Properties

Label 162.8.a.g.1.1
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.43103376.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 383x^{2} + 384x + 18612 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-17.5928\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} -471.679 q^{5} +735.308 q^{7} -512.000 q^{8} +3773.43 q^{10} -5321.11 q^{11} +8865.59 q^{13} -5882.46 q^{14} +4096.00 q^{16} +34175.5 q^{17} -8704.81 q^{19} -30187.5 q^{20} +42568.9 q^{22} -52105.1 q^{23} +144356. q^{25} -70924.8 q^{26} +47059.7 q^{28} +213409. q^{29} -233086. q^{31} -32768.0 q^{32} -273404. q^{34} -346829. q^{35} +67328.2 q^{37} +69638.5 q^{38} +241500. q^{40} +45100.8 q^{41} +214634. q^{43} -340551. q^{44} +416841. q^{46} +560459. q^{47} -282865. q^{49} -1.15485e6 q^{50} +567398. q^{52} +244520. q^{53} +2.50985e6 q^{55} -376478. q^{56} -1.70728e6 q^{58} -1.93366e6 q^{59} +2.12899e6 q^{61} +1.86469e6 q^{62} +262144. q^{64} -4.18172e6 q^{65} -1.62940e6 q^{67} +2.18723e6 q^{68} +2.77463e6 q^{70} -5.38016e6 q^{71} -1.01989e6 q^{73} -538625. q^{74} -557108. q^{76} -3.91265e6 q^{77} -7.74151e6 q^{79} -1.93200e6 q^{80} -360806. q^{82} -2.09394e6 q^{83} -1.61199e7 q^{85} -1.71707e6 q^{86} +2.72441e6 q^{88} -1.17927e7 q^{89} +6.51894e6 q^{91} -3.33473e6 q^{92} -4.48367e6 q^{94} +4.10588e6 q^{95} +1.92229e6 q^{97} +2.26292e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 528 q^{5} + 560 q^{7} - 2048 q^{8} + 4224 q^{10} - 2160 q^{11} + 13460 q^{13} - 4480 q^{14} + 16384 q^{16} - 22560 q^{17} + 36704 q^{19} - 33792 q^{20} + 17280 q^{22} - 62640 q^{23}+ \cdots - 11595168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) −471.679 −1.68753 −0.843765 0.536713i \(-0.819666\pi\)
−0.843765 + 0.536713i \(0.819666\pi\)
\(6\) 0 0
\(7\) 735.308 0.810263 0.405132 0.914258i \(-0.367226\pi\)
0.405132 + 0.914258i \(0.367226\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 3773.43 1.19326
\(11\) −5321.11 −1.20539 −0.602695 0.797972i \(-0.705906\pi\)
−0.602695 + 0.797972i \(0.705906\pi\)
\(12\) 0 0
\(13\) 8865.59 1.11920 0.559598 0.828764i \(-0.310956\pi\)
0.559598 + 0.828764i \(0.310956\pi\)
\(14\) −5882.46 −0.572943
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 34175.5 1.68711 0.843555 0.537042i \(-0.180458\pi\)
0.843555 + 0.537042i \(0.180458\pi\)
\(18\) 0 0
\(19\) −8704.81 −0.291153 −0.145577 0.989347i \(-0.546504\pi\)
−0.145577 + 0.989347i \(0.546504\pi\)
\(20\) −30187.5 −0.843765
\(21\) 0 0
\(22\) 42568.9 0.852340
\(23\) −52105.1 −0.892961 −0.446481 0.894793i \(-0.647323\pi\)
−0.446481 + 0.894793i \(0.647323\pi\)
\(24\) 0 0
\(25\) 144356. 1.84776
\(26\) −70924.8 −0.791391
\(27\) 0 0
\(28\) 47059.7 0.405132
\(29\) 213409. 1.62488 0.812439 0.583046i \(-0.198139\pi\)
0.812439 + 0.583046i \(0.198139\pi\)
\(30\) 0 0
\(31\) −233086. −1.40524 −0.702620 0.711566i \(-0.747986\pi\)
−0.702620 + 0.711566i \(0.747986\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) −273404. −1.19297
\(35\) −346829. −1.36734
\(36\) 0 0
\(37\) 67328.2 0.218520 0.109260 0.994013i \(-0.465152\pi\)
0.109260 + 0.994013i \(0.465152\pi\)
\(38\) 69638.5 0.205876
\(39\) 0 0
\(40\) 241500. 0.596632
\(41\) 45100.8 0.102198 0.0510988 0.998694i \(-0.483728\pi\)
0.0510988 + 0.998694i \(0.483728\pi\)
\(42\) 0 0
\(43\) 214634. 0.411679 0.205839 0.978586i \(-0.434008\pi\)
0.205839 + 0.978586i \(0.434008\pi\)
\(44\) −340551. −0.602695
\(45\) 0 0
\(46\) 416841. 0.631419
\(47\) 560459. 0.787411 0.393705 0.919237i \(-0.371193\pi\)
0.393705 + 0.919237i \(0.371193\pi\)
\(48\) 0 0
\(49\) −282865. −0.343474
\(50\) −1.15485e6 −1.30656
\(51\) 0 0
\(52\) 567398. 0.559598
\(53\) 244520. 0.225606 0.112803 0.993617i \(-0.464017\pi\)
0.112803 + 0.993617i \(0.464017\pi\)
\(54\) 0 0
\(55\) 2.50985e6 2.03413
\(56\) −376478. −0.286471
\(57\) 0 0
\(58\) −1.70728e6 −1.14896
\(59\) −1.93366e6 −1.22574 −0.612871 0.790183i \(-0.709985\pi\)
−0.612871 + 0.790183i \(0.709985\pi\)
\(60\) 0 0
\(61\) 2.12899e6 1.20093 0.600467 0.799650i \(-0.294981\pi\)
0.600467 + 0.799650i \(0.294981\pi\)
\(62\) 1.86469e6 0.993654
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −4.18172e6 −1.88868
\(66\) 0 0
\(67\) −1.62940e6 −0.661860 −0.330930 0.943655i \(-0.607362\pi\)
−0.330930 + 0.943655i \(0.607362\pi\)
\(68\) 2.18723e6 0.843555
\(69\) 0 0
\(70\) 2.77463e6 0.966858
\(71\) −5.38016e6 −1.78398 −0.891992 0.452052i \(-0.850692\pi\)
−0.891992 + 0.452052i \(0.850692\pi\)
\(72\) 0 0
\(73\) −1.01989e6 −0.306849 −0.153424 0.988160i \(-0.549030\pi\)
−0.153424 + 0.988160i \(0.549030\pi\)
\(74\) −538625. −0.154517
\(75\) 0 0
\(76\) −557108. −0.145577
\(77\) −3.91265e6 −0.976683
\(78\) 0 0
