Properties

Label 162.8.a.g.1.2
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.43103376.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 383x^{2} + 384x + 18612 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.05976\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} -325.500 q^{5} -1450.45 q^{7} -512.000 q^{8} +2604.00 q^{10} +5555.80 q^{11} +13503.7 q^{13} +11603.6 q^{14} +4096.00 q^{16} -11828.7 q^{17} +44544.0 q^{19} -20832.0 q^{20} -44446.4 q^{22} -26806.6 q^{23} +27825.1 q^{25} -108030. q^{26} -92829.0 q^{28} -140864. q^{29} +165692. q^{31} -32768.0 q^{32} +94629.7 q^{34} +472122. q^{35} +36343.3 q^{37} -356352. q^{38} +166656. q^{40} +478069. q^{41} -604215. q^{43} +355571. q^{44} +214453. q^{46} -503065. q^{47} +1.28027e6 q^{49} -222601. q^{50} +864238. q^{52} -1.99651e6 q^{53} -1.80841e6 q^{55} +742632. q^{56} +1.12691e6 q^{58} -609072. q^{59} +1.90187e6 q^{61} -1.32554e6 q^{62} +262144. q^{64} -4.39546e6 q^{65} +1.77367e6 q^{67} -757037. q^{68} -3.77698e6 q^{70} -1.00843e6 q^{71} +146188. q^{73} -290746. q^{74} +2.85081e6 q^{76} -8.05843e6 q^{77} -7.27378e6 q^{79} -1.33325e6 q^{80} -3.82456e6 q^{82} +5.37693e6 q^{83} +3.85024e6 q^{85} +4.83372e6 q^{86} -2.84457e6 q^{88} +2.94159e6 q^{89} -1.95865e7 q^{91} -1.71562e6 q^{92} +4.02452e6 q^{94} -1.44991e7 q^{95} -7.91467e6 q^{97} -1.02422e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 528 q^{5} + 560 q^{7} - 2048 q^{8} + 4224 q^{10} - 2160 q^{11} + 13460 q^{13} - 4480 q^{14} + 16384 q^{16} - 22560 q^{17} + 36704 q^{19} - 33792 q^{20} + 17280 q^{22} - 62640 q^{23}+ \cdots - 11595168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) −325.500 −1.16454 −0.582272 0.812994i \(-0.697836\pi\)
−0.582272 + 0.812994i \(0.697836\pi\)
\(6\) 0 0
\(7\) −1450.45 −1.59831 −0.799155 0.601126i \(-0.794719\pi\)
−0.799155 + 0.601126i \(0.794719\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 2604.00 0.823457
\(11\) 5555.80 1.25855 0.629277 0.777181i \(-0.283351\pi\)
0.629277 + 0.777181i \(0.283351\pi\)
\(12\) 0 0
\(13\) 13503.7 1.70471 0.852357 0.522961i \(-0.175173\pi\)
0.852357 + 0.522961i \(0.175173\pi\)
\(14\) 11603.6 1.13018
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −11828.7 −0.583937 −0.291969 0.956428i \(-0.594310\pi\)
−0.291969 + 0.956428i \(0.594310\pi\)
\(18\) 0 0
\(19\) 44544.0 1.48988 0.744940 0.667131i \(-0.232478\pi\)
0.744940 + 0.667131i \(0.232478\pi\)
\(20\) −20832.0 −0.582272
\(21\) 0 0
\(22\) −44446.4 −0.889932
\(23\) −26806.6 −0.459404 −0.229702 0.973261i \(-0.573775\pi\)
−0.229702 + 0.973261i \(0.573775\pi\)
\(24\) 0 0
\(25\) 27825.1 0.356162
\(26\) −108030. −1.20541
\(27\) 0 0
\(28\) −92829.0 −0.799155
\(29\) −140864. −1.07253 −0.536263 0.844051i \(-0.680164\pi\)
−0.536263 + 0.844051i \(0.680164\pi\)
\(30\) 0 0
\(31\) 165692. 0.998933 0.499467 0.866333i \(-0.333529\pi\)
0.499467 + 0.866333i \(0.333529\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) 94629.7 0.412906
\(35\) 472122. 1.86130
\(36\) 0 0
\(37\) 36343.3 0.117956 0.0589778 0.998259i \(-0.481216\pi\)
0.0589778 + 0.998259i \(0.481216\pi\)
\(38\) −356352. −1.05350
\(39\) 0 0
\(40\) 166656. 0.411728
\(41\) 478069. 1.08330 0.541648 0.840605i \(-0.317800\pi\)
0.541648 + 0.840605i \(0.317800\pi\)
\(42\) 0 0
\(43\) −604215. −1.15892 −0.579458 0.815002i \(-0.696736\pi\)
−0.579458 + 0.815002i \(0.696736\pi\)
\(44\) 355571. 0.629277
\(45\) 0 0
\(46\) 214453. 0.324848
\(47\) −503065. −0.706776 −0.353388 0.935477i \(-0.614970\pi\)
−0.353388 + 0.935477i \(0.614970\pi\)
\(48\) 0 0
\(49\) 1.28027e6 1.55459
\(50\) −222601. −0.251844
\(51\) 0 0
\(52\) 864238. 0.852357
\(53\) −1.99651e6 −1.84207 −0.921036 0.389477i \(-0.872656\pi\)
−0.921036 + 0.389477i \(0.872656\pi\)
\(54\) 0 0
\(55\) −1.80841e6 −1.46564
\(56\) 742632. 0.565088
\(57\) 0 0
\(58\) 1.12691e6 0.758390
\(59\) −609072. −0.386088 −0.193044 0.981190i \(-0.561836\pi\)
−0.193044 + 0.981190i \(0.561836\pi\)
\(60\) 0 0
\(61\) 1.90187e6 1.07282 0.536408 0.843959i \(-0.319781\pi\)
0.536408 + 0.843959i \(0.319781\pi\)
\(62\) −1.32554e6 −0.706353
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −4.39546e6 −1.98521
\(66\) 0 0
\(67\) 1.77367e6 0.720461 0.360231 0.932863i \(-0.382698\pi\)
0.360231 + 0.932863i \(0.382698\pi\)
\(68\) −757037. −0.291969
\(69\) 0 0
\(70\) −3.77698e6 −1.31614
\(71\) −1.00843e6 −0.334380 −0.167190 0.985925i \(-0.553469\pi\)
−0.167190 + 0.985925i \(0.553469\pi\)
\(72\) 0 0
\(73\) 146188. 0.0439825 0.0219913 0.999758i \(-0.492999\pi\)
0.0219913 + 0.999758i \(0.492999\pi\)
\(74\) −290746. −0.0834072
\(75\) 0 0
\(76\) 2.85081e6 0.744940
\(77\) −8.05843e6 −2.01156
\(78\) 0 0
