(0.593782\pi\)
\(614\) −3.09761e9 −0.540054
\(615\) 0 0
\(616\) 1.71459e8 0.0295548
\(617\) −3.27130e9 −0.560690 −0.280345 0.959899i \(-0.590449\pi\)
−0.280345 + 0.959899i \(0.590449\pi\)
\(618\) 0 0
\(619\) −1.43605e9 −0.243361 −0.121681 0.992569i \(-0.538828\pi\)
−0.121681 + 0.992569i \(0.538828\pi\)
\(620\) 2.80040e9 0.471899
\(621\) 0 0
\(622\) 5.04620e9 0.840811
\(623\) −1.92667e7 −0.00319226
\(624\) 0 0
\(625\) −6.14335e9 −1.00653
\(626\) −3.79961e9 −0.619054
\(627\) 0 0
\(628\) 3.19403e8 0.0514612
\(629\) −1.71559e10 −2.74876
\(630\) 0 0
\(631\) −7.26152e9 −1.15060 −0.575301 0.817942i \(-0.695115\pi\)
−0.575301 + 0.817942i \(0.695115\pi\)
\(632\) −2.86207e9 −0.450994
\(633\) 0 0
\(634\) 2.32247e9 0.361942
\(635\) −9.11523e9 −1.41273
\(636\) 0 0
\(637\) 1.33686e9 0.204927
\(638\) −1.23137e8 −0.0187722
\(639\) 0 0
\(640\) −5.88094e8 −0.0886782
\(641\) 8.95695e9 1.34325 0.671625 0.740891i \(-0.265596\pi\)
0.671625 + 0.740891i \(0.265596\pi\)
\(642\) 0 0
\(643\) −2.59547e9 −0.385015 −0.192508 0.981295i \(-0.561662\pi\)
−0.192508 + 0.981295i \(0.561662\pi\)
\(644\) 5.20228e8 0.0767527
\(645\) 0 0
\(646\) −3.20451e9 −0.467679
\(647\) 9.11067e9 1.32247 0.661234 0.750180i \(-0.270033\pi\)
0.661234 + 0.750180i \(0.270033\pi\)
\(648\) 0 0
\(649\) −1.62809e9 −0.233787
\(650\) 6.89158e6 0.000984288 0
\(651\) 0 0
\(652\) −2.86491e9 −0.404803
\(653\) 1.02334e10 1.43821 0.719107 0.694899i \(-0.244551\pi\)
0.719107 + 0.694899i \(0.244551\pi\)
\(654\) 0 0
\(655\) −4.57484e9 −0.636109
\(656\) −2.20194e9 −0.304539
\(657\) 0 0
\(658\) 5.40126e8 0.0739102
\(659\) 1.07582e10 1.46434 0.732168 0.681124i \(-0.238508\pi\)
0.732168 + 0.681124i \(0.238508\pi\)
\(660\) 0 0
\(661\) 6.05822e9 0.815906 0.407953 0.913003i \(-0.366243\pi\)
0.407953 + 0.913003i \(0.366243\pi\)
\(662\) −8.39860e9 −1.12513
\(663\) 0 0
\(664\) 5.03247e9 0.667104
\(665\) 5.82539e8 0.0768156
\(666\) 0 0
\(667\) −3.73613e8 −0.0487508
\(668\) 3.93460e9 0.510720
\(669\) 0 0
\(670\) 1.07785e10 1.38451
\(671\) 1.16048e9 0.148289
\(672\) 0 0
\(673\) 4.23487e9 0.535534 0.267767 0.963484i \(-0.413714\pi\)
0.267767 + 0.963484i \(0.413714\pi\)
\(674\) −4.07408e9 −0.512530
\(675\) 0 0
\(676\) −3.83563e9 −0.477555
\(677\) −1.98516e9 −0.245887 −0.122944 0.992414i \(-0.539233\pi\)
−0.122944 + 0.992414i \(0.539233\pi\)
\(678\) 0 0
\(679\) 1.28048e9 0.156975
\(680\) 4.54936e9 0.554841
\(681\) 0 0
\(682\) −2.54392e9 −0.307085
\(683\) 2.07576e9 0.249290 0.124645 0.992201i \(-0.460221\pi\)
0.124645 + 0.992201i \(0.460221\pi\)
\(684\) 0 0
\(685\) 1.01400e10 1.20537
\(686\) −2.12974e9 −0.251879
\(687\) 0 0
\(688\) 8.21238e8 0.0961412
\(689\) 2.29559e9 0.267379
\(690\) 0 0