\(79\) −7.74151e6 −1.76657 −0.883286 0.468835i \(-0.844674\pi\)
−0.883286 + 0.468835i \(0.844674\pi\)
\(80\) −1.93200e6 −0.421883
\(81\) 0 0
\(82\) −360806. −0.0722646
\(83\) −2.09394e6 −0.401968 −0.200984 0.979594i \(-0.564414\pi\)
−0.200984 + 0.979594i \(0.564414\pi\)
\(84\) 0 0
\(85\) −1.61199e7 −2.84705
\(86\) −1.71707e6 −0.291101
\(87\) 0 0
\(88\) 2.72441e6 0.426170
\(89\) −1.17927e7 −1.77316 −0.886580 0.462574i \(-0.846926\pi\)
−0.886580 + 0.462574i \(0.846926\pi\)
\(90\) 0 0
\(91\) 6.51894e6 0.906843
\(92\) −3.33473e6 −0.446481
\(93\) 0 0
\(94\) −4.48367e6 −0.556783
\(95\) 4.10588e6 0.491330
\(96\) 0 0
\(97\) 1.92229e6 0.213854 0.106927 0.994267i \(-0.465899\pi\)
0.106927 + 0.994267i \(0.465899\pi\)
\(98\) 2.26292e6 0.242873
\(99\) 0 0
\(100\) 9.23879e6 0.923879
\(101\) −1.09908e7 −1.06146 −0.530731 0.847540i \(-0.678083\pi\)
−0.530731 + 0.847540i \(0.678083\pi\)
\(102\) 0 0
\(103\) −1.49478e7 −1.34787 −0.673933 0.738792i \(-0.735396\pi\)
−0.673933 + 0.738792i \(0.735396\pi\)
\(104\) −4.53918e6 −0.395696
\(105\) 0 0
\(106\) −1.95616e6 −0.159527
\(107\) 1.72961e7 1.36491 0.682457 0.730926i \(-0.260912\pi\)
0.682457 + 0.730926i \(0.260912\pi\)
\(108\) 0 0
\(109\) −1.14307e7 −0.845434 −0.422717 0.906262i \(-0.638924\pi\)
−0.422717 + 0.906262i \(0.638924\pi\)
\(110\) −2.00788e7 −1.43835
\(111\) 0 0
\(112\) 3.01182e6 0.202566
\(113\) 3.44984e6 0.224918 0.112459 0.993656i \(-0.464127\pi\)
0.112459 + 0.993656i \(0.464127\pi\)
\(114\) 0 0
\(115\) 2.45769e7 1.50690
\(116\) 1.36582e7 0.812439
\(117\) 0 0
\(118\) 1.54693e7 0.866730
\(119\) 2.51295e7 1.36700
\(120\) 0 0
\(121\) 8.82701e6 0.452965
\(122\) −1.70319e7 −0.849188
\(123\) 0 0
\(124\) −1.49175e7 −0.702620
\(125\) −3.12398e7 −1.43062
\(126\) 0 0
\(127\) 4.26026e7 1.84554 0.922770 0.385352i \(-0.125920\pi\)
0.922770 + 0.385352i \(0.125920\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) 3.34537e7 1.33550
\(131\) 4.21661e6 0.163876 0.0819378 0.996637i \(-0.473889\pi\)
0.0819378 + 0.996637i \(0.473889\pi\)
\(132\) 0 0
\(133\) −6.40072e6 −0.235911
\(134\) 1.30352e7 0.468005
\(135\) 0 0
\(136\) −1.74979e7 −0.596484
\(137\) 1.40660e6 0.0467358 0.0233679 0.999727i \(-0.492561\pi\)
0.0233679 + 0.999727i \(0.492561\pi\)
\(138\) 0 0
\(139\) −3.95211e7 −1.24818 −0.624090 0.781352i \(-0.714530\pi\)
−0.624090 + 0.781352i \(0.714530\pi\)
\(140\) −2.21971e7 −0.683672
\(141\) 0 0
\(142\) 4.30413e7 1.26147
\(143\) −4.71748e7 −1.34907
\(144\) 0 0
\(145\) −1.00661e8 −2.74203
\(146\) 8.15914e6 0.216975
\(147\) 0 0
\(148\) 4.30900e6 0.109260
\(149\) −1.51798e7 −0.375936 −0.187968 0.982175i \(-0.560190\pi\)
−0.187968 + 0.982175i \(0.560190\pi\)
\(150\) 0 0
\(151\) −7.94865e7 −1.87877 −0.939386 0.342861i \(-0.888604\pi\)
−0.939386 + 0.342861i \(0.888604\pi\)
\(152\) 4.45686e6 0.102938
\(153\) 0 0
\(154\) 3.13012e7 0.690619
\(155\) 1.09942e8 2.37138
\(156\) 0 0
\(157\) 8.34353e7 1.72068 0.860342 0.509718i \(-0.170250\pi\)
0.860342 + 0.509718i \(0.170250\pi\)
\(158\) 6.19321e7 1.24915
\(159\) 0 0
\(160\) 1.54560e7 0.298316
\(161\) −3.83133e7 −0.723534
\(162\) 0 0
\(163\) −4.02444e7 −0.727862 −0.363931 0.931426i \(-0.618566\pi\)
−0.363931 + 0.931426i \(0.618566\pi\)
\(164\) 2.88645e6 0.0510988
\(165\) 0 0
\(166\) 1.67516e7 0.284235
\(167\) 7.35725e7 1.22238 0.611192 0.791482i \(-0.290690\pi\)
0.611192 + 0.791482i \(0.290690\pi\)
\(168\) 0 0
\(169\) 1.58503e7 0.252600
\(170\) 1.28959e8 2.01317
\(171\) 0 0
\(172\) 1.37366e7 0.205839
\(173\) 6.67747e7 0.980507 0.490254 0.871580i \(-0.336904\pi\)
0.490254 + 0.871580i \(0.336904\pi\)
\(174\) 0 0
\(175\) 1.06146e8 1.49717
\(176\) −2.17953e7 −0.301348
\(177\) 0 0
\(178\) 9.43416e7 1.25381
\(179\) 8.00165e7 1.04278 0.521392 0.853317i \(-0.325413\pi\)
0.521392 + 0.853317i \(0.325413\pi\)
\(180\) 0 0
\(181\) 4.68357e7 0.587086 0.293543 0.955946i \(-0.405166\pi\)
0.293543 + 0.955946i \(0.405166\pi\)
\(182\) −5.21515e7 −0.641235
\(183\) 0 0
\(184\) 2.66778e7 0.315710
\(185\) −3.17573e7 −0.368759
\(186\) 0 0
\(187\) −1.81851e8 −2.03363
\(188\) 3.58694e7 0.393705
\(189\) 0 0
\(190\) −3.28470e7 −0.347423
\(191\) −1.03268e8 −1.07238 −0.536191 0.844096i \(-0.680138\pi\)
−0.536191 + 0.844096i \(0.680138\pi\)
\(192\) 0 0
\(193\) 1.13874e7 0.114018 0.0570089 0.998374i \(-0.481844\pi\)
0.0570089 + 0.998374i \(0.481844\pi\)
\(194\) −1.53783e7 −0.151218
\(195\) 0 0
\(196\) −1.81034e7 −0.171737
\(197\) 3.46478e7 0.322882 0.161441 0.986882i \(-0.448386\pi\)
0.161441 + 0.986882i \(0.448386\pi\)
\(198\) 0 0
\(199\) −1.21715e8 −1.09486 −0.547432 0.836850i \(-0.684394\pi\)
−0.547432 + 0.836850i \(0.684394\pi\)
\(200\) −7.39103e7 −0.653281
\(201\) 0 0