\(79\) −7.27378e6 −1.65984 −0.829919 0.557884i \(-0.811613\pi\)
−0.829919 + 0.557884i \(0.811613\pi\)
\(80\) −1.33325e6 −0.291136
\(81\) 0 0
\(82\) −3.82456e6 −0.766007
\(83\) 5.37693e6 1.03219 0.516096 0.856531i \(-0.327385\pi\)
0.516096 + 0.856531i \(0.327385\pi\)
\(84\) 0 0
\(85\) 3.85024e6 0.680020
\(86\) 4.83372e6 0.819478
\(87\) 0 0
\(88\) −2.84457e6 −0.444966
\(89\) 2.94159e6 0.442301 0.221150 0.975240i \(-0.429019\pi\)
0.221150 + 0.975240i \(0.429019\pi\)
\(90\) 0 0
\(91\) −1.95865e7 −2.72466
\(92\) −1.71562e6 −0.229702
\(93\) 0 0
\(94\) 4.02452e6 0.499766
\(95\) −1.44991e7 −1.73503
\(96\) 0 0
\(97\) −7.91467e6 −0.880505 −0.440253 0.897874i \(-0.645111\pi\)
−0.440253 + 0.897874i \(0.645111\pi\)
\(98\) −1.02422e7 −1.09926
\(99\) 0 0
\(100\) 1.78081e6 0.178081
\(101\) −1.85158e7 −1.78820 −0.894101 0.447865i \(-0.852185\pi\)
−0.894101 + 0.447865i \(0.852185\pi\)
\(102\) 0 0
\(103\) 1.00406e7 0.905381 0.452691 0.891668i \(-0.350464\pi\)
0.452691 + 0.891668i \(0.350464\pi\)
\(104\) −6.91390e6 −0.602707
\(105\) 0 0
\(106\) 1.59721e7 1.30254
\(107\) −1.26542e7 −0.998601 −0.499300 0.866429i \(-0.666410\pi\)
−0.499300 + 0.866429i \(0.666410\pi\)
\(108\) 0 0
\(109\) −1.26740e6 −0.0937388 −0.0468694 0.998901i \(-0.514924\pi\)
−0.0468694 + 0.998901i \(0.514924\pi\)
\(110\) 1.44673e7 1.03636
\(111\) 0 0
\(112\) −5.94106e6 −0.399577
\(113\) 1.48420e7 0.967651 0.483825 0.875165i \(-0.339247\pi\)
0.483825 + 0.875165i \(0.339247\pi\)
\(114\) 0 0
\(115\) 8.72555e6 0.534996
\(116\) −9.01531e6 −0.536263
\(117\) 0 0
\(118\) 4.87257e6 0.273005
\(119\) 1.71570e7 0.933312
\(120\) 0 0
\(121\) 1.13797e7 0.583959
\(122\) −1.52149e7 −0.758596
\(123\) 0 0
\(124\) 1.06043e7 0.499467
\(125\) 1.63726e7 0.749778
\(126\) 0 0
\(127\) −9.71798e6 −0.420982 −0.210491 0.977596i \(-0.567506\pi\)
−0.210491 + 0.977596i \(0.567506\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) 3.51636e7 1.40376
\(131\) 1.83062e7 0.711459 0.355729 0.934589i \(-0.384233\pi\)
0.355729 + 0.934589i \(0.384233\pi\)
\(132\) 0 0
\(133\) −6.46090e7 −2.38129
\(134\) −1.41893e7 −0.509443
\(135\) 0 0
\(136\) 6.05630e6 0.206453
\(137\) −4.84572e7 −1.61004 −0.805019 0.593248i \(-0.797845\pi\)
−0.805019 + 0.593248i \(0.797845\pi\)
\(138\) 0 0
\(139\) −3.79831e7 −1.19960 −0.599802 0.800148i \(-0.704754\pi\)
−0.599802 + 0.800148i \(0.704754\pi\)
\(140\) 3.02158e7 0.930650
\(141\) 0 0
\(142\) 8.06741e6 0.236442
\(143\) 7.50239e7 2.14547
\(144\) 0 0
\(145\) 4.58513e7 1.24900
\(146\) −1.16950e6 −0.0311004
\(147\) 0 0
\(148\) 2.32597e6 0.0589778
\(149\) −3.58082e7 −0.886810 −0.443405 0.896321i \(-0.646230\pi\)
−0.443405 + 0.896321i \(0.646230\pi\)
\(150\) 0 0
\(151\) 4.81020e7 1.13696 0.568478 0.822699i \(-0.307533\pi\)
0.568478 + 0.822699i \(0.307533\pi\)
\(152\) −2.28065e7 −0.526752
\(153\) 0 0
\(154\) 6.44674e7 1.42239
\(155\) −5.39328e7 −1.16330
\(156\) 0 0
\(157\) −7.95290e7 −1.64012 −0.820062 0.572274i \(-0.806061\pi\)
−0.820062 + 0.572274i \(0.806061\pi\)
\(158\) 5.81903e7 1.17368
\(159\) 0 0
\(160\) 1.06660e7 0.205864
\(161\) 3.88818e7 0.734269
\(162\) 0 0
\(163\) −4.46340e7 −0.807252 −0.403626 0.914924i \(-0.632250\pi\)
−0.403626 + 0.914924i \(0.632250\pi\)
\(164\) 3.05964e7 0.541648
\(165\) 0 0
\(166\) −4.30154e7 −0.729870
\(167\) 7.08646e6 0.117739 0.0588697 0.998266i \(-0.481250\pi\)
0.0588697 + 0.998266i \(0.481250\pi\)
\(168\) 0 0
\(169\) 1.19602e8 1.90605
\(170\) −3.08019e7 −0.480847
\(171\) 0 0
\(172\) −3.86698e7 −0.579458
\(173\) 6.88987e7 1.01170 0.505848 0.862623i \(-0.331180\pi\)
0.505848 + 0.862623i \(0.331180\pi\)
\(174\) 0 0
\(175\) −4.03591e7 −0.569256
\(176\) 2.27565e7 0.314639
\(177\) 0 0
\(178\) −2.35327e7 −0.312754
\(179\) 8.88821e7 1.15832 0.579161 0.815214i \(-0.303380\pi\)
0.579161 + 0.815214i \(0.303380\pi\)
\(180\) 0 0
\(181\) 7.42211e7 0.930363 0.465182 0.885215i \(-0.345989\pi\)
0.465182 + 0.885215i \(0.345989\pi\)
\(182\) 1.56692e8 1.92663
\(183\) 0 0
\(184\) 1.37250e7 0.162424
\(185\) −1.18297e7 −0.137364
\(186\) 0 0
\(187\) −6.57179e7 −0.734917
\(188\) −3.21962e7 −0.353388
\(189\) 0 0
\(190\) 1.15992e8 1.22685
\(191\) −2.55625e7 −0.265452 −0.132726 0.991153i \(-0.542373\pi\)
−0.132726 + 0.991153i \(0.542373\pi\)
\(192\) 0 0
\(193\) −9.83708e7 −0.984953 −0.492477 0.870326i \(-0.663908\pi\)
−0.492477 + 0.870326i \(0.663908\pi\)
\(194\) 6.33174e7 0.622611
\(195\) 0 0
\(196\) 8.19375e7 0.777296
\(197\) −1.40581e7 −0.131007 −0.0655036 0.997852i \(-0.520865\pi\)
−0.0655036 + 0.997852i \(0.520865\pi\)
\(198\) 0 0
\(199\) 2.87427e7 0.258548 0.129274 0.991609i \(-0.458735\pi\)
0.129274 + 0.991609i \(0.458735\pi\)
\(200\) −1.42465e7 −0.125922
\(201\) 0 0