\(691\) 1.45644e9 0.167927 0.0839634 0.996469i \(-0.473242\pi\)
0.0839634 + 0.996469i \(0.473242\pi\)
\(692\) 6.55943e9 0.752479
\(693\) 0 0
\(694\) 3.75259e9 0.426160
\(695\) 1.50079e10 1.69579
\(696\) 0 0
\(697\) 1.70337e10 1.90544
\(698\) 1.75025e9 0.194808
\(699\) 0 0
\(700\) −5.39797e6 −0.000594822 0
\(701\) 6.55669e9 0.718905 0.359452 0.933163i \(-0.382964\pi\)
0.359452 + 0.933163i \(0.382964\pi\)
\(702\) 0 0
\(703\) −6.84477e9 −0.743046
\(704\) 5.34233e8 0.0577068
\(705\) 0 0
\(706\) 3.54425e9 0.379060
\(707\) 1.89769e8 0.0201956
\(708\) 0 0
\(709\) 6.40302e9 0.674719 0.337360 0.941376i \(-0.390466\pi\)
0.337360 + 0.941376i \(0.390466\pi\)
\(710\) 5.51234e9 0.578005
\(711\) 0 0
\(712\) −6.00313e7 −0.00623301
\(713\) −7.71858e9 −0.797488
\(714\) 0 0
\(715\) −9.59149e8 −0.0981330
\(716\) −3.89742e9 −0.396809
\(717\) 0 0
\(718\) −3.47738e9 −0.350603
\(719\) 1.33984e10 1.34432 0.672158 0.740408i \(-0.265368\pi\)
0.672158 + 0.740408i \(0.265368\pi\)
\(720\) 0 0
\(721\) 2.79130e9 0.277354
\(722\) 5.87245e9 0.580683
\(723\) 0 0
\(724\) −6.15805e9 −0.603057
\(725\) 3.87666e6 0.000377812 0
\(726\) 0 0
\(727\) −1.44080e10 −1.39070 −0.695351 0.718670i \(-0.744751\pi\)
−0.695351 + 0.718670i \(0.744751\pi\)
\(728\) −1.41204e8 −0.0135640
\(729\) 0 0
\(730\) −3.59717e9 −0.342240
\(731\) −6.35290e9 −0.601536
\(732\) 0 0
\(733\) 1.12128e10 1.05159 0.525797 0.850610i \(-0.323767\pi\)
0.525797 + 0.850610i \(0.323767\pi\)
\(734\) 1.31788e10 1.23010
\(735\) 0 0
\(736\) 1.62093e9 0.149862
\(737\) −9.79133e9 −0.900960
\(738\) 0 0
\(739\) 7.79784e9 0.710753 0.355377 0.934723i \(-0.384353\pi\)
0.355377 + 0.934723i \(0.384353\pi\)
\(740\) 9.71734e9 0.881528
\(741\) 0 0
\(742\) −1.79807e9 −0.161582
\(743\) −1.56159e10 −1.39671 −0.698353 0.715753i \(-0.746084\pi\)
−0.698353 + 0.715753i \(0.746084\pi\)
\(744\) 0 0
\(745\) 1.52612e9 0.135221
\(746\) −4.56662e9 −0.402725
\(747\) 0 0
\(748\) −4.13270e9 −0.361059
\(749\) 3.68395e9 0.320352
\(750\) 0 0
\(751\) 1.27457e10 1.09805 0.549025 0.835806i \(-0.314999\pi\)
0.549025 + 0.835806i \(0.314999\pi\)
\(752\) 1.68293e9 0.144312
\(753\) 0 0
\(754\) 1.01409e8 0.00861541
\(755\) 6.15144e9 0.520190
\(756\) 0 0
\(757\) −2.31819e10 −1.94229 −0.971144 0.238492i \(-0.923347\pi\)
−0.971144 + 0.238492i \(0.923347\pi\)
\(758\) 1.37144e9 0.114376
\(759\) 0 0
\(760\) 1.81508e9 0.149985
\(761\) 2.22033e10 1.82630 0.913148 0.407629i \(-0.133644\pi\)
0.913148 + 0.407629i \(0.133644\pi\)
\(762\) 0 0
\(763\) −2.88762e9 −0.235345
\(764\) 4.73093e9 0.383813
\(765\) 0 0
\(766\) −5.33492e9 −0.428871
\(767\) 1.34080e9 0.107295
\(768\) 0 0
\(769\) 2.19911e10 1.74383 0.871916 0.489655i \(-0.162877\pi\)
0.871916 + 0.489655i \(0.162877\pi\)
\(770\) 7.51272e8 0.0593034