\(202\) 8.79265e7 0.750568
\(203\) 1.56922e8 1.31658
\(204\) 0 0
\(205\) −2.12731e7 −0.172461
\(206\) 1.19582e8 0.953085
\(207\) 0 0
\(208\) 3.63135e7 0.279799
\(209\) 4.63192e7 0.350953
\(210\) 0 0
\(211\) −7.29077e7 −0.534300 −0.267150 0.963655i \(-0.586082\pi\)
−0.267150 + 0.963655i \(0.586082\pi\)
\(212\) 1.56493e7 0.112803
\(213\) 0 0
\(214\) −1.38369e8 −0.965139
\(215\) −1.01238e8 −0.694720
\(216\) 0 0
\(217\) −1.71390e8 −1.13861
\(218\) 9.14456e7 0.597812
\(219\) 0 0
\(220\) 1.60631e8 1.01707
\(221\) 3.02986e8 1.88821
\(222\) 0 0
\(223\) 8.62944e7 0.521093 0.260547 0.965461i \(-0.416097\pi\)
0.260547 + 0.965461i \(0.416097\pi\)
\(224\) −2.40946e7 −0.143236
\(225\) 0 0
\(226\) −2.75987e7 −0.159041
\(227\) 1.41831e8 0.804785 0.402393 0.915467i \(-0.368179\pi\)
0.402393 + 0.915467i \(0.368179\pi\)
\(228\) 0 0
\(229\) −1.78349e8 −0.981399 −0.490700 0.871329i \(-0.663259\pi\)
−0.490700 + 0.871329i \(0.663259\pi\)
\(230\) −1.96615e8 −1.06554
\(231\) 0 0
\(232\) −1.09266e8 −0.574481
\(233\) −1.65012e8 −0.854613 −0.427306 0.904107i \(-0.640537\pi\)
−0.427306 + 0.904107i \(0.640537\pi\)
\(234\) 0 0
\(235\) −2.64357e8 −1.32878
\(236\) −1.23754e8 −0.612871
\(237\) 0 0
\(238\) −2.01036e8 −0.966617
\(239\) −1.86834e8 −0.885247 −0.442623 0.896708i \(-0.645952\pi\)
−0.442623 + 0.896708i \(0.645952\pi\)
\(240\) 0 0
\(241\) 1.30787e8 0.601871 0.300936 0.953644i \(-0.402701\pi\)
0.300936 + 0.953644i \(0.402701\pi\)
\(242\) −7.06161e7 −0.320295
\(243\) 0 0
\(244\) 1.36255e8 0.600467
\(245\) 1.33422e8 0.579622
\(246\) 0 0
\(247\) −7.71733e7 −0.325858
\(248\) 1.19340e8 0.496827
\(249\) 0 0
\(250\) 2.49919e8 1.01160
\(251\) −7.33350e7 −0.292720 −0.146360 0.989231i \(-0.546756\pi\)
−0.146360 + 0.989231i \(0.546756\pi\)
\(252\) 0 0
\(253\) 2.77257e8 1.07637
\(254\) −3.40821e8 −1.30499
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −4.08853e7 −0.150245 −0.0751227 0.997174i \(-0.523935\pi\)
−0.0751227 + 0.997174i \(0.523935\pi\)
\(258\) 0 0
\(259\) 4.95069e7 0.177059
\(260\) −2.67630e8 −0.944339
\(261\) 0 0
\(262\) −3.37329e7 −0.115878
\(263\) −4.01148e8 −1.35975 −0.679875 0.733328i \(-0.737966\pi\)
−0.679875 + 0.733328i \(0.737966\pi\)
\(264\) 0 0
\(265\) −1.15335e8 −0.380716
\(266\) 5.12057e7 0.166814
\(267\) 0 0
\(268\) −1.04282e8 −0.330930
\(269\) 3.65089e8 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(270\) 0 0
\(271\) 5.78472e8 1.76559 0.882794 0.469760i \(-0.155659\pi\)
0.882794 + 0.469760i \(0.155659\pi\)
\(272\) 1.39983e8 0.421778
\(273\) 0 0
\(274\) −1.12528e7 −0.0330472
\(275\) −7.68134e8 −2.22727
\(276\) 0 0
\(277\) −2.88645e8 −0.815989 −0.407995 0.912984i \(-0.633772\pi\)
−0.407995 + 0.912984i \(0.633772\pi\)
\(278\) 3.16169e8 0.882597
\(279\) 0 0
\(280\) 1.77577e8 0.483429
\(281\) 5.45701e7 0.146718 0.0733588 0.997306i \(-0.476628\pi\)
0.0733588 + 0.997306i \(0.476628\pi\)
\(282\) 0 0
\(283\) 3.40620e7 0.0893342 0.0446671 0.999002i \(-0.485777\pi\)
0.0446671 + 0.999002i \(0.485777\pi\)
\(284\) −3.44330e8 −0.891992
\(285\) 0 0
\(286\) 3.77398e8 0.953935
\(287\) 3.31630e7 0.0828069
\(288\) 0 0
\(289\) 7.57626e8 1.84634
\(290\) 8.05286e8 1.93891
\(291\) 0 0
\(292\) −6.52731e7 −0.153424
\(293\) −2.61727e8 −0.607871 −0.303935 0.952693i \(-0.598301\pi\)
−0.303935 + 0.952693i \(0.598301\pi\)
\(294\) 0 0
\(295\) 9.12068e8 2.06848
\(296\) −3.44720e7 −0.0772584
\(297\) 0 0
\(298\) 1.21438e8 0.265827
\(299\) −4.61943e8 −0.999399
\(300\) 0 0
\(301\) 1.57822e8 0.333568
\(302\) 6.35892e8 1.32849
\(303\) 0 0
\(304\) −3.56549e7 −0.0727883
\(305\) −1.00420e9 −2.02661
\(306\) 0 0
\(307\) −4.92725e8 −0.971898 −0.485949 0.873987i \(-0.661526\pi\)
−0.485949 + 0.873987i \(0.661526\pi\)
\(308\) −2.50410e8 −0.488342
\(309\) 0 0
\(310\) −8.79534e8 −1.67682
\(311\) −2.46322e8 −0.464347 −0.232173 0.972674i \(-0.574584\pi\)
−0.232173 + 0.972674i \(0.574584\pi\)
\(312\) 0 0
\(313\) −5.40387e8 −0.996093 −0.498047 0.867150i \(-0.665949\pi\)
−0.498047 + 0.867150i \(0.665949\pi\)
\(314\) −6.67482e8 −1.21671
\(315\) 0 0
\(316\) −4.95457e8 −0.883286
\(317\) −3.81493e8 −0.672635 −0.336318 0.941749i \(-0.609182\pi\)
−0.336318 + 0.941749i \(0.609182\pi\)
\(318\) 0 0
\(319\) −1.13557e9 −1.95861
\(320\) −1.23648e8 −0.210941
\(321\) 0 0
\(322\) 3.06506e8 0.511616
\(323\) −2.97491e8 −0.491208
\(324\) 0 0
\(325\) 1.27980e9 2.06800
\(326\) 3.21955e8 0.514676
\(327\) 0 0
\(328\) −2.30916e7 −0.0361323
\(329\) 4.12110e8 0.638010
\(330\) 0 0
\(331\) 2.11612e8 0.320732 0.160366 0.987058i \(-0.448733\pi\)
0.160366 + 0.987058i \(0.448733\pi\)
\(332\) −1.34012e8 −0.200984
\(333\) 0 0
\(334\) −5.88580e8 −0.864357
\(335\) 7.68554e8 1.11691
\(336\) 0 0