\(202\) 1.48126e8 1.26445
\(203\) 2.04317e8 1.71423
\(204\) 0 0
\(205\) −1.55612e8 −1.26155
\(206\) −8.03252e7 −0.640201
\(207\) 0 0
\(208\) 5.53112e7 0.426178
\(209\) 2.47477e8 1.87510
\(210\) 0 0
\(211\) −1.97309e8 −1.44597 −0.722984 0.690865i \(-0.757230\pi\)
−0.722984 + 0.690865i \(0.757230\pi\)
\(212\) −1.27777e8 −0.921036
\(213\) 0 0
\(214\) 1.01234e8 0.706117
\(215\) 1.96672e8 1.34961
\(216\) 0 0
\(217\) −2.40329e8 −1.59660
\(218\) 1.01392e7 0.0662834
\(219\) 0 0
\(220\) −1.15738e8 −0.732821
\(221\) −1.59731e8 −0.995446
\(222\) 0 0
\(223\) −7.48286e7 −0.451857 −0.225928 0.974144i \(-0.572542\pi\)
−0.225928 + 0.974144i \(0.572542\pi\)
\(224\) 4.75285e7 0.282544
\(225\) 0 0
\(226\) −1.18736e8 −0.684232
\(227\) −7.23482e7 −0.410523 −0.205261 0.978707i \(-0.565804\pi\)
−0.205261 + 0.978707i \(0.565804\pi\)
\(228\) 0 0
\(229\) −3.04784e8 −1.67713 −0.838567 0.544798i \(-0.816606\pi\)
−0.838567 + 0.544798i \(0.816606\pi\)
\(230\) −6.98044e7 −0.378299
\(231\) 0 0
\(232\) 7.21224e7 0.379195
\(233\) 2.36334e7 0.122400 0.0612000 0.998126i \(-0.480507\pi\)
0.0612000 + 0.998126i \(0.480507\pi\)
\(234\) 0 0
\(235\) 1.63748e8 0.823072
\(236\) −3.89806e7 −0.193044
\(237\) 0 0
\(238\) −1.37256e8 −0.659951
\(239\) −2.31014e8 −1.09458 −0.547288 0.836944i \(-0.684340\pi\)
−0.547288 + 0.836944i \(0.684340\pi\)
\(240\) 0 0
\(241\) −5.93812e7 −0.273268 −0.136634 0.990622i \(-0.543628\pi\)
−0.136634 + 0.990622i \(0.543628\pi\)
\(242\) −9.10377e7 −0.412921
\(243\) 0 0
\(244\) 1.21719e8 0.536408
\(245\) −4.16729e8 −1.81039
\(246\) 0 0
\(247\) 6.01509e8 2.53982
\(248\) −8.48345e7 −0.353176
\(249\) 0 0
\(250\) −1.30981e8 −0.530173
\(251\) −3.16166e8 −1.26199 −0.630997 0.775785i \(-0.717354\pi\)
−0.630997 + 0.775785i \(0.717354\pi\)
\(252\) 0 0
\(253\) −1.48932e8 −0.578185
\(254\) 7.77439e7 0.297679
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 5.66309e7 0.208108 0.104054 0.994572i \(-0.466819\pi\)
0.104054 + 0.994572i \(0.466819\pi\)
\(258\) 0 0
\(259\) −5.27143e7 −0.188529
\(260\) −2.81309e8 −0.992607
\(261\) 0 0
\(262\) −1.46450e8 −0.503077
\(263\) −2.40640e7 −0.0815685 −0.0407842 0.999168i \(-0.512986\pi\)
−0.0407842 + 0.999168i \(0.512986\pi\)
\(264\) 0 0
\(265\) 6.49865e8 2.14517
\(266\) 5.16872e8 1.68383
\(267\) 0 0
\(268\) 1.13515e8 0.360231
\(269\) 4.42132e8 1.38490 0.692451 0.721465i \(-0.256531\pi\)
0.692451 + 0.721465i \(0.256531\pi\)
\(270\) 0 0
\(271\) 1.81928e8 0.555272 0.277636 0.960686i \(-0.410449\pi\)
0.277636 + 0.960686i \(0.410449\pi\)
\(272\) −4.84504e7 −0.145984
\(273\) 0 0
\(274\) 3.87658e8 1.13847
\(275\) 1.54591e8 0.448249
\(276\) 0 0
\(277\) 2.60786e8 0.737234 0.368617 0.929581i \(-0.379831\pi\)
0.368617 + 0.929581i \(0.379831\pi\)
\(278\) 3.03864e8 0.848249
\(279\) 0 0
\(280\) −2.41727e8 −0.658069
\(281\) 3.55769e8 0.956523 0.478261 0.878217i \(-0.341267\pi\)
0.478261 + 0.878217i \(0.341267\pi\)
\(282\) 0 0
\(283\) −1.50560e8 −0.394874 −0.197437 0.980316i \(-0.563262\pi\)
−0.197437 + 0.980316i \(0.563262\pi\)
\(284\) −6.45393e7 −0.167190
\(285\) 0 0
\(286\) −6.00191e8 −1.51708
\(287\) −6.93418e8 −1.73144
\(288\) 0 0
\(289\) −2.70420e8 −0.659017
\(290\) −3.66810e8 −0.883178
\(291\) 0 0
\(292\) 9.35600e6 0.0219913
\(293\) −2.18901e8 −0.508407 −0.254204 0.967151i \(-0.581813\pi\)
−0.254204 + 0.967151i \(0.581813\pi\)
\(294\) 0 0
\(295\) 1.98253e8 0.449616
\(296\) −1.86078e7 −0.0417036
\(297\) 0 0
\(298\) 2.86466e8 0.627070
\(299\) −3.61989e8 −0.783152
\(300\) 0 0
\(301\) 8.76387e8 1.85231
\(302\) −3.84816e8 −0.803949
\(303\) 0 0
\(304\) 1.82452e8 0.372470
\(305\) −6.19057e8 −1.24934
\(306\) 0 0
\(307\) −5.49207e8 −1.08331 −0.541654 0.840602i \(-0.682202\pi\)
−0.541654 + 0.840602i \(0.682202\pi\)
\(308\) −5.15739e8 −1.00578
\(309\) 0 0
\(310\) 4.31463e8 0.822578
\(311\) −5.09200e8 −0.959901 −0.479951 0.877295i \(-0.659345\pi\)
−0.479951 + 0.877295i \(0.659345\pi\)
\(312\) 0 0
\(313\) 5.61841e8 1.03564 0.517819 0.855490i \(-0.326744\pi\)
0.517819 + 0.855490i \(0.326744\pi\)
\(314\) 6.36232e8 1.15974
\(315\) 0 0
\(316\) −4.65522e8 −0.829919
\(317\) −8.95957e8 −1.57972 −0.789859 0.613288i \(-0.789846\pi\)
−0.789859 + 0.613288i \(0.789846\pi\)
\(318\) 0 0
\(319\) −7.82613e8 −1.34983
\(320\) −8.53278e7 −0.145568
\(321\) 0 0
\(322\) −3.11054e8 −0.519207
\(323\) −5.26898e8 −0.869997
\(324\) 0 0
\(325\) 3.75743e8 0.607154
\(326\) 3.57072e8 0.570813
\(327\) 0 0
\(328\) −2.44772e8 −0.383003
\(329\) 7.29673e8 1.12965
\(330\) 0 0
\(331\) −7.05161e8 −1.06879 −0.534393 0.845236i \(-0.679460\pi\)
−0.534393 + 0.845236i \(0.679460\pi\)
\(332\) 3.44123e8 0.516096
\(333\) 0 0
\(334\) −5.66917e7 −0.0832543
\(335\) −5.77329e8 −0.839009