\(771\) 0 0
\(772\) 5.21405e9 0.407863
\(773\) 1.12771e10 0.878151 0.439075 0.898450i \(-0.355306\pi\)
0.439075 + 0.898450i \(0.355306\pi\)
\(774\) 0 0
\(775\) 8.00891e7 0.00618042
\(776\) 3.98974e9 0.306498
\(777\) 0 0
\(778\) 4.07051e9 0.309899
\(779\) 6.79602e9 0.515079
\(780\) 0 0
\(781\) −5.00749e9 −0.376133
\(782\) −1.25391e10 −0.937657
\(783\) 0 0
\(784\) −3.26263e9 −0.241803
\(785\) 1.39951e9 0.103260
\(786\) 0 0
\(787\) −1.83418e10 −1.34131 −0.670657 0.741768i \(-0.733988\pi\)
−0.670657 + 0.741768i \(0.733988\pi\)
\(788\) 1.56181e9 0.113707
\(789\) 0 0
\(790\) −1.25406e10 −0.904946
\(791\) −1.14310e9 −0.0821231
\(792\) 0 0
\(793\) −9.55709e8 −0.0680565
\(794\) −7.34994e9 −0.521089
\(795\) 0 0
\(796\) −9.73655e9 −0.684241
\(797\) −1.57035e9 −0.109874 −0.0549368 0.998490i \(-0.517496\pi\)
−0.0549368 + 0.998490i \(0.517496\pi\)
\(798\) 0 0
\(799\) −1.30187e10 −0.902932
\(800\) −1.68190e7 −0.00116141
\(801\) 0 0
\(802\) −1.58180e10 −1.08278
\(803\) 3.26772e9 0.222710
\(804\) 0 0
\(805\) 2.27945e9 0.154009
\(806\) 2.09503e9 0.140935
\(807\) 0 0
\(808\) 5.91283e8 0.0394326
\(809\) 3.66110e9 0.243104 0.121552 0.992585i \(-0.461213\pi\)
0.121552 + 0.992585i \(0.461213\pi\)
\(810\) 0 0
\(811\) −2.32307e10 −1.52929 −0.764645 0.644451i \(-0.777086\pi\)
−0.764645 + 0.644451i \(0.777086\pi\)
\(812\) −7.94304e7 −0.00520644
\(813\) 0 0
\(814\) −8.82737e9 −0.573649
\(815\) −1.25530e10 −0.812261
\(816\) 0 0
\(817\) −2.53465e9 −0.162608
\(818\) −1.99137e10 −1.27208
\(819\) 0 0
\(820\) −9.64812e9 −0.611075
\(821\) −2.53061e10 −1.59597 −0.797984 0.602678i \(-0.794100\pi\)
−0.797984 + 0.602678i \(0.794100\pi\)
\(822\) 0 0
\(823\) 8.28677e9 0.518186 0.259093 0.965852i \(-0.416576\pi\)
0.259093 + 0.965852i \(0.416576\pi\)
\(824\) 8.69717e9 0.541543
\(825\) 0 0
\(826\) −1.05021e9 −0.0648404
\(827\) 3.06921e10 1.88694 0.943470 0.331459i \(-0.107541\pi\)
0.943470 + 0.331459i \(0.107541\pi\)
\(828\) 0 0
\(829\) 1.83150e10 1.11652 0.558260 0.829666i \(-0.311469\pi\)
0.558260 + 0.829666i \(0.311469\pi\)
\(830\) 2.20505e10 1.33858
\(831\) 0 0
\(832\) −4.39965e8 −0.0264842
\(833\) 2.52389e10 1.51291
\(834\) 0 0
\(835\) 1.72400e10 1.02479
\(836\) −1.64885e9 −0.0976018
\(837\) 0 0
\(838\) 1.43327e10 0.841346
\(839\) −3.00211e10 −1.75493 −0.877466 0.479639i \(-0.840767\pi\)
−0.877466 + 0.479639i \(0.840767\pi\)
\(840\) 0 0
\(841\) −1.71928e10 −0.996693
\(842\) 1.11729e8 0.00645022
\(843\) 0 0
\(844\) −3.76207e9 −0.215392
\(845\) −1.68064e10 −0.958242
\(846\) 0 0
\(847\) 2.51973e9 0.142483
\(848\) −5.60243e9 −0.315494
\(849\) 0 0
\(850\) 1.30108e8 0.00726671
\(851\) −2.67834e10 −1.48974
\(852\) 0 0
\(853\) 2.78651e10 1.53723 0.768615 0.639712i \(-0.220946\pi\)