\(337\) −2.97235e8 −0.423054 −0.211527 0.977372i \(-0.567844\pi\)
−0.211527 + 0.977372i \(0.567844\pi\)
\(338\) −1.26802e8 −0.178615
\(339\) 0 0
\(340\) −1.03167e9 −1.42353
\(341\) 1.24028e9 1.69386
\(342\) 0 0
\(343\) −8.13551e8 −1.08857
\(344\) −1.09892e8 −0.145550
\(345\) 0 0
\(346\) −5.34198e8 −0.693323
\(347\) −9.05189e7 −0.116302 −0.0581508 0.998308i \(-0.518520\pi\)
−0.0581508 + 0.998308i \(0.518520\pi\)
\(348\) 0 0
\(349\) 6.00104e8 0.755680 0.377840 0.925871i \(-0.376667\pi\)
0.377840 + 0.925871i \(0.376667\pi\)
\(350\) −8.49170e8 −1.05866
\(351\) 0 0
\(352\) 1.74362e8 0.213085
\(353\) −1.47428e9 −1.78390 −0.891949 0.452137i \(-0.850662\pi\)
−0.891949 + 0.452137i \(0.850662\pi\)
\(354\) 0 0
\(355\) 2.53771e9 3.01053
\(356\) −7.54733e8 −0.886580
\(357\) 0 0
\(358\) −6.40132e8 −0.737359
\(359\) 1.77364e8 0.202318 0.101159 0.994870i \(-0.467745\pi\)
0.101159 + 0.994870i \(0.467745\pi\)
\(360\) 0 0
\(361\) −8.18098e8 −0.915230
\(362\) −3.74686e8 −0.415133
\(363\) 0 0
\(364\) 4.17212e8 0.453422
\(365\) 4.81062e8 0.517817
\(366\) 0 0
\(367\) −1.96281e8 −0.207275 −0.103638 0.994615i \(-0.533048\pi\)
−0.103638 + 0.994615i \(0.533048\pi\)
\(368\) −2.13422e8 −0.223240
\(369\) 0 0
\(370\) 2.54058e8 0.260752
\(371\) 1.79798e8 0.182800
\(372\) 0 0
\(373\) −2.69799e8 −0.269190 −0.134595 0.990901i \(-0.542973\pi\)
−0.134595 + 0.990901i \(0.542973\pi\)
\(374\) 1.45481e9 1.43799
\(375\) 0 0
\(376\) −2.86955e8 −0.278392
\(377\) 1.89200e9 1.81856
\(378\) 0 0
\(379\) 2.20916e8 0.208444 0.104222 0.994554i \(-0.466765\pi\)
0.104222 + 0.994554i \(0.466765\pi\)
\(380\) 2.62776e8 0.245665
\(381\) 0 0
\(382\) 8.26146e8 0.758289
\(383\) −8.31130e8 −0.755916 −0.377958 0.925823i \(-0.623374\pi\)
−0.377958 + 0.925823i \(0.623374\pi\)
\(384\) 0 0
\(385\) 1.84552e9 1.64818
\(386\) −9.10990e7 −0.0806228
\(387\) 0 0
\(388\) 1.23027e8 0.106927
\(389\) −1.65749e9 −1.42767 −0.713833 0.700316i \(-0.753042\pi\)
−0.713833 + 0.700316i \(0.753042\pi\)
\(390\) 0 0
\(391\) −1.78072e9 −1.50652
\(392\) 1.44827e8 0.121436
\(393\) 0 0
\(394\) −2.77182e8 −0.228312
\(395\) 3.65151e9 2.98114
\(396\) 0 0
\(397\) −3.00261e8 −0.240842 −0.120421 0.992723i \(-0.538424\pi\)
−0.120421 + 0.992723i \(0.538424\pi\)
\(398\) 9.73723e8 0.774185
\(399\) 0 0
\(400\) 5.91283e8 0.461940
\(401\) 1.70634e9 1.32148 0.660739 0.750615i \(-0.270243\pi\)
0.660739 + 0.750615i \(0.270243\pi\)
\(402\) 0 0
\(403\) −2.06645e9 −1.57274
\(404\) −7.03412e8 −0.530731
\(405\) 0 0
\(406\) −1.25537e9 −0.930962
\(407\) −3.58260e8 −0.263402
\(408\) 0 0
\(409\) 1.81636e9 1.31271 0.656356 0.754451i \(-0.272097\pi\)
0.656356 + 0.754451i \(0.272097\pi\)
\(410\) 1.70185e8 0.121949
\(411\) 0 0
\(412\) −9.56659e8 −0.673933
\(413\) −1.42184e9 −0.993173
\(414\) 0 0
\(415\) 9.87670e8 0.678334
\(416\) −2.90508e8 −0.197848
\(417\) 0 0
\(418\) −3.70554e8 −0.248161
\(419\) 9.93132e8 0.659566 0.329783 0.944057i \(-0.393024\pi\)
0.329783 + 0.944057i \(0.393024\pi\)
\(420\) 0 0
\(421\) 5.17027e8 0.337696 0.168848 0.985642i \(-0.445995\pi\)
0.168848 + 0.985642i \(0.445995\pi\)
\(422\) 5.83262e8 0.377807
\(423\) 0 0
\(424\) −1.25194e8 −0.0797636
\(425\) 4.93344e9 3.11737
\(426\) 0 0
\(427\) 1.56546e9 0.973072
\(428\) 1.10695e9 0.682457
\(429\) 0 0
\(430\) 8.09906e8 0.491241
\(431\) −3.62445e7 −0.0218058 −0.0109029 0.999941i \(-0.503471\pi\)
−0.0109029 + 0.999941i \(0.503471\pi\)
\(432\) 0 0
\(433\) −2.26569e9 −1.34120 −0.670598 0.741821i \(-0.733962\pi\)
−0.670598 + 0.741821i \(0.733962\pi\)
\(434\) 1.37112e9 0.805121
\(435\) 0 0
\(436\) −7.31564e8 −0.422717
\(437\) 4.53565e8 0.259989
\(438\) 0 0
\(439\) −1.49751e9 −0.844780 −0.422390 0.906414i \(-0.638809\pi\)
−0.422390 + 0.906414i \(0.638809\pi\)
\(440\) −1.28505e9 −0.719174
\(441\) 0 0
\(442\) −2.42389e9 −1.33516
\(443\) 1.18355e9 0.646804 0.323402 0.946262i \(-0.395173\pi\)
0.323402 + 0.946262i \(0.395173\pi\)
\(444\) 0 0
\(445\) 5.56237e9 2.99226
\(446\) −6.90355e8 −0.368469
\(447\) 0 0
\(448\) 1.92757e8 0.101283
\(449\) −2.91053e9 −1.51743 −0.758717 0.651420i \(-0.774174\pi\)
−0.758717 + 0.651420i \(0.774174\pi\)
\(450\) 0 0
\(451\) −2.39986e8 −0.123188
\(452\) 2.20790e8 0.112459
\(453\) 0 0
\(454\) −1.13465e9 −0.569069
\(455\) −3.07485e9 −1.53033
\(456\) 0 0
\(457\) −2.21819e9 −1.08716 −0.543578 0.839358i \(-0.682931\pi\)
−0.543578 + 0.839358i \(0.682931\pi\)
\(458\) 1.42679e9 0.693954
\(459\) 0 0
\(460\) 1.57292e9 0.753450
\(461\) −8.69031e8 −0.413126 −0.206563 0.978433i \(-0.566228\pi\)
−0.206563 + 0.978433i \(0.566228\pi\)
\(462\) 0 0
\(463\) −1.31990e9 −0.618027 −0.309013 0.951058i \(-0.599999\pi\)
−0.309013 + 0.951058i \(0.599999\pi\)