\(336\) 0 0
\(337\) 9.94415e8 1.41535 0.707674 0.706539i \(-0.249745\pi\)
0.707674 + 0.706539i \(0.249745\pi\)
\(338\) −9.56814e8 −1.34778
\(339\) 0 0
\(340\) 2.46416e8 0.340010
\(341\) 9.20553e8 1.25721
\(342\) 0 0
\(343\) −6.62466e8 −0.886409
\(344\) 3.09358e8 0.409739
\(345\) 0 0
\(346\) −5.51190e8 −0.715377
\(347\) −1.63922e7 −0.0210612 −0.0105306 0.999945i \(-0.503352\pi\)
−0.0105306 + 0.999945i \(0.503352\pi\)
\(348\) 0 0
\(349\) −4.26778e8 −0.537419 −0.268709 0.963221i \(-0.586597\pi\)
−0.268709 + 0.963221i \(0.586597\pi\)
\(350\) 3.22873e8 0.402525
\(351\) 0 0
\(352\) −1.82052e8 −0.222483
\(353\) 1.60553e9 1.94271 0.971353 0.237641i \(-0.0763743\pi\)
0.971353 + 0.237641i \(0.0763743\pi\)
\(354\) 0 0
\(355\) 3.28243e8 0.389400
\(356\) 1.88262e8 0.221150
\(357\) 0 0
\(358\) −7.11057e8 −0.819057
\(359\) −1.39612e9 −1.59255 −0.796276 0.604934i \(-0.793199\pi\)
−0.796276 + 0.604934i \(0.793199\pi\)
\(360\) 0 0
\(361\) 1.09029e9 1.21974
\(362\) −5.93769e8 −0.657866
\(363\) 0 0
\(364\) −1.25354e9 −1.36233
\(365\) −4.75840e7 −0.0512196
\(366\) 0 0
\(367\) −1.50761e9 −1.59206 −0.796029 0.605258i \(-0.793070\pi\)
−0.796029 + 0.605258i \(0.793070\pi\)
\(368\) −1.09800e8 −0.114851
\(369\) 0 0
\(370\) 9.46379e7 0.0971313
\(371\) 2.89585e9 2.94420
\(372\) 0 0
\(373\) −7.73180e8 −0.771435 −0.385718 0.922617i \(-0.626046\pi\)
−0.385718 + 0.922617i \(0.626046\pi\)
\(374\) 5.25743e8 0.519664
\(375\) 0 0
\(376\) 2.57569e8 0.249883
\(377\) −1.90219e9 −1.82835
\(378\) 0 0
\(379\) 1.65039e9 1.55722 0.778610 0.627508i \(-0.215925\pi\)
0.778610 + 0.627508i \(0.215925\pi\)
\(380\) −9.27940e8 −0.867515
\(381\) 0 0
\(382\) 2.04500e8 0.187703
\(383\) 6.51438e8 0.592485 0.296242 0.955113i \(-0.404266\pi\)
0.296242 + 0.955113i \(0.404266\pi\)
\(384\) 0 0
\(385\) 2.62302e9 2.34255
\(386\) 7.86966e8 0.696467
\(387\) 0 0
\(388\) −5.06539e8 −0.440253
\(389\) 8.72769e8 0.751754 0.375877 0.926670i \(-0.377342\pi\)
0.375877 + 0.926670i \(0.377342\pi\)
\(390\) 0 0
\(391\) 3.17088e8 0.268263
\(392\) −6.55500e8 −0.549631
\(393\) 0 0
\(394\) 1.12465e8 0.0926360
\(395\) 2.36761e9 1.93295
\(396\) 0 0
\(397\) 3.62633e8 0.290871 0.145436 0.989368i \(-0.453542\pi\)
0.145436 + 0.989368i \(0.453542\pi\)
\(398\) −2.29942e8 −0.182821
\(399\) 0 0
\(400\) 1.13972e8 0.0890404
\(401\) −6.98398e8 −0.540876 −0.270438 0.962737i \(-0.587168\pi\)
−0.270438 + 0.962737i \(0.587168\pi\)
\(402\) 0 0
\(403\) 2.23746e9 1.70290
\(404\) −1.18501e9 −0.894101
\(405\) 0 0
\(406\) −1.63454e9 −1.21214
\(407\) 2.01916e8 0.148453
\(408\) 0 0
\(409\) −1.23087e9 −0.889570 −0.444785 0.895637i \(-0.646720\pi\)
−0.444785 + 0.895637i \(0.646720\pi\)
\(410\) 1.24489e9 0.892048
\(411\) 0 0
\(412\) 6.42601e8 0.452691
\(413\) 8.83430e8 0.617088
\(414\) 0 0
\(415\) −1.75019e9 −1.20203
\(416\) −4.42490e8 −0.301354
\(417\) 0 0
\(418\) −1.97982e9 −1.32589
\(419\) 1.59613e9 1.06003 0.530016 0.847988i \(-0.322186\pi\)
0.530016 + 0.847988i \(0.322186\pi\)
\(420\) 0 0
\(421\) −7.72913e8 −0.504828 −0.252414 0.967619i \(-0.581224\pi\)
−0.252414 + 0.967619i \(0.581224\pi\)
\(422\) 1.57847e9 1.02245
\(423\) 0 0
\(424\) 1.02222e9 0.651271
\(425\) −3.29135e8 −0.207976
\(426\) 0 0
\(427\) −2.75857e9 −1.71469
\(428\) −8.09870e8 −0.499300
\(429\) 0 0
\(430\) −1.57338e9 −0.954318
\(431\) −2.41483e8 −0.145284 −0.0726418 0.997358i \(-0.523143\pi\)
−0.0726418 + 0.997358i \(0.523143\pi\)
\(432\) 0 0
\(433\) 2.85764e9 1.69161 0.845805 0.533493i \(-0.179121\pi\)
0.845805 + 0.533493i \(0.179121\pi\)
\(434\) 1.92263e9 1.12897
\(435\) 0 0
\(436\) −8.11133e7 −0.0468694
\(437\) −1.19407e9 −0.684457
\(438\) 0 0
\(439\) 3.27002e8 0.184469 0.0922347 0.995737i \(-0.470599\pi\)
0.0922347 + 0.995737i \(0.470599\pi\)
\(440\) 9.25906e8 0.518182
\(441\) 0 0
\(442\) 1.27785e9 0.703886
\(443\) −7.97209e8 −0.435672 −0.217836 0.975985i \(-0.569900\pi\)
−0.217836 + 0.975985i \(0.569900\pi\)
\(444\) 0 0
\(445\) −9.57488e8 −0.515078
\(446\) 5.98629e8 0.319511
\(447\) 0 0
\(448\) −3.80228e8 −0.199789
\(449\) 1.41817e9 0.739378 0.369689 0.929155i \(-0.379464\pi\)
0.369689 + 0.929155i \(0.379464\pi\)
\(450\) 0 0
\(451\) 2.65606e9 1.36339
\(452\) 9.49890e8 0.483825
\(453\) 0 0
\(454\) 5.78786e8 0.290284
\(455\) 6.37541e9 3.17298
\(456\) 0 0
\(457\) −9.74906e8 −0.477811 −0.238905 0.971043i \(-0.576789\pi\)
−0.238905 + 0.971043i \(0.576789\pi\)
\(458\) 2.43827e9 1.18591
\(459\) 0 0
\(460\) 5.58435e8 0.267498
\(461\) −1.37286e9 −0.652640 −0.326320 0.945259i \(-0.605809\pi\)
−0.326320 + 0.945259i \(0.605809\pi\)
\(462\) 0 0
\(463\) 1.78715e9 0.836809 0.418405 0.908261i \(-0.362589\pi\)
0.418405 + 0.908261i \(0.362589\pi\)