0.768615 + 0.639712i \(0.220946\pi\)
\(854\) 7.48578e8 0.0411277
\(855\) 0 0
\(856\) 1.14785e10 0.625499
\(857\) 3.41062e9 0.185098 0.0925488 0.995708i \(-0.470499\pi\)
0.0925488 + 0.995708i \(0.470499\pi\)
\(858\) 0 0
\(859\) 9.01531e9 0.485294 0.242647 0.970115i \(-0.421984\pi\)
0.242647 + 0.970115i \(0.421984\pi\)
\(860\) 3.59837e9 0.192913
\(861\) 0 0
\(862\) −2.06279e10 −1.09693
\(863\) 2.43096e9 0.128748 0.0643739 0.997926i \(-0.479495\pi\)
0.0643739 + 0.997926i \(0.479495\pi\)
\(864\) 0 0
\(865\) 2.87411e10 1.50989
\(866\) −1.45786e10 −0.762787
\(867\) 0 0
\(868\) −1.64098e9 −0.0851693
\(869\) 1.13920e10 0.588887
\(870\) 0 0
\(871\) 8.06359e9 0.413490
\(872\) −8.99727e9 −0.459518
\(873\) 0 0
\(874\) −5.00280e9 −0.253468
\(875\) 3.57638e9 0.180474
\(876\) 0 0
\(877\) −9.98233e9 −0.499728 −0.249864 0.968281i \(-0.580386\pi\)
−0.249864 + 0.968281i \(0.580386\pi\)
\(878\) −1.06505e10 −0.531054
\(879\) 0 0
\(880\) 2.34082e9 0.115792
\(881\) 2.89122e10 1.42451 0.712256 0.701920i \(-0.247673\pi\)
0.712256 + 0.701920i \(0.247673\pi\)
\(882\) 0 0
\(883\) −8.55345e9 −0.418099 −0.209049 0.977905i \(-0.567037\pi\)
−0.209049 + 0.977905i \(0.567037\pi\)
\(884\) 3.40346e9 0.165706
\(885\) 0 0
\(886\) −2.97088e8 −0.0143505
\(887\) −1.78318e10 −0.857953 −0.428977 0.903316i \(-0.641126\pi\)
−0.428977 + 0.903316i \(0.641126\pi\)
\(888\) 0 0
\(889\) 5.34134e9 0.254973
\(890\) −2.63036e8 −0.0125069
\(891\) 0 0
\(892\) −2.12362e9 −0.100184
\(893\) −5.19415e9 −0.244081
\(894\) 0 0
\(895\) −1.70771e10 −0.796220
\(896\) 3.44611e8 0.0160048
\(897\) 0 0
\(898\) −1.56618e10 −0.721727
\(899\) 1.17850e9 0.0540968
\(900\) 0 0
\(901\) 4.33391e10 1.97398
\(902\) 8.76450e9 0.397653
\(903\) 0 0
\(904\) −3.56167e9 −0.160348
\(905\) −2.69824e10 −1.21007
\(906\) 0 0
\(907\) −6.42631e8 −0.0285980 −0.0142990 0.999898i \(-0.504552\pi\)
−0.0142990 + 0.999898i \(0.504552\pi\)
\(908\) −8.86988e9 −0.393203
\(909\) 0 0
\(910\) −6.18706e8 −0.0272170
\(911\) 9.22976e9 0.404460 0.202230 0.979338i \(-0.435181\pi\)
0.202230 + 0.979338i \(0.435181\pi\)
\(912\) 0 0
\(913\) −2.00310e10 −0.871074
\(914\) −7.99343e9 −0.346275
\(915\) 0 0
\(916\) 4.29036e9 0.184442
\(917\) 2.68076e9 0.114806
\(918\) 0 0
\(919\) 1.03928e10 0.441701 0.220850 0.975308i \(-0.429117\pi\)
0.220850 + 0.975308i \(0.429117\pi\)
\(920\) 7.10234e9 0.300707
\(921\) 0 0
\(922\) −1.31845e10 −0.553996
\(923\) 4.12389e9 0.172624
\(924\) 0 0
\(925\) 2.77908e8 0.0115453
\(926\) −2.77650e10 −1.14910
\(927\) 0 0
\(928\) −2.47490e8 −0.0101658
\(929\) −1.67610e10 −0.685876 −0.342938 0.939358i \(-0.611422\pi\)
−0.342938 + 0.939358i \(0.611422\pi\)
\(930\) 0 0
\(931\) 1.00697e10 0.408971
\(932\) −8.37755e9 −0.338970