\(464\) 8.74125e8 0.406219
\(465\) 0 0
\(466\) 1.32009e9 0.604302
\(467\) 4.68391e8 0.212814 0.106407 0.994323i \(-0.466065\pi\)
0.106407 + 0.994323i \(0.466065\pi\)
\(468\) 0 0
\(469\) −1.19811e9 −0.536280
\(470\) 2.11485e9 0.939589
\(471\) 0 0
\(472\) 9.90036e8 0.433365
\(473\) −1.14209e9 −0.496234
\(474\) 0 0
\(475\) −1.25659e9 −0.537981
\(476\) 1.60829e9 0.683502
\(477\) 0 0
\(478\) 1.49468e9 0.625964
\(479\) −1.65794e9 −0.689280 −0.344640 0.938735i \(-0.611999\pi\)
−0.344640 + 0.938735i \(0.611999\pi\)
\(480\) 0 0
\(481\) 5.96904e8 0.244567
\(482\) −1.04629e9 −0.425587
\(483\) 0 0
\(484\) 5.64929e8 0.226483
\(485\) −9.06704e8 −0.360886
\(486\) 0 0
\(487\) 1.71816e9 0.674079 0.337040 0.941490i \(-0.390574\pi\)
0.337040 + 0.941490i \(0.390574\pi\)
\(488\) −1.09004e9 −0.424594
\(489\) 0 0
\(490\) −1.06737e9 −0.409855
\(491\) 4.05932e9 1.54763 0.773817 0.633410i \(-0.218345\pi\)
0.773817 + 0.633410i \(0.218345\pi\)
\(492\) 0 0
\(493\) 7.29337e9 2.74135
\(494\) 6.17386e8 0.230416
\(495\) 0 0
\(496\) −9.54720e8 −0.351310
\(497\) −3.95607e9 −1.44550
\(498\) 0 0
\(499\) 9.74300e8 0.351027 0.175514 0.984477i \(-0.443841\pi\)
0.175514 + 0.984477i \(0.443841\pi\)
\(500\) −1.99935e9 −0.715309
\(501\) 0 0
\(502\) 5.86680e8 0.206985
\(503\) 3.68171e9 1.28992 0.644958 0.764218i \(-0.276875\pi\)
0.644958 + 0.764218i \(0.276875\pi\)
\(504\) 0 0
\(505\) 5.18413e9 1.79125
\(506\) −2.21805e9 −0.761106
\(507\) 0 0
\(508\) 2.72657e9 0.922770
\(509\) −8.31362e7 −0.0279433 −0.0139717 0.999902i \(-0.504447\pi\)
−0.0139717 + 0.999902i \(0.504447\pi\)
\(510\) 0 0
\(511\) −7.49935e8 −0.248628
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 3.27082e8 0.106240
\(515\) 7.05056e9 2.27456
\(516\) 0 0
\(517\) −2.98226e9 −0.949137
\(518\) −3.96056e8 −0.125199
\(519\) 0 0
\(520\) 2.14104e9 0.667748
\(521\) −3.54439e9 −1.09802 −0.549009 0.835816i \(-0.684995\pi\)
−0.549009 + 0.835816i \(0.684995\pi\)
\(522\) 0 0
\(523\) −3.60605e9 −1.10224 −0.551120 0.834426i \(-0.685799\pi\)
−0.551120 + 0.834426i \(0.685799\pi\)
\(524\) 2.69863e8 0.0819378
\(525\) 0 0
\(526\) 3.20918e9 0.961488
\(527\) −7.96583e9 −2.37079
\(528\) 0 0
\(529\) −6.89886e8 −0.202620
\(530\) 9.22681e8 0.269207
\(531\) 0 0
\(532\) −4.09646e8 −0.117955
\(533\) 3.99845e8 0.114379
\(534\) 0 0
\(535\) −8.15821e9 −2.30333
\(536\) 8.34253e8 0.234003
\(537\) 0 0
\(538\) −2.92071e9 −0.808631
\(539\) 1.50516e9 0.414020
\(540\) 0 0
\(541\) −2.67387e9 −0.726023 −0.363012 0.931785i \(-0.618252\pi\)
−0.363012 + 0.931785i \(0.618252\pi\)
\(542\) −4.62777e9 −1.24846
\(543\) 0 0
\(544\) −1.11986e9 −0.298242
\(545\) 5.39162e9 1.42670
\(546\) 0 0
\(547\) −2.31958e9 −0.605972 −0.302986 0.952995i \(-0.597984\pi\)
−0.302986 + 0.952995i \(0.597984\pi\)
\(548\) 9.00227e7 0.0233679
\(549\) 0 0
\(550\) 6.14507e9 1.57492
\(551\) −1.85769e9 −0.473088
\(552\) 0 0
\(553\) −5.69240e9 −1.43139
\(554\) 2.30916e9 0.576992
\(555\) 0 0
\(556\) −2.52935e9 −0.624090
\(557\) −6.21643e9 −1.52422 −0.762110 0.647447i \(-0.775837\pi\)
−0.762110 + 0.647447i \(0.775837\pi\)
\(558\) 0 0
\(559\) 1.90286e9 0.460749
\(560\) −1.42061e9 −0.341836
\(561\) 0 0
\(562\) −4.36561e8 −0.103745
\(563\) 4.43510e9 1.04743 0.523714 0.851894i \(-0.324546\pi\)
0.523714 + 0.851894i \(0.324546\pi\)
\(564\) 0 0
\(565\) −1.62722e9 −0.379556
\(566\) −2.72496e8 −0.0631688
\(567\) 0 0
\(568\) 2.75464e9 0.630733
\(569\) −3.89464e9 −0.886286 −0.443143 0.896451i \(-0.646137\pi\)
−0.443143 + 0.896451i \(0.646137\pi\)
\(570\) 0 0
\(571\) −8.04118e9 −1.80756 −0.903782 0.427994i \(-0.859221\pi\)
−0.903782 + 0.427994i \(0.859221\pi\)
\(572\) −3.01919e9 −0.674534
\(573\) 0 0
\(574\) −2.65304e8 −0.0585533
\(575\) −7.52169e9 −1.64998
\(576\) 0 0
\(577\) 3.17866e9 0.688856 0.344428 0.938813i \(-0.388073\pi\)
0.344428 + 0.938813i \(0.388073\pi\)
\(578\) −6.06100e9 −1.30556
\(579\) 0 0
\(580\) −6.44229e9 −1.37102
\(581\) −1.53969e9 −0.325700
\(582\) 0 0
\(583\) −1.30112e9 −0.271943
\(584\) 5.22185e8 0.108487
\(585\) 0 0
\(586\) 2.09381e9 0.429830
\(587\) 5.58549e9 1.13980 0.569899 0.821714i \(-0.306982\pi\)
0.569899 + 0.821714i \(0.306982\pi\)
\(588\) 0 0
\(589\) 2.02897e9 0.409140
\(590\) −7.29655e9 −1.46263
\(591\) 0 0
\(592\) 2.75776e8 0.0546300
\(593\) −5.31470e9 −1.04662 −0.523308 0.852143i \(-0.675302\pi\)
−0.523308 + 0.852143i \(0.675302\pi\)
\(594\) 0 0
\(595\) −1.18531e10 −2.30686
\(596\) −9.71506e8 −0.187968
\(597\) 0 0
\(598\) 3.69554e9 0.706682
\(599\) −1.24066e9 −0.235862 −0.117931 0.993022i \(-0.537626\pi\)
−0.117931 + 0.993022i \(0.537626\pi\)
\(600\) 0 0
\(601\) 2.42921e9 0.456461 0.228231 0.973607i \(-0.426706\pi\)
0.228231 + 0.973607i \(0.426706\pi\)