\(464\) −5.76980e8 −0.268131
\(465\) 0 0
\(466\) −1.89068e8 −0.0865499
\(467\) −2.25768e9 −1.02578 −0.512889 0.858455i \(-0.671425\pi\)
−0.512889 + 0.858455i \(0.671425\pi\)
\(468\) 0 0
\(469\) −2.57262e9 −1.15152
\(470\) −1.30998e9 −0.581999
\(471\) 0 0
\(472\) 3.11845e8 0.136503
\(473\) −3.35690e9 −1.45856
\(474\) 0 0
\(475\) 1.23944e9 0.530638
\(476\) 1.09805e9 0.466656
\(477\) 0 0
\(478\) 1.84811e9 0.773983
\(479\) −1.74267e9 −0.724503 −0.362252 0.932080i \(-0.617992\pi\)
−0.362252 + 0.932080i \(0.617992\pi\)
\(480\) 0 0
\(481\) 4.90769e8 0.201080
\(482\) 4.75049e8 0.193230
\(483\) 0 0
\(484\) 7.28301e8 0.291979
\(485\) 2.57623e9 1.02539
\(486\) 0 0
\(487\) −2.68849e9 −1.05477 −0.527384 0.849627i \(-0.676827\pi\)
−0.527384 + 0.849627i \(0.676827\pi\)
\(488\) −9.73756e8 −0.379298
\(489\) 0 0
\(490\) 3.33383e9 1.28014
\(491\) 2.34881e9 0.895495 0.447747 0.894160i \(-0.352226\pi\)
0.447747 + 0.894160i \(0.352226\pi\)
\(492\) 0 0
\(493\) 1.66624e9 0.626287
\(494\) −4.81207e9 −1.79592
\(495\) 0 0
\(496\) 6.78676e8 0.249733
\(497\) 1.46268e9 0.534442
\(498\) 0 0
\(499\) −1.66742e9 −0.600751 −0.300375 0.953821i \(-0.597112\pi\)
−0.300375 + 0.953821i \(0.597112\pi\)
\(500\) 1.04785e9 0.374889
\(501\) 0 0
\(502\) 2.52933e9 0.892365
\(503\) −3.41605e9 −1.19684 −0.598419 0.801183i \(-0.704204\pi\)
−0.598419 + 0.801183i \(0.704204\pi\)
\(504\) 0 0
\(505\) 6.02688e9 2.08244
\(506\) 1.19146e9 0.408838
\(507\) 0 0
\(508\) −6.21951e8 −0.210491
\(509\) −5.04639e9 −1.69617 −0.848083 0.529864i \(-0.822243\pi\)
−0.848083 + 0.529864i \(0.822243\pi\)
\(510\) 0 0
\(511\) −2.12038e8 −0.0702977
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) −4.53047e8 −0.147154
\(515\) −3.26823e9 −1.05436
\(516\) 0 0
\(517\) −2.79493e9 −0.889516
\(518\) 4.21714e8 0.133310
\(519\) 0 0
\(520\) 2.25047e9 0.701879
\(521\) −2.07610e9 −0.643156 −0.321578 0.946883i \(-0.604213\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(522\) 0 0
\(523\) −2.82869e9 −0.864627 −0.432314 0.901723i \(-0.642303\pi\)
−0.432314 + 0.901723i \(0.642303\pi\)
\(524\) 1.17160e9 0.355729
\(525\) 0 0
\(526\) 1.92512e8 0.0576776
\(527\) −1.95993e9 −0.583314
\(528\) 0 0
\(529\) −2.68623e9 −0.788948
\(530\) −5.19892e9 −1.51687
\(531\) 0 0
\(532\) −4.13498e9 −1.19064
\(533\) 6.45571e9 1.84671
\(534\) 0 0
\(535\) 4.11894e9 1.16291
\(536\) −9.08118e8 −0.254722
\(537\) 0 0
\(538\) −3.53706e9 −0.979274
\(539\) 7.11294e9 1.95654
\(540\) 0 0
\(541\) −3.38888e9 −0.920166 −0.460083 0.887876i \(-0.652180\pi\)
−0.460083 + 0.887876i \(0.652180\pi\)
\(542\) −1.45542e9 −0.392637
\(543\) 0 0
\(544\) 3.87603e8 0.103226
\(545\) 4.12537e8 0.109163
\(546\) 0 0
\(547\) −1.66155e9 −0.434067 −0.217034 0.976164i \(-0.569638\pi\)
−0.217034 + 0.976164i \(0.569638\pi\)
\(548\) −3.10126e9 −0.805019
\(549\) 0 0
\(550\) −1.23673e9 −0.316960
\(551\) −6.27465e9 −1.59793
\(552\) 0 0
\(553\) 1.05503e10 2.65293
\(554\) −2.08629e9 −0.521303
\(555\) 0 0
\(556\) −2.43092e9 −0.599802
\(557\) 6.21412e9 1.52365 0.761827 0.647780i \(-0.224303\pi\)
0.761827 + 0.647780i \(0.224303\pi\)
\(558\) 0 0
\(559\) −8.15915e9 −1.97562
\(560\) 1.93381e9 0.465325
\(561\) 0 0
\(562\) −2.84615e9 −0.676364
\(563\) 6.09480e8 0.143939 0.0719697 0.997407i \(-0.477071\pi\)
0.0719697 + 0.997407i \(0.477071\pi\)
\(564\) 0 0
\(565\) −4.83108e9 −1.12687
\(566\) 1.20448e9 0.279218
\(567\) 0 0
\(568\) 5.16314e8 0.118221
\(569\) −4.55115e9 −1.03569 −0.517844 0.855475i \(-0.673265\pi\)
−0.517844 + 0.855475i \(0.673265\pi\)
\(570\) 0 0
\(571\) −3.33002e9 −0.748549 −0.374275 0.927318i \(-0.622108\pi\)
−0.374275 + 0.927318i \(0.622108\pi\)
\(572\) 4.80153e9 1.07274
\(573\) 0 0
\(574\) 5.54734e9 1.22432
\(575\) −7.45898e8 −0.163622
\(576\) 0 0
\(577\) −1.26141e9 −0.273363 −0.136682 0.990615i \(-0.543644\pi\)
−0.136682 + 0.990615i \(0.543644\pi\)
\(578\) 2.16336e9 0.465996
\(579\) 0 0
\(580\) 2.93448e9 0.624501
\(581\) −7.79898e9 −1.64976
\(582\) 0 0
\(583\) −1.10922e10 −2.31835
\(584\) −7.48480e7 −0.0155502
\(585\) 0 0
\(586\) 1.75121e9 0.359498
\(587\) 4.31767e9 0.881082 0.440541 0.897732i \(-0.354787\pi\)
0.440541 + 0.897732i \(0.354787\pi\)
\(588\) 0 0
\(589\) 7.38060e9 1.48829
\(590\) −1.58602e9 −0.317927
\(591\) 0 0
\(592\) 1.48862e8 0.0294889
\(593\) −2.64830e9 −0.521525 −0.260762 0.965403i \(-0.583974\pi\)
−0.260762 + 0.965403i \(0.583974\pi\)
\(594\) 0 0
\(595\) −5.58460e9 −1.08688
\(596\) −2.29173e9 −0.443405
\(597\) 0 0
\(598\) 2.89591e9 0.553772
\(599\) −7.12463e9 −1.35447 −0.677233 0.735768i \(-0.736821\pi\)
−0.677233 + 0.735768i \(0.736821\pi\)
\(600\) 0 0
\(601\) 2.09427e8 0.0393525 0.0196762 0.999806i \(-0.493736\pi\)
0.0196762 + 0.999806i \(0.493736\pi\)