\(933\) 0 0
\(934\) 1.99940e10 0.802946
\(935\) −1.81080e10 −0.724487
\(936\) 0 0
\(937\) 2.27134e9 0.0901973 0.0450987 0.998983i \(-0.485640\pi\)
0.0450987 + 0.998983i \(0.485640\pi\)
\(938\) −6.31597e9 −0.249879
\(939\) 0 0
\(940\) 7.37399e9 0.289571
\(941\) 1.86944e9 0.0731388 0.0365694 0.999331i \(-0.488357\pi\)
0.0365694 + 0.999331i \(0.488357\pi\)
\(942\) 0 0
\(943\) 2.65926e10 1.03269
\(944\) −3.27225e9 −0.126603
\(945\) 0 0
\(946\) −3.26881e9 −0.125537
\(947\) 4.99793e9 0.191234 0.0956171 0.995418i \(-0.469518\pi\)
0.0956171 + 0.995418i \(0.469518\pi\)
\(948\) 0 0
\(949\) −2.69111e9 −0.102212
\(950\) 5.19098e7 0.00196434
\(951\) 0 0
\(952\) −2.66583e9 −0.100139
\(953\) −4.30036e10 −1.60946 −0.804730 0.593641i \(-0.797690\pi\)
−0.804730 + 0.593641i \(0.797690\pi\)
\(954\) 0 0
\(955\) 2.07292e10 0.770143
\(956\) −1.23354e9 −0.0456617
\(957\) 0 0
\(958\) −3.51689e10 −1.29235
\(959\) −5.94184e9 −0.217548
\(960\) 0 0
\(961\) −3.16560e9 −0.115060
\(962\) 7.26973e9 0.263273
\(963\) 0 0
\(964\) 4.38394e9 0.157614
\(965\) 2.28461e10 0.818401
\(966\) 0 0
\(967\) −4.60361e10 −1.63721 −0.818607 0.574354i \(-0.805253\pi\)
−0.818607 + 0.574354i \(0.805253\pi\)
\(968\) 7.85100e9 0.278202
\(969\) 0 0
\(970\) 1.74816e10 0.615007
\(971\) −3.33640e10 −1.16953 −0.584765 0.811203i \(-0.698813\pi\)
−0.584765 + 0.811203i \(0.698813\pi\)
\(972\) 0 0
\(973\) −8.79431e9 −0.306060
\(974\) 2.26392e10 0.785062
\(975\) 0 0
\(976\) 2.33242e9 0.0803032
\(977\) −2.78640e10 −0.955899 −0.477950 0.878387i \(-0.658620\pi\)
−0.477950 + 0.878387i \(0.658620\pi\)
\(978\) 0 0
\(979\) 2.38945e8 0.00813878
\(980\) −1.42957e10 −0.485192
\(981\) 0 0
\(982\) 1.96673e10 0.662759
\(983\) −3.09396e10 −1.03891 −0.519455 0.854498i \(-0.673865\pi\)
−0.519455 + 0.854498i \(0.673865\pi\)
\(984\) 0 0
\(985\) 6.84330e9 0.228160
\(986\) 1.91452e9 0.0636050
\(987\) 0 0
\(988\) 1.35790e9 0.0447938
\(989\) −9.91799e9 −0.326014
\(990\) 0 0
\(991\) −1.80515e10 −0.589192 −0.294596 0.955622i \(-0.595185\pi\)
−0.294596 + 0.955622i \(0.595185\pi\)
\(992\) −5.11296e9 −0.166296
\(993\) 0 0
\(994\) −3.23012e9 −0.104320
\(995\) −4.26621e10 −1.37297
\(996\) 0 0
\(997\) 2.62841e9 0.0839963 0.0419982 0.999118i \(-0.486628\pi\)
0.0419982 + 0.999118i \(0.486628\pi\)
\(998\) 2.40483e10 0.765823
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.g.1.4 4
3.2 odd 2 162.8.a.j.1.1 yes 4
9.2 odd 6 162.8.c.q.109.4 8
9.4 even 3 162.8.c.r.55.1 8
9.5 odd 6 162.8.c.q.55.4 8
9.7 even 3 162.8.c.r.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.4 4 1.1 even 1 trivial
162.8.a.j.1.1 yes 4 3.2 odd 2
162.8.c.q.55.4 8 9.5 odd 6
162.8.c.q.109.4 8 9.2 odd 6
162.8.c.r.55.1 8 9.4 even 3
162.8.c.r.109.1 8 9.7 even 3