\(602\) −1.26258e9 −0.235868
\(603\) 0 0
\(604\) −5.08714e9 −0.939386
\(605\) −4.16352e9 −0.764393
\(606\) 0 0
\(607\) −8.23090e9 −1.49378 −0.746890 0.664948i \(-0.768454\pi\)
−0.746890 + 0.664948i \(0.768454\pi\)
\(608\) 2.85239e8 0.0514691
\(609\) 0 0
\(610\) 8.03360e9 1.43303
\(611\) 4.96880e9 0.881267
\(612\) 0 0
\(613\) 6.14959e9 1.07829 0.539144 0.842214i \(-0.318748\pi\)
0.539144 + 0.842214i \(0.318748\pi\)
\(614\) 3.94180e9 0.687236
\(615\) 0 0
\(616\) 2.00328e9 0.345310
\(617\) 9.32737e9 1.59868 0.799339 0.600880i \(-0.205183\pi\)
0.799339 + 0.600880i \(0.205183\pi\)
\(618\) 0 0
\(619\) 2.11704e9 0.358767 0.179383 0.983779i \(-0.442590\pi\)
0.179383 + 0.983779i \(0.442590\pi\)
\(620\) 7.03627e9 1.18569
\(621\) 0 0
\(622\) 1.97058e9 0.328343
\(623\) −8.67126e9 −1.43673
\(624\) 0 0
\(625\) 3.45735e9 0.566452
\(626\) 4.32310e9 0.704344
\(627\) 0 0
\(628\) 5.33986e9 0.860342
\(629\) 2.30097e9 0.368667
\(630\) 0 0
\(631\) 4.96507e9 0.786725 0.393362 0.919383i \(-0.371312\pi\)
0.393362 + 0.919383i \(0.371312\pi\)
\(632\) 3.96366e9 0.624577
\(633\) 0 0
\(634\) 3.05195e9 0.475625
\(635\) −2.00948e10 −3.11440
\(636\) 0 0
\(637\) −2.50777e9 −0.384414
\(638\) 9.08460e9 1.38495
\(639\) 0 0
\(640\) 9.89183e8 0.149158
\(641\) 5.46682e9 0.819845 0.409923 0.912120i \(-0.365556\pi\)
0.409923 + 0.912120i \(0.365556\pi\)
\(642\) 0 0
\(643\) 9.76161e9 1.44805 0.724024 0.689774i \(-0.242290\pi\)
0.724024 + 0.689774i \(0.242290\pi\)
\(644\) −2.45205e9 −0.361767
\(645\) 0 0
\(646\) 2.37993e9 0.347336
\(647\) −8.78713e9 −1.27551 −0.637753 0.770241i \(-0.720136\pi\)
−0.637753 + 0.770241i \(0.720136\pi\)
\(648\) 0 0
\(649\) 1.02892e10 1.47750
\(650\) −1.02384e10 −1.46230
\(651\) 0 0
\(652\) −2.57564e9 −0.363931
\(653\) 1.17186e10 1.64694 0.823472 0.567357i \(-0.192034\pi\)
0.823472 + 0.567357i \(0.192034\pi\)
\(654\) 0 0
\(655\) −1.98889e9 −0.276545
\(656\) 1.84733e8 0.0255494
\(657\) 0 0
\(658\) −3.29688e9 −0.451141
\(659\) −2.65559e9 −0.361461 −0.180731 0.983533i \(-0.557846\pi\)
−0.180731 + 0.983533i \(0.557846\pi\)
\(660\) 0 0
\(661\) −2.43661e8 −0.0328156 −0.0164078 0.999865i \(-0.505223\pi\)
−0.0164078 + 0.999865i \(0.505223\pi\)
\(662\) −1.69290e9 −0.226792
\(663\) 0 0
\(664\) 1.07210e9 0.142117
\(665\) 3.01908e9 0.398107
\(666\) 0 0
\(667\) −1.11197e10 −1.45095
\(668\) 4.70864e9 0.611192
\(669\) 0 0
\(670\) −6.14843e9 −0.789773
\(671\) −1.13286e10 −1.44759
\(672\) 0 0
\(673\) 2.78437e9 0.352107 0.176053 0.984381i \(-0.443667\pi\)
0.176053 + 0.984381i \(0.443667\pi\)
\(674\) 2.37788e9 0.299144
\(675\) 0 0
\(676\) 1.01442e9 0.126300
\(677\) 1.09692e9 0.135867 0.0679336 0.997690i \(-0.478359\pi\)
0.0679336 + 0.997690i \(0.478359\pi\)
\(678\) 0 0
\(679\) 1.41348e9 0.173278
\(680\) 8.25337e9 1.00658
\(681\) 0 0
\(682\) −9.92221e9 −1.19774
\(683\) −6.42315e9 −0.771393 −0.385696 0.922626i \(-0.626039\pi\)
−0.385696 + 0.922626i \(0.626039\pi\)
\(684\) 0 0
\(685\) −6.63466e8 −0.0788681
\(686\) 6.50841e9 0.769733
\(687\) 0 0
\(688\) 8.79140e8 0.102920
\(689\) 2.16782e9 0.252497
\(690\) 0 0
\(691\) −5.37346e9 −0.619556 −0.309778 0.950809i \(-0.600255\pi\)
−0.309778 + 0.950809i \(0.600255\pi\)
\(692\) 4.27358e9 0.490254
\(693\) 0 0
\(694\) 7.24151e8 0.0822377
\(695\) 1.86413e10 2.10634
\(696\) 0 0
\(697\) 1.54134e9 0.172419
\(698\) −4.80083e9 −0.534346
\(699\) 0 0
\(700\) 6.79336e9 0.748585
\(701\) −7.91279e9 −0.867594 −0.433797 0.901011i \(-0.642826\pi\)
−0.433797 + 0.901011i \(0.642826\pi\)
\(702\) 0 0
\(703\) −5.86079e8 −0.0636228
\(704\) −1.39490e9 −0.150674
\(705\) 0 0
\(706\) 1.17943e10 1.26141
\(707\) −8.08163e9 −0.860064
\(708\) 0 0
\(709\) −1.40765e10 −1.48331 −0.741654 0.670782i \(-0.765958\pi\)
−0.741654 + 0.670782i \(0.765958\pi\)
\(710\) −2.03017e10 −2.12876
\(711\) 0 0
\(712\) 6.03786e9 0.626907
\(713\) 1.21450e10 1.25482
\(714\) 0 0
\(715\) 2.22514e10 2.27659
\(716\) 5.12106e9 0.521392
\(717\) 0 0
\(718\) −1.41891e9 −0.143061
\(719\) 1.11759e10 1.12132 0.560661 0.828045i \(-0.310547\pi\)
0.560661 + 0.828045i \(0.310547\pi\)
\(720\) 0 0
\(721\) −1.09912e10 −1.09213
\(722\) 6.54478e9 0.647165
\(723\) 0 0
\(724\) 2.99749e9 0.293543
\(725\) 3.08070e10 3.00238
\(726\) 0 0
\(727\) 4.01633e9 0.387667 0.193834 0.981034i \(-0.437908\pi\)
0.193834 + 0.981034i \(0.437908\pi\)
\(728\) −3.33770e9 −0.320618
\(729\) 0 0
\(730\) −3.84850e9 −0.366152
\(731\) 7.33521e9 0.694548
\(732\) 0 0
\(733\) −9.95769e8 −0.0933887 −0.0466944 0.998909i \(-0.514869\pi\)
−0.0466944 + 0.998909i \(0.514869\pi\)
\(734\) 1.57025e9 0.146566
\(735\) 0 0
\(736\) 1.70738e9 0.157855
\(737\) 8.67021e9 0.797799
\(738\) 0 0