\(602\) −7.01109e9 −1.30978
\(603\) 0 0
\(604\) 3.07853e9 0.568478
\(605\) −3.70409e9 −0.680046
\(606\) 0 0
\(607\) −7.79489e9 −1.41465 −0.707326 0.706888i \(-0.750099\pi\)
−0.707326 + 0.706888i \(0.750099\pi\)
\(608\) −1.45962e9 −0.263376
\(609\) 0 0
\(610\) 4.95246e9 0.883418
\(611\) −6.79325e9 −1.20485
\(612\) 0 0
\(613\) −9.11476e8 −0.159821 −0.0799105 0.996802i \(-0.525463\pi\)
−0.0799105 + 0.996802i \(0.525463\pi\)
\(614\) 4.39366e9 0.766014
\(615\) 0 0
\(616\) 4.12591e9 0.711193
\(617\) −2.35163e9 −0.403060 −0.201530 0.979482i \(-0.564591\pi\)
−0.201530 + 0.979482i \(0.564591\pi\)
\(618\) 0 0
\(619\) −1.75254e9 −0.296996 −0.148498 0.988913i \(-0.547444\pi\)
−0.148498 + 0.988913i \(0.547444\pi\)
\(620\) −3.45170e9 −0.581651
\(621\) 0 0
\(622\) 4.07360e9 0.678753
\(623\) −4.26665e9 −0.706933
\(624\) 0 0
\(625\) −7.50312e9 −1.22931
\(626\) −4.49473e9 −0.732307
\(627\) 0 0
\(628\) −5.08986e9 −0.820062
\(629\) −4.29894e8 −0.0688786
\(630\) 0 0
\(631\) 1.95065e9 0.309084 0.154542 0.987986i \(-0.450610\pi\)
0.154542 + 0.987986i \(0.450610\pi\)
\(632\) 3.72418e9 0.586841
\(633\) 0 0
\(634\) 7.16766e9 1.11703
\(635\) 3.16320e9 0.490251
\(636\) 0 0
\(637\) 1.72884e10 2.65013
\(638\) 6.26090e9 0.954475
\(639\) 0 0
\(640\) 6.82623e8 0.102932
\(641\) 1.36527e9 0.204746 0.102373 0.994746i \(-0.467356\pi\)
0.102373 + 0.994746i \(0.467356\pi\)
\(642\) 0 0
\(643\) −7.71048e9 −1.14378 −0.571891 0.820330i \(-0.693790\pi\)
−0.571891 + 0.820330i \(0.693790\pi\)
\(644\) 2.48843e9 0.367135
\(645\) 0 0
\(646\) 4.21518e9 0.615180
\(647\) −1.07543e10 −1.56106 −0.780529 0.625120i \(-0.785050\pi\)
−0.780529 + 0.625120i \(0.785050\pi\)
\(648\) 0 0
\(649\) −3.38388e9 −0.485913
\(650\) −3.00594e9 −0.429322
\(651\) 0 0
\(652\) −2.85657e9 −0.403626
\(653\) 1.28284e10 1.80292 0.901458 0.432867i \(-0.142498\pi\)
0.901458 + 0.432867i \(0.142498\pi\)
\(654\) 0 0
\(655\) −5.95868e9 −0.828524
\(656\) 1.95817e9 0.270824
\(657\) 0 0
\(658\) −5.83738e9 −0.798781
\(659\) −8.09108e9 −1.10130 −0.550652 0.834735i \(-0.685621\pi\)
−0.550652 + 0.834735i \(0.685621\pi\)
\(660\) 0 0
\(661\) 1.08520e10 1.46151 0.730756 0.682638i \(-0.239167\pi\)
0.730756 + 0.682638i \(0.239167\pi\)
\(662\) 5.64129e9 0.755745
\(663\) 0 0
\(664\) −2.75299e9 −0.364935
\(665\) 2.10302e10 2.77312
\(666\) 0 0
\(667\) 3.77609e9 0.492722
\(668\) 4.53534e8 0.0588697
\(669\) 0 0
\(670\) 4.61863e9 0.593269
\(671\) 1.05664e10 1.35020
\(672\) 0 0
\(673\) 8.46680e9 1.07070 0.535348 0.844631i \(-0.320180\pi\)
0.535348 + 0.844631i \(0.320180\pi\)
\(674\) −7.95532e9 −1.00080
\(675\) 0 0
\(676\) 7.65451e9 0.953024
\(677\) −7.39370e9 −0.915802 −0.457901 0.889003i \(-0.651399\pi\)
−0.457901 + 0.889003i \(0.651399\pi\)
\(678\) 0 0
\(679\) 1.14799e10 1.40732
\(680\) −1.97132e9 −0.240423
\(681\) 0 0
\(682\) −7.36442e9 −0.888983
\(683\) −4.64936e9 −0.558368 −0.279184 0.960238i \(-0.590064\pi\)
−0.279184 + 0.960238i \(0.590064\pi\)
\(684\) 0 0
\(685\) 1.57728e10 1.87496
\(686\) 5.29973e9 0.626786
\(687\) 0 0
\(688\) −2.47487e9 −0.289729
\(689\) −2.69603e10 −3.14021
\(690\) 0 0
\(691\) −1.16767e10 −1.34632 −0.673158 0.739499i \(-0.735063\pi\)
−0.673158 + 0.739499i \(0.735063\pi\)
\(692\) 4.40952e9 0.505848
\(693\) 0 0
\(694\) 1.31137e8 0.0148925
\(695\) 1.23635e10 1.39699
\(696\) 0 0
\(697\) −5.65494e9 −0.632577
\(698\) 3.41422e9 0.380012
\(699\) 0 0
\(700\) −2.58298e9 −0.284628
\(701\) 1.48274e10 1.62575 0.812873 0.582441i \(-0.197902\pi\)
0.812873 + 0.582441i \(0.197902\pi\)
\(702\) 0 0
\(703\) 1.61888e9 0.175740
\(704\) 1.45642e9 0.157319
\(705\) 0 0
\(706\) −1.28442e10 −1.37370
\(707\) 2.68563e10 2.85810
\(708\) 0 0
\(709\) 6.16649e9 0.649795 0.324898 0.945749i \(-0.394670\pi\)
0.324898 + 0.945749i \(0.394670\pi\)
\(710\) −2.62594e9 −0.275347
\(711\) 0 0
\(712\) −1.50610e9 −0.156377
\(713\) −4.44165e9 −0.458914
\(714\) 0 0
\(715\) −2.44203e10 −2.49850
\(716\) 5.68846e9 0.579161
\(717\) 0 0
\(718\) 1.11690e10 1.12610
\(719\) 1.31343e10 1.31782 0.658912 0.752220i \(-0.271017\pi\)
0.658912 + 0.752220i \(0.271017\pi\)
\(720\) 0 0
\(721\) −1.45635e10 −1.44708
\(722\) −8.72236e9 −0.862489
\(723\) 0 0
\(724\) 4.75015e9 0.465182
\(725\) −3.91956e9 −0.381992
\(726\) 0 0
\(727\) 4.45556e9 0.430063 0.215031 0.976607i \(-0.431015\pi\)
0.215031 + 0.976607i \(0.431015\pi\)
\(728\) 1.00283e10 0.963313
\(729\) 0 0
\(730\) 3.80672e8 0.0362177
\(731\) 7.14709e9 0.676735
\(732\) 0 0
\(733\) 2.99736e9 0.281109 0.140555 0.990073i \(-0.455111\pi\)
0.140555 + 0.990073i \(0.455111\pi\)
\(734\) 1.20609e10 1.12576
\(735\) 0 0
\(736\) 8.78399e8 0.0812119
\(737\) 9.85414e9 0.906740
\(738\) 0 0