\(739\) −3.54656e9 −0.323260 −0.161630 0.986851i \(-0.551675\pi\)
−0.161630 + 0.986851i \(0.551675\pi\)
\(740\) −2.03247e9 −0.184379
\(741\) 0 0
\(742\) −1.43838e9 −0.129259
\(743\) 9.71329e8 0.0868771 0.0434386 0.999056i \(-0.486169\pi\)
0.0434386 + 0.999056i \(0.486169\pi\)
\(744\) 0 0
\(745\) 7.15999e9 0.634403
\(746\) 2.15839e9 0.190346
\(747\) 0 0
\(748\) −1.16385e10 −1.01681
\(749\) 1.27180e10 1.10594
\(750\) 0 0
\(751\) −1.06185e10 −0.914795 −0.457398 0.889262i \(-0.651218\pi\)
−0.457398 + 0.889262i \(0.651218\pi\)
\(752\) 2.29564e9 0.196853
\(753\) 0 0
\(754\) −1.51360e10 −1.28591
\(755\) 3.74921e10 3.17049
\(756\) 0 0
\(757\) 7.16479e9 0.600299 0.300149 0.953892i \(-0.402963\pi\)
0.300149 + 0.953892i \(0.402963\pi\)
\(758\) −1.76733e9 −0.147392
\(759\) 0 0
\(760\) −2.10221e9 −0.173711
\(761\) 7.91291e9 0.650863 0.325432 0.945566i \(-0.394490\pi\)
0.325432 + 0.945566i \(0.394490\pi\)
\(762\) 0 0
\(763\) −8.40508e9 −0.685024
\(764\) −6.60917e9 −0.536191
\(765\) 0 0
\(766\) 6.64904e9 0.534513
\(767\) −1.71431e10 −1.37184
\(768\) 0 0
\(769\) 1.50800e10 1.19580 0.597902 0.801569i \(-0.296001\pi\)
0.597902 + 0.801569i \(0.296001\pi\)
\(770\) −1.47641e10 −1.16544
\(771\) 0 0
\(772\) 7.28792e8 0.0570089
\(773\) −5.21596e9 −0.406168 −0.203084 0.979161i \(-0.565097\pi\)
−0.203084 + 0.979161i \(0.565097\pi\)
\(774\) 0 0
\(775\) −3.36474e10 −2.59654
\(776\) −9.84213e8 −0.0756089
\(777\) 0 0
\(778\) 1.32599e10 1.00951
\(779\) −3.92594e8 −0.0297551
\(780\) 0 0
\(781\) 2.86284e10 2.15040
\(782\) 1.42457e10 1.06527
\(783\) 0 0
\(784\) −1.15862e9 −0.0858684
\(785\) −3.93547e10 −2.90371
\(786\) 0 0
\(787\) −5.02319e9 −0.367340 −0.183670 0.982988i \(-0.558798\pi\)
−0.183670 + 0.982988i \(0.558798\pi\)
\(788\) 2.21746e9 0.161441
\(789\) 0 0
\(790\) −2.92121e10 −2.10799
\(791\) 2.53669e9 0.182243
\(792\) 0 0
\(793\) 1.88748e10 1.34408
\(794\) 2.40209e9 0.170301
\(795\) 0 0
\(796\) −7.78979e9 −0.547432
\(797\) −2.72965e10 −1.90986 −0.954932 0.296823i \(-0.904073\pi\)
−0.954932 + 0.296823i \(0.904073\pi\)
\(798\) 0 0
\(799\) 1.91540e10 1.32845
\(800\) −4.73026e9 −0.326641
\(801\) 0 0
\(802\) −1.36507e10 −0.934426
\(803\) 5.42696e9 0.369873
\(804\) 0 0
\(805\) 1.80716e10 1.22098
\(806\) 1.65316e10 1.11209
\(807\) 0 0
\(808\) 5.62729e9 0.375284
\(809\) 1.86800e9 0.124039 0.0620194 0.998075i \(-0.480246\pi\)
0.0620194 + 0.998075i \(0.480246\pi\)
\(810\) 0 0
\(811\) 2.75954e9 0.181662 0.0908308 0.995866i \(-0.471048\pi\)
0.0908308 + 0.995866i \(0.471048\pi\)
\(812\) 1.00430e10 0.658289
\(813\) 0 0
\(814\) 2.86608e9 0.186253
\(815\) 1.89824e10 1.22829
\(816\) 0 0
\(817\) −1.86835e9 −0.119862
\(818\) −1.45308e10 −0.928228
\(819\) 0 0
\(820\) −1.36148e9 −0.0862307
\(821\) −1.16476e10 −0.734573 −0.367287 0.930108i \(-0.619713\pi\)
−0.367287 + 0.930108i \(0.619713\pi\)
\(822\) 0 0
\(823\) 4.22891e9 0.264441 0.132221 0.991220i \(-0.457789\pi\)
0.132221 + 0.991220i \(0.457789\pi\)
\(824\) 7.65327e9 0.476543
\(825\) 0 0
\(826\) 1.13747e10 0.702279
\(827\) 2.14248e10 1.31719 0.658595 0.752498i \(-0.271151\pi\)
0.658595 + 0.752498i \(0.271151\pi\)
\(828\) 0 0
\(829\) 2.03553e10 1.24090 0.620451 0.784246i \(-0.286950\pi\)
0.620451 + 0.784246i \(0.286950\pi\)
\(830\) −7.90136e9 −0.479654
\(831\) 0 0
\(832\) 2.32406e9 0.139899
\(833\) −9.66706e9 −0.579478
\(834\) 0 0
\(835\) −3.47026e10 −2.06281
\(836\) 2.96443e9 0.175477
\(837\) 0 0
\(838\) −7.94506e9 −0.466383
\(839\) 5.87651e9 0.343520 0.171760 0.985139i \(-0.445055\pi\)
0.171760 + 0.985139i \(0.445055\pi\)
\(840\) 0 0
\(841\) 2.82937e10 1.64023
\(842\) −4.13622e9 −0.238787
\(843\) 0 0
\(844\) −4.66609e9 −0.267150
\(845\) −7.47623e9 −0.426269
\(846\) 0 0
\(847\) 6.49057e9 0.367021
\(848\) 1.00156e9 0.0564014
\(849\) 0 0
\(850\) −3.94675e10 −2.20432
\(851\) −3.50814e9 −0.195130
\(852\) 0 0
\(853\) −1.41237e10 −0.779160 −0.389580 0.920993i \(-0.627380\pi\)
−0.389580 + 0.920993i \(0.627380\pi\)
\(854\) −1.25237e10 −0.688066
\(855\) 0 0
\(856\) −8.85561e9 −0.482570
\(857\) −1.85850e8 −0.0100863 −0.00504313 0.999987i \(-0.501605\pi\)
−0.00504313 + 0.999987i \(0.501605\pi\)
\(858\) 0 0
\(859\) −3.07008e10 −1.65262 −0.826312 0.563213i \(-0.809565\pi\)
−0.826312 + 0.563213i \(0.809565\pi\)
\(860\) −6.47925e9 −0.347360
\(861\) 0 0
\(862\) 2.89956e8 0.0154190
\(863\) −3.25081e9 −0.172168 −0.0860842 0.996288i \(-0.527435\pi\)
−0.0860842 + 0.996288i \(0.527435\pi\)
\(864\) 0 0
\(865\) −3.14962e10 −1.65464
\(866\) 1.81255e10 0.948369
\(867\) 0 0
\(868\) −1.09690e10 −0.569307
\(869\) 4.11934e10 2.12941
\(870\) 0 0
\(871\) −1.44456e10 −0.740751
\(872\) 5.85252e9 0.298906
\(873\) 0 0
\(874\) −3.62852e9 −0.183840
\(875\) −2.29709e10 −1.15918
\(876\) 0 0
\(877\) −1.68627e10 −0.844169 −0.422085 0.906556i \(-0.638701\pi\)
−0.422085 + 0.906556i \(0.638701\pi\)
\(878\) 1.19801e10 0.597350
\(879\) 0 0
\(880\) 1.02804e10 0.508533
\(881\) −2.46279e9 −0.121342 −0.0606710 0.998158i \(-0.519324\pi\)
−0.0606710 + 0.998158i \(0.519324\pi\)
\(882\) 0 0
\(883\) 2.67375e10 1.30695 0.653475 0.756948i \(-0.273311\pi\)
0.653475 + 0.756948i \(0.273311\pi\)
\(884\) 1.93911e10 0.944104
\(885\) 0 0
\(886\) −9.46838e9 −0.457360
\(887\) −2.84416e10 −1.36843 −0.684214 0.729282i \(-0.739854\pi\)
−0.684214 + 0.729282i \(0.739854\pi\)
\(888\) 0 0
\(889\) 3.13260e10 1.49537
\(890\) −4.44989e10 −2.11585
\(891\) 0 0
\(892\) 5.52284e9 0.260547
\(893\) −4.87869e9 −0.229257
\(894\) 0 0
\(895\) −3.77421e10 −1.75973
\(896\) −1.54205e9 −0.0716178
\(897\) 0 0
\(898\) 2.32842e10 1.07299
\(899\) −4.97428e10 −2.28334
\(900\) 0 0
\(901\) 8.35661e9 0.380621
\(902\) 1.91989e9 0.0871070
\(903\) 0 0
\(904\) −1.76632e9 −0.0795205
\(905\) −2.20914e10 −0.990726
\(906\) 0 0
\(907\) 8.08689e9 0.359879 0.179939 0.983678i \(-0.442410\pi\)
0.179939 + 0.983678i \(0.442410\pi\)
\(908\) 9.07717e9 0.402393
\(909\) 0 0
\(910\) 2.45988e10 1.08210
\(911\) 6.47512e9 0.283748 0.141874 0.989885i \(-0.454687\pi\)
0.141874 + 0.989885i \(0.454687\pi\)
\(912\) 0 0
\(913\) 1.11421e10 0.484529
\(914\) 1.77455e10 0.768736
\(915\) 0 0
\(916\) −1.14143e10 −0.490700
\(917\) 3.10051e9 0.132782
\(918\) 0 0
\(919\) 3.18121e10 1.35204 0.676018 0.736885i \(-0.263704\pi\)
0.676018 + 0.736885i \(0.263704\pi\)
\(920\) −1.25834e10 −0.532769
\(921\) 0 0
\(922\) 6.95225e9 0.292124
\(923\) −4.76983e10 −1.99663
\(924\) 0 0
\(925\) 9.71923e9 0.403772
\(926\) 1.05592e10 0.437011
\(927\) 0 0
\(928\) −6.99300e9 −0.287241
\(929\) −1.41549e10 −0.579232 −0.289616 0.957143i \(-0.593528\pi\)
−0.289616 + 0.957143i \(0.593528\pi\)
\(930\) 0 0
\(931\) 2.46229e9 0.100003
\(932\) −1.05608e10 −0.427306
\(933\) 0 0
\(934\) −3.74713e9 −0.150482
\(935\) 8.57755e10 3.43181
\(936\) 0 0
\(937\) 1.51843e10 0.602984 0.301492 0.953469i \(-0.402515\pi\)
0.301492 + 0.953469i \(0.402515\pi\)
\(938\) 9.58489e9 0.379208
\(939\) 0 0
\(940\) −1.69188e10 −0.664390
\(941\) −4.08371e10 −1.59768 −0.798842 0.601541i \(-0.794554\pi\)
−0.798842 + 0.601541i \(0.794554\pi\)
\(942\) 0 0
\(943\) −2.34998e9 −0.0912584
\(944\) −7.92029e9 −0.306435
\(945\) 0 0
\(946\) 9.13671e9 0.350890
\(947\) 2.04381e10 0.782015 0.391008 0.920387i \(-0.372127\pi\)
0.391008 + 0.920387i \(0.372127\pi\)
\(948\) 0 0
\(949\) −9.04196e9 −0.343424
\(950\) 1.00527e10 0.380410
\(951\) 0 0
\(952\) −1.28663e10 −0.483309
\(953\) −4.34656e10 −1.62675 −0.813374 0.581741i \(-0.802372\pi\)
−0.813374 + 0.581741i \(0.802372\pi\)
\(954\) 0 0
\(955\) 4.87095e10 1.80968
\(956\) −1.19574e10 −0.442623
\(957\) 0 0
\(958\) 1.32636e10 0.487395
\(959\) 1.03429e9 0.0378683
\(960\) 0 0
\(961\) 2.68165e10 0.974697
\(962\) −4.77523e9 −0.172935
\(963\) 0 0
\(964\) 8.37034e9 0.300936
\(965\) −5.37118e9 −0.192409
\(966\) 0 0
\(967\) 3.84118e10 1.36607 0.683034 0.730386i \(-0.260660\pi\)
0.683034 + 0.730386i \(0.260660\pi\)
\(968\) −4.51943e9 −0.160147
\(969\) 0 0
\(970\) 7.25363e9 0.255185
\(971\) −1.63481e10 −0.573061 −0.286531 0.958071i \(-0.592502\pi\)
−0.286531 + 0.958071i \(0.592502\pi\)
\(972\) 0 0
\(973\) −2.90602e10 −1.01135
\(974\) −1.37452e10 −0.476646
\(975\) 0 0
\(976\) 8.72034e9 0.300233
\(977\) 1.41494e9 0.0485409 0.0242704 0.999705i \(-0.492274\pi\)
0.0242704 + 0.999705i \(0.492274\pi\)
\(978\) 0 0
\(979\) 6.27502e10 2.13735
\(980\) 8.53898e9 0.289811
\(981\) 0 0
\(982\) −3.24746e10 −1.09434
\(983\) −2.19251e10 −0.736213 −0.368107 0.929784i \(-0.619994\pi\)
−0.368107 + 0.929784i \(0.619994\pi\)
\(984\) 0 0
\(985\) −1.63426e10 −0.544873
\(986\) −5.83470e10 −1.93843
\(987\) 0 0
\(988\) −4.93909e9 −0.162929
\(989\) −1.11835e10 −0.367613
\(990\) 0 0
\(991\) 1.50750e10 0.492040 0.246020 0.969265i \(-0.420877\pi\)
0.246020 + 0.969265i \(0.420877\pi\)
\(992\) 7.63776e9 0.248414
\(993\) 0 0
\(994\) 3.16486e10 1.02212
\(995\) 5.74106e10 1.84761
\(996\) 0 0
\(997\) 2.01110e10 0.642687 0.321344 0.946963i \(-0.395866\pi\)
0.321344 + 0.946963i \(0.395866\pi\)
\(998\) −7.79440e9 −0.248214
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.g.1.1 4
3.2 odd 2 162.8.a.j.1.4 yes 4
9.2 odd 6 162.8.c.q.109.1 8
9.4 even 3 162.8.c.r.55.4 8
9.5 odd 6 162.8.c.q.55.1 8
9.7 even 3 162.8.c.r.109.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.1 4 1.1 even 1 trivial
162.8.a.j.1.4 yes 4 3.2 odd 2
162.8.c.q.55.1 8 9.5 odd 6
162.8.c.q.109.1 8 9.2 odd 6
162.8.c.r.55.4 8 9.4 even 3
162.8.c.r.109.4 8 9.7 even 3