\(739\) 8.82559e9 0.804429 0.402215 0.915545i \(-0.368241\pi\)
0.402215 + 0.915545i \(0.368241\pi\)
\(740\) −7.57103e8 −0.0686822
\(741\) 0 0
\(742\) −2.31668e10 −2.08186
\(743\) −2.00697e10 −1.79507 −0.897534 0.440946i \(-0.854643\pi\)
−0.897534 + 0.440946i \(0.854643\pi\)
\(744\) 0 0
\(745\) 1.16556e10 1.03273
\(746\) 6.18544e9 0.545487
\(747\) 0 0
\(748\) −4.20595e9 −0.367458
\(749\) 1.83544e10 1.59607
\(750\) 0 0
\(751\) −3.94246e9 −0.339647 −0.169824 0.985474i \(-0.554320\pi\)
−0.169824 + 0.985474i \(0.554320\pi\)
\(752\) −2.06056e9 −0.176694
\(753\) 0 0
\(754\) 1.52175e10 1.29284
\(755\) −1.56572e10 −1.32403
\(756\) 0 0
\(757\) 1.54038e10 1.29060 0.645301 0.763928i \(-0.276732\pi\)
0.645301 + 0.763928i \(0.276732\pi\)
\(758\) −1.32031e10 −1.10112
\(759\) 0 0
\(760\) 7.42352e9 0.613426
\(761\) 1.92170e10 1.58066 0.790330 0.612682i \(-0.209909\pi\)
0.790330 + 0.612682i \(0.209909\pi\)
\(762\) 0 0
\(763\) 1.83830e9 0.149824
\(764\) −1.63600e9 −0.132726
\(765\) 0 0
\(766\) −5.21150e9 −0.418950
\(767\) −8.22473e9 −0.658170
\(768\) 0 0
\(769\) −1.20525e8 −0.00955726 −0.00477863 0.999989i \(-0.501521\pi\)
−0.00477863 + 0.999989i \(0.501521\pi\)
\(770\) −2.09841e10 −1.65643
\(771\) 0 0
\(772\) −6.29573e9 −0.492477
\(773\) −2.06347e10 −1.60683 −0.803415 0.595420i \(-0.796986\pi\)
−0.803415 + 0.595420i \(0.796986\pi\)
\(774\) 0 0
\(775\) 4.61041e9 0.355782
\(776\) 4.05231e9 0.311306
\(777\) 0 0
\(778\) −6.98215e9 −0.531570
\(779\) 2.12951e10 1.61398
\(780\) 0 0
\(781\) −5.60261e9 −0.420835
\(782\) −2.53670e9 −0.189691
\(783\) 0 0
\(784\) 5.24400e9 0.388648
\(785\) 2.58867e10 1.91000
\(786\) 0 0
\(787\) 1.69071e9 0.123639 0.0618197 0.998087i \(-0.480310\pi\)
0.0618197 + 0.998087i \(0.480310\pi\)
\(788\) −8.99719e8 −0.0655036
\(789\) 0 0
\(790\) −1.89409e10 −1.36680
\(791\) −2.15277e10 −1.54660
\(792\) 0 0
\(793\) 2.56823e10 1.82885
\(794\) −2.90106e9 −0.205677
\(795\) 0 0
\(796\) 1.83953e9 0.129274
\(797\) 1.35975e9 0.0951384 0.0475692 0.998868i \(-0.484853\pi\)
0.0475692 + 0.998868i \(0.484853\pi\)
\(798\) 0 0
\(799\) 5.95061e9 0.412713
\(800\) −9.11774e8 −0.0629611
\(801\) 0 0
\(802\) 5.58718e9 0.382457
\(803\) 8.12188e8 0.0553544
\(804\) 0 0
\(805\) −1.26560e10 −0.855089
\(806\) −1.78997e10 −1.20413
\(807\) 0 0
\(808\) 9.48007e9 0.632225
\(809\) 1.53965e10 1.02235 0.511177 0.859475i \(-0.329210\pi\)
0.511177 + 0.859475i \(0.329210\pi\)
\(810\) 0 0
\(811\) −9.67476e9 −0.636894 −0.318447 0.947941i \(-0.603161\pi\)
−0.318447 + 0.947941i \(0.603161\pi\)
\(812\) 1.30763e10 0.857113
\(813\) 0 0
\(814\) −1.61533e9 −0.104972
\(815\) 1.45283e10 0.940080
\(816\) 0 0
\(817\) −2.69142e10 −1.72665
\(818\) 9.84695e9 0.629021
\(819\) 0 0
\(820\) −9.95914e9 −0.630773
\(821\) 2.46343e10 1.55360 0.776799 0.629749i \(-0.216842\pi\)
0.776799 + 0.629749i \(0.216842\pi\)
\(822\) 0 0
\(823\) −2.14849e9 −0.134349 −0.0671743 0.997741i \(-0.521398\pi\)
−0.0671743 + 0.997741i \(0.521398\pi\)
\(824\) −5.14081e9 −0.320101
\(825\) 0 0
\(826\) −7.06744e9 −0.436347
\(827\) 1.31873e10 0.810751 0.405375 0.914150i \(-0.367141\pi\)
0.405375 + 0.914150i \(0.367141\pi\)
\(828\) 0 0
\(829\) 6.41872e8 0.0391298 0.0195649 0.999809i \(-0.493772\pi\)
0.0195649 + 0.999809i \(0.493772\pi\)
\(830\) 1.40015e10 0.849966
\(831\) 0 0
\(832\) 3.53992e9 0.213089
\(833\) −1.51440e10 −0.907784
\(834\) 0 0
\(835\) −2.30664e9 −0.137113
\(836\) 1.58385e10 0.937548
\(837\) 0 0
\(838\) −1.27690e10 −0.749556
\(839\) −1.01344e10 −0.592425 −0.296212 0.955122i \(-0.595724\pi\)
−0.296212 + 0.955122i \(0.595724\pi\)
\(840\) 0 0
\(841\) 2.59283e9 0.150310
\(842\) 6.18330e9 0.356967
\(843\) 0 0
\(844\) −1.26278e10 −0.722984
\(845\) −3.89303e10 −2.21968
\(846\) 0 0
\(847\) −1.65057e10 −0.933347
\(848\) −8.17772e9 −0.460518
\(849\) 0 0
\(850\) 2.63308e9 0.147061
\(851\) −9.74241e8 −0.0541892
\(852\) 0 0
\(853\) 1.35033e10 0.744933 0.372467 0.928046i \(-0.378512\pi\)
0.372467 + 0.928046i \(0.378512\pi\)
\(854\) 2.20686e10 1.21247
\(855\) 0 0
\(856\) 6.47896e9 0.353059
\(857\) 5.51538e9 0.299324 0.149662 0.988737i \(-0.452181\pi\)
0.149662 + 0.988737i \(0.452181\pi\)
\(858\) 0 0
\(859\) 1.21351e10 0.653233 0.326617 0.945157i \(-0.394091\pi\)
0.326617 + 0.945157i \(0.394091\pi\)
\(860\) 1.25870e10 0.674805
\(861\) 0 0
\(862\) 1.93187e9 0.102731
\(863\) −2.09525e9 −0.110968 −0.0554839 0.998460i \(-0.517670\pi\)
−0.0554839 + 0.998460i \(0.517670\pi\)
\(864\) 0 0
\(865\) −2.24265e10 −1.17816
\(866\) −2.28611e10 −1.19615
\(867\) 0 0
\(868\) −1.53811e10 −0.798302
\(869\) −4.04117e10 −2.08900
\(870\) 0 0
\(871\) 2.39511e10 1.22818
\(872\) 6.48907e8 0.0331417
\(873\) 0 0
\(874\) 9.55259e9 0.483984
\(875\) −2.37477e10 −1.19838
\(876\) 0 0
\(877\) 3.53585e10 1.77009 0.885045 0.465505i \(-0.154127\pi\)
0.885045 + 0.465505i \(0.154127\pi\)
\(878\) −2.61602e9 −0.130440
\(879\) 0 0
\(880\) −7.40725e9 −0.366410
\(881\) 7.96497e8 0.0392436 0.0196218 0.999807i \(-0.493754\pi\)
0.0196218 + 0.999807i \(0.493754\pi\)
\(882\) 0 0
\(883\) −4.24897e9 −0.207693 −0.103846 0.994593i \(-0.533115\pi\)
−0.103846 + 0.994593i \(0.533115\pi\)
\(884\) −1.02228e10 −0.497723
\(885\) 0 0
\(886\) 6.37768e9 0.308066
\(887\) 1.76980e10 0.851512 0.425756 0.904838i \(-0.360008\pi\)
0.425756 + 0.904838i \(0.360008\pi\)
\(888\) 0 0
\(889\) 1.40955e10 0.672859
\(890\) 7.65991e9 0.364215
\(891\) 0 0
\(892\) −4.78903e9 −0.225928
\(893\) −2.24085e10 −1.05301
\(894\) 0 0
\(895\) −2.89311e10 −1.34892
\(896\) 3.04182e9 0.141272
\(897\) 0 0
\(898\) −1.13454e10 −0.522819
\(899\) −2.33401e10 −1.07138
\(900\) 0 0
\(901\) 2.36162e10 1.07565
\(902\) −2.12485e10 −0.964061
\(903\) 0 0
\(904\) −7.59912e9 −0.342116
\(905\) −2.41590e10 −1.08345
\(906\) 0 0
\(907\) −1.15096e9 −0.0512193 −0.0256096 0.999672i \(-0.508153\pi\)
−0.0256096 + 0.999672i \(0.508153\pi\)
\(908\) −4.63029e9 −0.205261
\(909\) 0 0
\(910\) −5.10032e10 −2.24364
\(911\) 1.14666e10 0.502480 0.251240 0.967925i \(-0.419162\pi\)
0.251240 + 0.967925i \(0.419162\pi\)
\(912\) 0 0
\(913\) 2.98731e10 1.29907
\(914\) 7.79925e9 0.337863
\(915\) 0 0
\(916\) −1.95062e10 −0.838567
\(917\) −2.65524e10 −1.13713
\(918\) 0 0
\(919\) −3.59560e10 −1.52815 −0.764076 0.645126i \(-0.776805\pi\)
−0.764076 + 0.645126i \(0.776805\pi\)
\(920\) −4.46748e9 −0.189150
\(921\) 0 0
\(922\) 1.09829e10 0.461486
\(923\) −1.36175e10 −0.570022
\(924\) 0 0
\(925\) 1.01126e9 0.0420112
\(926\) −1.42972e10 −0.591714
\(927\) 0 0
\(928\) 4.61584e9 0.189597
\(929\) −5.73116e9 −0.234524 −0.117262 0.993101i \(-0.537412\pi\)
−0.117262 + 0.993101i \(0.537412\pi\)
\(930\) 0 0
\(931\) 5.70285e10 2.31616
\(932\) 1.51254e9 0.0612000
\(933\) 0 0
\(934\) 1.80614e10 0.725334
\(935\) 2.13912e10 0.855842
\(936\) 0 0
\(937\) −1.02489e10 −0.406995 −0.203497 0.979076i \(-0.565231\pi\)
−0.203497 + 0.979076i \(0.565231\pi\)
\(938\) 2.05810e10 0.814247
\(939\) 0 0
\(940\) 1.04799e10 0.411536
\(941\) −1.13948e10 −0.445801 −0.222901 0.974841i \(-0.571553\pi\)
−0.222901 + 0.974841i \(0.571553\pi\)
\(942\) 0 0
\(943\) −1.28154e10 −0.497671
\(944\) −2.49476e9 −0.0965220
\(945\) 0 0
\(946\) 2.68552e10 1.03136
\(947\) −2.40000e10 −0.918303 −0.459151 0.888358i \(-0.651846\pi\)
−0.459151 + 0.888358i \(0.651846\pi\)
\(948\) 0 0
\(949\) 1.97407e9 0.0749777
\(950\) −9.91554e9 −0.375218
\(951\) 0 0
\(952\) −8.78438e9 −0.329976
\(953\) 1.56339e10 0.585117 0.292558 0.956248i \(-0.405493\pi\)
0.292558 + 0.956248i \(0.405493\pi\)
\(954\) 0 0
\(955\) 8.32058e9 0.309130
\(956\) −1.47849e10 −0.547288
\(957\) 0 0
\(958\) 1.39413e10 0.512301
\(959\) 7.02849e10 2.57334
\(960\) 0 0
\(961\) −5.86612e7 −0.00213216
\(962\) −3.92616e9 −0.142185
\(963\) 0 0
\(964\) −3.80039e9 −0.136634
\(965\) 3.20197e10 1.14702
\(966\) 0 0
\(967\) 4.21929e10 1.50054 0.750268 0.661134i \(-0.229925\pi\)
0.750268 + 0.661134i \(0.229925\pi\)
\(968\) −5.82641e9 −0.206461
\(969\) 0 0
\(970\) −2.06098e10 −0.725058
\(971\) −8.93754e9 −0.313293 −0.156646 0.987655i \(-0.550068\pi\)
−0.156646 + 0.987655i \(0.550068\pi\)
\(972\) 0 0
\(973\) 5.50927e10 1.91734
\(974\) 2.15079e10 0.745834
\(975\) 0 0
\(976\) 7.79004e9 0.268204
\(977\) 2.12577e10 0.729266 0.364633 0.931151i \(-0.381194\pi\)
0.364633 + 0.931151i \(0.381194\pi\)
\(978\) 0 0
\(979\) 1.63429e10 0.556659
\(980\) −2.66706e10 −0.905195
\(981\) 0 0
\(982\) −1.87905e10 −0.633210
\(983\) 1.03351e10 0.347038 0.173519 0.984831i \(-0.444486\pi\)
0.173519 + 0.984831i \(0.444486\pi\)
\(984\) 0 0
\(985\) 4.57591e9 0.152564
\(986\) −1.33299e10 −0.442852
\(987\) 0 0
\(988\) 3.84966e10 1.26991
\(989\) 1.61970e10 0.532411
\(990\) 0 0
\(991\) 5.00170e10 1.63253 0.816263 0.577681i \(-0.196042\pi\)
0.816263 + 0.577681i \(0.196042\pi\)
\(992\) −5.42941e9 −0.176588
\(993\) 0 0
\(994\) −1.17014e10 −0.377908
\(995\) −9.35575e9 −0.301091
\(996\) 0 0
\(997\) −3.38087e10 −1.08043 −0.540214 0.841528i \(-0.681657\pi\)
−0.540214 + 0.841528i \(0.681657\pi\)
\(998\) 1.33394e10 0.424795
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.g.1.2 4
3.2 odd 2 162.8.a.j.1.3 yes 4
9.2 odd 6 162.8.c.q.109.2 8
9.4 even 3 162.8.c.r.55.3 8
9.5 odd 6 162.8.c.q.55.2 8
9.7 even 3 162.8.c.r.109.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.2 4 1.1 even 1 trivial
162.8.a.j.1.3 yes 4 3.2 odd 2
162.8.c.q.55.2 8 9.5 odd 6
162.8.c.q.109.2 8 9.2 odd 6
162.8.c.r.55.3 8 9.4 even 3
162.8.c.r.109.3 8 9.7 even 3